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Abstract. The paper deals with a class of problems, where localised damage is detected using static and dynamic tests.
Response of a structure is analysed employing discrete wavelet transformation as a tool for signal processing. The
localised damage in beam structures was modelled as bending stiffness reduction. The efficiency of static and dynamic
tests is studied. The minimal number of experimental measurement data and the precision of measurements required for
the successful damage localisation is discussed by several numerical examples.
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1. Introduction

The problem of localisation and estimation of struc-
tural damage is one of the most important engineering
problems. It is connected with the assessment of struc-
ture safety and serviceability. This issue belongs to a
wider class of identification problems, where unknown
parameters of a system are determined by experimental
tests. Structural identification has focused much atten-
tion in the last two decades.

First papers devoted to damage detection were based
on the modal analysis of structural response. It was ob-
served [1, 2] that damage results in stiffness reduction,
increase of damping and decrease of natural frequency
of a structure. An extensive review of damage identifi-
cation techniques using information on changes in natu-
ral frequencies and shape modes of vibrations was pre-
sented [3]. Unfortunately, global static and dynamic re-
sponses are rather insensitive to localised damage and
often are smaller than the variations resulting from inac-
curacy in structure modelling. Hence, different ways of
improvement of experiments were proposed. Variable
location of support or additional concentrated mass en-
hancing structural response was proposed [4]. Optimiza-
tion of loads with the aim to better exhibit the discrep-
ancy between responses of the damaged and undamaged
structures was presented [5—7].

New class of identification methods emerged with
the development of the so-called soft methods: fuzzy sets,
genetic algorithms and neural networks. Application of

genetic algorithms in damage identification was presented
in [8], whereas prospects of neural networks was dis-
cussed in [9]. In paper [10] fuzzy sets, genetic algorithms
and neural networks were used simultaneously.

Entirely new method rooted in the mathematical
theory of signal analysis emerged in the last years,
namely, wavelet transformation. It has become one of
the most promising tools in structural identification. The
theory of wavelet transformation was developed by
Daubechies [11], Mallat [12] and Chui [13]. Newland
[14] showed the potential of this tool in vibration signal
analysis. Wavelet transformation was applied to damage
identification by Wang and McFadden [15]. Application
of the method in the space domain was presented [16].
Analysis of transformation parameters was performed in
[17], where the efficiency of wavelets in damage identi-
fication was demonstrated.

In this paper we continue discussion on application
of wavelet transformation in structural damage identifi-
cation. The attention will be focused on the identifica-
tion efficiency in the analyses of static and dynamic struc-
tural responses. The problem of the number of measure-
ment points and the influence of noise in measurements
are discussed.

2. Problem formulation

We use beam, frame or plate models of damaged
structures. The specific type of the structure does not
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make much difference, provided that we can receive the
response for any action (not necessarily defined). Our
main task is to detect localisation of damage in the struc-
ture, if such a damage exists. This localisation will be
determined basing on signal analysis of structural re-
sponse to different actions.

We consider numerical models of beams loaded by
static and dynamic forces. In all examples the damage is
modelled as local stiffness reduction at small, prescribed
distance introduced at the point of existing damage. The
application of damage model in the form of an elastic
hinge was discussed by the authors in [17].

In the procedure of damage identification various
structural responses are analysed, namely static displace-
ments or the amplitudes of dynamic displacement and
acceleration. The structural response represented in the
form of a discrete signal is transformed using wavelet
transformation. Theoretical background of this transfor-
mation was published in [11-14]. Basic information on
discrete wavelet transformation, directly connected with
the present study, will be provided in Chapter 3.

As a result of signal processing we expect evident
disturbances of transformed signal to appear in the place
of damage location. We assumed that the response of
undamaged structure is not known. The aim of the paper
is not limited to demonstration that the defect identifica-
tion is possible. Crucial problem is how to achieve this
goal with the minimum number of measurement points
and with a specified noise level representing measure-
ments inaccuracy inevitable in experiments.

3. Basis of wavelet transformation

Wavelet transformation is a method of decomposi-
tion of arbitrary signal f(x) into an infinite sum of wave-
lets at different scales according to the expansion:

f(X)= z ZCj’kW(ZJX—k), (D)
j=—00 k=—00
where W(x) is a wavelet (mother) function. Integers j
and k are dilation (scale) and translation (position) indi-
ces, respectively. The terms ¢; are numerical constants
called wavelet coefficients.
When j is negative, W(2x-k) can always be ex-
pressed as a sum of terms @(x—K), providing

(=) [ o0 .
f()= 3 cou@(x—k)+ )3 ZCj,kW(ZJ X— k), ()
k=—0c0 =0k=—00
where @(x) is a scaling (father) function and Cok is a
new set of coefficients.

In order to set up a discrete wavelet transform al-
gorithm, it is convenient to limit the range of the inde-
pendent variable x to one unit interval so that f(x) is
assumed to be defined only for 0 < x < 1. Then, the
variable x is non-dimensional. Additionally, assuming that
f{x) is one period of a periodic signal, the wavelet ex-
pansion can be written in the form

f(x)=a0(p(x)+2§a2j+kW(2j x—k). 3)
J

The coefficients L4 Tepresent the amplitudes of

subsequent wavelets. The integer j describes different
levels of wavelets starting from j = 0. Integer k specifies
the number of wavelets at each level, so that it covers
the range k =0 to 2-1.

The discrete wavelet transform, which is used in this

paper, is an algorithm for computing coefficients ol +k
when f{x) is sampled at equally spaced intervals over
0 < x < 1. Since the number of sampled values is lim-
ited, every function f{x) is approximated by f(x) using
N =2/ discrete values. Note that the scale indicator
j=0, 1, ..., J-1. Henceforth, keeping in mind (3), the
discrete signal decomposition can be written as

fJ=f(p+f0+f1+...+fj+...+ fJ_2+fJ_1 (4)
or
fJ=S|\/| +DM +DM_1+...+Dm+...+D2+D1, (5)

where m =J —j.

Each component in signal representation provides
information at the scale level j. The last terms in (4) and
(5) corresponds with the most detailed representation of
the signal (high-frequency oscillations). The preceding
representations deliver the more and more rough infor-
mation about the signal and correspond to the lower fre-
quency oscillations.

In practice DWT requires neither integration, nor
explicit knowledge of scaling and wavelet functions, gen-
erating transformation. Due to the character the above
method of signal representation it is called multi-resolu-
tion analysis (MRA).

4. Numerical analysis

4.1. Static and dynamic structural responses

To compare the efficiency of damage identification
for different signals representing static and dynamic struc-
tural responses, a propped cantilever beam model pre-
sented in Fig 1 was used.
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Fig 1. Beam structure with the damage modelled as stiff-
ness reduction
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Fig 2. Wavelet transformation using wavelet daublet8 of
static displacement signal for the force localisation
x =0,5m: a) detail D, b) D,, ¢) D;, d) D,

The properties of the structure are: bending stiff-
ness EI = 108 kNm?; damage localised at x =1,40 m
measured from the clamped end; the damage is mod-
elled as stiffness reduced to EI, = 62,5 kNm? on the
portion b = 0,01 m. All static and dynamic responses
were computed using FEM (ABAQUS program). Two
classes of problems were examined: static response to
the concentrated force P=1 kN and steady-state vibra-
tions excited by the dynamic force P(#)=1cos(2mnft). Three
frequencies of the dynamic excitation were assumed,
namely: f;=10 Hz, f,=25 Hz and f;= 80 Hz. The fre-
quency f, is close to the first eigenfrequency of the sys-
tem (32.81 Hz), whereas the frequency f; is near to the

second one (106.50 Hz). In both, static and dynamic
cases, the concentrated forces acting on the structure were
localised in various points: x =0,5 m, x = 1,0 m,
x=1,5m and x = 2,0 m. Altogether, 16 analyses were
performed.

As a structural response signal the static vertical dis-
placements and the amplitudes of vertical displacements
and accelerations were analysed. In each case the re-
sponse signal was computed in 512 points uniformly dis-
tributed at the longitudinal axis of the beam. This data
is treated as respective discrete signals in the space do-
main and is processed using wavelet transformation.

=1
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Fig 3. Wavelet transformation using wavelet daublet8 of

static displacement signal for the force localisation
x = 1,5m: a) detail D,, b) D,, ¢) D;, d) D,
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Usually, wavelets named daublet8 were used in this trans-
formation. As a result of the transformation we obtained
evident disturbances in the place where damage was
localised in the most detailed signal representations,
namely D, D, or D,.

In Figs 2 and 3 details D, D,, D,, D, of the wave-
let transformation of static response for the force
localisation at the points x = 0,5 m and next x = 1,5 m
are presented. Note in these figures that the damage (and
also the force) localisation is demonstrated in the utmost
evident way by the detail D,. Defect is visible for both
force positions, though greater effect was obtained for
the case when the force was localised near the damage.
It is worth to notice that in all graphs high disturbances
at the ends of interval appeared. They increased with
successive higher order signal representations. They re-
sult from the fact that the employed wavelets exceed the
range [0,1]. Therefore in wavelet transform algorithm it
was assumed that the analysed signal is periodic. Hence,
overlapping of wavelets results in disturbances at bound-
aries.

To compare the efficiency of static and dynamic re-
sponses in damage identification, transformations of these

Fig 4. Detail 3 of displacement amplitudes transforma-
tion for the harmonic force localisation x = 1,5 m and fre-
quencies: a) f, =10 Hz, b) f,=25 Hz, c¢) f;=80 Hz

responses are presented in Figs 3 and 4, respectively.
The force P was localised at x = 1,5 m and vertical dis-
placements were analysed. On the graphs 4a, b and ¢
detail 3 for frequencies of excitation f, =10 Hz,
/=25 Hz, f, =80 Hz is presented, respectively.

Fig 4 demonstrates that in this case damage was
properly identified for the frequencies f; and f,. The fre-
quency f; has not detected the damage. Of course, it is
connected with the specified damage position.

Fig 5. Detail 3 of acceleration amplitudes transformation
for the force position x = 1,5 m and frequency: f,= 25 Hz

Next, we studied the usefulness of the structural
response in the form of accelerations. Note, that it is
often easier to measure in situ the accelerations than the
displacements. Fig 5 illustrates the wavelet transform of
the accelerations for the case f, identical to the case
shown in Fig 4b.

Unfortunately, identification based on transformation
of acceleration amplitudes has not brought expected re-
sults. It needs further studies.

Let us come back to the problem of a choice of
excitation frequency. If we change our model so that the
dynamic force is acting at the point x = 2,0 m and the
damage will be defined at the point x, = 0,75 m, proper
damage identification will occur only for the frequency
/5= 80 Hz. This phenomenon was shown in Fig 6.

Summarising the results of the above analyses we
observe that damage is detected as well for static as for
dynamic structural responses. The application of dynamic
excitation provides more possibilities in planning the ex-
periment. On the other hand, it can lead to some diffi-
culties in the valuation of dynamic response.

4.2. Number of measurement points

One of the key problems in the damage identifica-
tion is the prediction of the minimal number of measure-
ments required for proper data processing. Fig 7 pro-
vides the first insight into this problem. On the succes-
sive graphs 7a, b, c, the wavelet transformations of the
static response represented by 128, 64 and 32 uniformly
distributed measurement points are depicted.

Basing on Fig 7 we can conclude that in our case
the minimal number of measurements was 64. However,
it is difficult to define arbitrarily the number of experi-
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Fig 6. Detail 3 of displacement amplitudes transformation
for the damage position x, = 0,75 m, force localisation
x =2,0 m and frequencies: a) f; = 10 Hz, b) £, =25 Hz, ¢)
/f;=80 Hz

mental data, which is indispensable for damage identifi-
cation. This number depends on many factors, for ex-
ample, damage quantity measured relatively to the
undammaged part of the structure. Future research will
tend towards minimisation of the number of measure-
ments and improvement of tools of signal processing.

4.3. Noise in measured data

Inevitable element of any experiment is measure-
ment inaccuracy. In this part of the paper we want to
quantify the level of measurement inaccuracy which made
damage identification impossible. To model the inaccu-
racy we used white noise generator.

For the damage localised at the point x, = 1,4 m and
the force position x = 1,5 m, static displacements of the
beam structure were analysed. The noise was superposed
on the signal for N=1512 and 128 measurement points.
Details of wavelet transformation are presented in Figs 8
and 9.

The performed analysis demonstrated that proper
damage identification became practically impossible with

Fig 7. Wavelet transformation of static displacement sig-
nal for the damage position x,=1,4 m and force

localisation x = 1,5 m; number of measurement points: a)
128, b) 64, c) 32

the noise level 300~/ m and 50077 m, respectively. It
corresponded to measurement precision of the displace-
ment in the damage position (uy =1,5056 003 m).

5. Concluding remarks

The application of wavelet transform to damage
localisation was discussed in the paper by the way of
several numerical examples. The analyses were based on
both, static and dynamic responses of damaged structures.
Information about undamaged structure was not used.

Presented examples showed that correct damage
identification was possible using transformation of sig-
nals issued from both, static and dynamic experiments.
Dynamic experiments provided more possibilities for
damage identification, however, in this case the valua-
tion of the experimental data could be more complicated
than in the static case.

The examples demonstrated that damage was proper
localized also with reduced number of experimental data
and with a specified level of noise, representing mea-
surement inaccuracy. The effectiveness of transformation
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Fig 8. Wavelet transformation of static displacement sig-
nal for the damage position x, = 1,4 m, force localisation
x=1,5 m and 512_measurement points; noise level
a) 200078, b) 10077, ¢) 300 ' m

with the use of common types of wavelets is limited by
disturbances, which are induced at the ends of the space
domain of the transformed signal.

The great advantage of wavelets is that information
about the undamaged structure is not required in defect
identification process. The examples discussed in the
paper confirmed that wavelet transformation is a very
promising tool in structural identification problems. The
study will be continued in the direction of implementa-
tion of wavelet transformation to the identification of
damage in real life engineering structures.
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