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Abstract. Safety, reliability and risk are key issues in the preservation of our built, cultural heritage. Several structural
collapses make us aware of the vulnerability of our technical and natural environment and demand an adequate engi-
neering response. In the analysis phase, an objective way to assess the safety of the structure is essential. The present
raises the need for a reliability based assessment framework for existing masonry structures. Although this field of
research is relatively young, different techniques have been proposed and optimised. These permit to calculate the global
probability of failure of complex structures, relying on deterministic techniques able to calculate the stability state for a
prescribed set of parameters. This paper illustrates how these techniques can be a valid tool to evaluate the bearing
capacity of existing structures. Focus is on reliability methods based on simulation procedures (Monte Carlo, Direc-
tional Sampling), combined with an adaptive meta-model (Response Surface, Splines, Neural Networks). Several bench-
mark examples demonstrate the applicability of the methodology. The mutual efficiency of the different reliability algo-
rithms is discussed. The application focuses on the assessment of an existing masonry structure. The overall stability of
a Romanesque city wall of Leuven (B) is studied in detail. The analysis treats the present safety of the city wall,
regarding the uncertainties in load, geometry and resistance. Because of the low degree of safety of several parts of the
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wall, consolidation measures and strengthening techniques are proposed.

Keywords: masonry, safety assessment, failure probability, reliability, Monte Carlo, Splines, Neural Networks.

1. Introduction

With approximately 10 000 listed and protected
monuments, the Belgian Building Heritage is exception-
ally rich. The preservation of this unique patrimony re-
quires fundamental effort. The Koning Boudewijn
Stichting [1] estimated the total cost necessary to main-
tain or improve the building heritage to such an extent
that it would only require regular maintenance for a ref-
erence period of 50 years, to be 2,25 billion EURO. The
architectural preservation process is generally based on
a sequence of anamnesis and analysis, diagnosis, therapy,
control and prognosis [2—4]. In the anamnesis and analy-
sis phase, an objective way to assess the safety of the
structure is essential. The present raises the need for a
reliability based assessment framework for existing ma-
sonry structures [5]. It is in the detailed analysis phase,
that a reliability based assessment fits into the frame-
work. It is meant as an objective manner to assess the
safety of the existing building, taking into account all
kinds of uncertainties inherent to the structures’ state. In
that it is an objective tool in the decision process. The
objective in the prognosis phase is similar. It is meant
as a tool to compare possible restoration options, to iden-

tify critical parameters and to derive an optimal solu-
tion, again accounting for all kinds of (future) uncertain-
ties, such as future loading.

Nowadays, powerful methods are available for the
calculation of structural safety values. These permit to
calculate the global probability of failure of complex
structures, relying on deterministic techniques able to
determine the stability state for a prescribed set of
parameters.

During history there has been a continuous evolu-
tion in refining design methods and consequently assess-
ment methods [6]:

e Level 0. Initially, the so-called level 0 are used. This
level covers rules of thumb and the so-called “elas-
tic method”.

e Level I. During the last decades of the 20th cen-
tury, the level I method has been introduced for
several building material applications. These meth-
ods are based on the partial safety factor principle.
This offers a first objective way to incorporate safety
principles into the methodology. Design values are
based on characteristic values that on their term are
derived from the probability distribution function,
obtained via experiments.
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* Level II and III. To obtain an objective value of the
probability of failure of a structure, Level II and III
methods are proposed in the Eurocode 1. Both are
probabilistic techniques. Level II uses first and sec-
ond order reliability methods (FORM/SORM). These
compute the probability of failure where the prob-
ability density functions of all random variables are
approximated by equivalent normal distribution func-
tions. In that the obtained probability of failure is
an estimate of the real probability of failure. Level
IIT methods are most accurate. These compute the
exact probability of failure of the whole structural
system, or structural elements, using the exact prob-
ability density function of all random variables.
The tendency towards level III methods is mainly a

matter of computational effort, continuous improvement
of reliability algorithms, availability of material data and
user-friendly software applications. Because of the in-
creasing computational capacity and speed, probabilistic
design according to a preset safety level, is within reach.
On an international basis, the tendency from design (or
“way of thinking”) from a partial safety factor method
towards a probabilistic method — reliability-based design —
is clearly visible [7-10].

2. Reliability analysis

Reliability concepts become widely spread as a ba-
sis for structural evaluation in design and assessment.
Simulation based procedures are very attractive to be used
because of their inherent simplicity. One of the major
disadvantages, however, is the large number of simula-
tions required to obtain sufficiently accurate results. Be-
cause of the complexity of large structures, and thus sig-
nificant computation time to calculate the outcome of the
limit state function, the processing time might become
unrealistic. To meet this disadvantage, reliability analy-
sis based on simulation methods in combination with an
Adaptive Meta-Model are developed. The procedure is
such that the number of calls to the original limit state
function is minimised, that a sufficient accuracy for the
resulting failure probability is obtained and that the meth-
odology remains applicable for a high number of (ran-
dom) variables [10].

The use of a Response Surface in combination with
a simulation method to increase the efficiency is widely
spread [9; 11-17]. The main idea is that the response
consisting of a complex function of input variables is
approximated by a simple function of the input variables.
If the Response Surface is capable of handling the com-
plex structural behaviour, the reliability analysis can be
performed on the Response Surface, instead of using the
original problem. The applicability has been demonstrated
extensively [10]. Up to now, often a low order polyno-
mial is used for the Response Surface. Ideally, no func-
tional form is preset and a ‘universal estimator’ is used.
Two extensions are proposed as Meta-Model (MM) in-

stead of the low order polynomial Response Surface (RS)
that is often used:

» Splines (SP). Piecewise continuous polynomials al-
low more complex structural behaviour to be rede-
fined in small areas. The sequence of these pieces
provides a better estimate of the real structural
behaviour for a large domain of input variables;

* Neural Networks (NN). Ideally, no functional form
should be predefined and some kind of ‘universal
estimator’ is used. Neural Networks reply to this
criteria and therefore offer an interesting perspec-
tive [18-21]. The weighting functions that are the
basis of the network, are very flexible and adopt to
virtually any kind of functional behaviour. There-
fore, there are no limits as to shape, dimension, sin-
gularity or type of function.

Both have similar properties compared to a low-
order polynomial:

* The Meta-Model replaces the (implicit and often
complex) limit state function (LSF). Thus the num-
ber of direct calls to the limit state function is
reduced;

* The evaluation of the Meta-Model does only require
simple mathematics to calculate the outcome. This
only demands little CPU time.

Using Splines or Neural Network, however, has
additional advantages:

* Because of their flexibility, Splines and Neural
Networks are a more universal estimator. These are
able to capture more complex limit state functions
that might not be represented well by means of a
2nd order polynomial;

* Depending on the available data gathered during the
simulation process, the complexity of the Meta-
Model is adapted. Initially, simple models are used.
When more data become available, these models are
gradually refined.

2.1. Global reliability framework

Using a Meta-Model and performing the reliability
analysis on the Meta-Model instead of the real limit state
function, might be a shift of effort. The number of limit
state function evaluations (LSFE) required to build an
accurate Meta-Model might be equally large. Often a
design of experiments is based on Latin Hyper-cube or
a Central Composite Design [15]. The number of ex-
periments increases exponentially with the number of
random variables (n): n,;~2". Therefore, Waarts de-
veloped an adaptive scheme that minimises the number
of direct calls to the LSF. It consists of 3 main steps. A
detailed description can be found elsewhere [10, 22-24]:

Step 1. The value of each random variable is in-
creased individually until the root (A) of the limit state
is found in the standard normal space, u-space. This can
be seen as an Axis Directional Integration procedure.
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First, a linear estimate is calculated, based on the out-
come (LSFE) in the origin of the u-space (standard nor-
mal space) (0,0,0,...,0) and the point (O,O,...,iBO,...,O)
When known, the start value (3, is set equal to the ex-
pected reliability index b. Experience shows that {3,=3
performs good as well. Further approximations are based
on a piecewise continuous polynomial fit of 2nd order
through the outcome (LSFE) of the different iteration
points. Mostly after 3 to 4 iterations (LSFE) the root is
found, assumed there is a root in the specified direction.

Step 2. An initial Meta-Model (RS, SP, NN) is fit
through the data.

Step 3. This step is an iterative procedure. The
Meta-Model is adapted (Adaptive method (A)) and the
failure probability or reliability index are updated until
the required accuracy is reached. Therefore, coarse Di-
rectional Sampling (DS) or Monte Carlo Sampling with
Variance Increase (MC+VI) is performed on the Meta-
Model. If the sample or its outcome is judged to be out-
side the important region, then the outcome based on
the Meta-Model is used. If, on the other hand, the sample
or its outcome is in the important region, a new LSFE is
performed. Afterwards, the Meta-Model is updated as
soon as new data are available.

2.2. Directional Sampling — distinction between
important and unimportant region

In the iterative procedure, Step 3, Crude Directional
Sampling is performed on the Meta-Model. It is proved
that the expected value (Iaf ) of all contributions is an
unbiased estimate of the global failure probability (pf) [8]:

~ 1N
pr =E(pr )= 3 b (M
=
where
A2 .
B =X wmior A Lere )- ()

For each sample, a first estimate of the distance
Amm,i to the origin in the standard normal space, u-
space, is made based on the Meta-Model, that is built in
the physical space — x-space. An additional distance
Aadd is used to make distinction between important and
less important directions: Apmm i <> Apin + Agdg > 0
which A, is the minimum distance found so far Fig 1.
The additional distance (ladd) is based on the difference
between the root of the real LSFE and the root of the
Meta-Model in the sample direction. The 99 % confi-
dence interval is taken as measure for Agqq :

Nadd = max{abs(p(srt )£to01n,-1%O(Er ))} 3)

~Urt, MM, - 4
When a good agreement is found between the roots of
the real LSF and the Meta-Model, a low value of the
additional distance (A,q4q ) is obtained; in other cases
the distance will be larger. The higher the distance, the
more LSFE are performed. In case the obtained root

€rt,i = Urt,LSFE,i

(IMM,i) has a relatively high contribution — Apm i <
Amin + Aagq — to the estimated global failure probabil-
ity ®), the root of the real response is used instead of
the Response Surface: A grgi. This requires several
extra limit state function evaluations. The value obtained
by the Meta-Model is used as starting point. Afterwards,
the Meta-Model and the additional distance (Agqq ) are
updated with these new data. In case the contribution is
less important — Apm i > Apmin T Aagq — the contribu-
tion based on the root of the Meta-Model (Ayy i) is
used, avoiding time consuming limit state function evalu-
ations (LSFE). The latter is the main gain of the meth-
odology used.

g(u)

v

. A N :\Si
Fig 1. Additional distance in the input space (Agqq)

2.3. Monte Carlo Variance Increase — distinction
between important and unimportant region

Step 3 in the analysis can be performed using Monte
Carlo Sampling with variance increase on the Meta-
Model as well [10, 22]. Again, the expected value Py

of all contributions is an unbiased estimate of the glo-
bal failure probability (pf) [8, 25]:

o =E(py) -—z%[g( )< o];vgvg ®)

The variances of the sampling function 4 (v) are
taken equal to [10]:

o2 =(en04f . (©)

to()

Fig 2. Additional distance in the outcome space (Ag,a i)
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The initial value for B is taken from the Axis Di-
rectional Integration, Step 1 in the analysis.

The efficiency is believed to be comparable. To
distinguish the important from the non-important region,
the magnitude of the outcome values is checked. When
the values are small: Oum,i < Ag add s the sample is
believed to be near the limit between safe and unsafe
(Fig 2). In that case the outcome is recalculated based
on the LSF. This only requires a single LSFE. The data
are used to update the Meta-Model, the sampling func-
tion (variance) and the additional distance in the out-
come space (Ag,add ). Again, the additional distance in
the outcome space is related to the error between the
Meta-Model and the LSFE. A 99 % confidence interval
is preset:

Agadd = max{abs(“(sg )i to.oLn g1 0(89 )} o (D

€9, TO9LSFEi ~9MM,i - (8)

3. The applied Meta-Model

The algorithms are implemented in Matlab [26]. For
the implementation of Splines and Neural Networks, use
is made of the Splines and Neural Networks Toolboxes
available in Matlab. Because of its open programme
structure, these could easily be adopted for this purpose.

3.1. Splines

The piecewise continuous polynomials are based on
the thin plate smoothing Spline concept, that is able to
deal with multivariate input and a single output — out-
come of the LSF [27] Fig 3.

Because of its simple form, evaluation afterwards
is straightforward. The limit state function can be writ-
ten as:

N
g ()= _zlajw(x—xc,-), ©)
J:

=
Gin

—‘1/\"‘*

Fig 3. Thin plate smoothing Splines

where g, , (x) is the Meta-Model of the limit state func-
tion g(x) in which x is a column vector with size 1xn, n
the number of random variables defining the problem at
hand; a; the smoothing Spline coefficients (1xn); X,
the coordinates at which the LSFE is available (1xn);
and Y(x): the thin-plate Spline basis function, that equals:

2 2

0= P1o0{4?). (10
This thin-plate smoothing Spline gMM(x) is the

unique minimiser of a weighted sum error measure. A

detailed description can be found elsewhere [23-24, 27].

3.2. Neural Networks

The use of Neural Networks as Meta-Model for the
limit state function remains marginal [28-30]. A single
neuron k is not capable of describing an arbitrarily rela-
tionship in an accurate way (Fig 4). The output of neu-
ron k as a function of the input signals x; is described as:

n
Ve =¢§lekm +9k% (11

where x, (i=1..n) are the input signals; w, : weights; 6,
bias term; and ¢: activating function (often sigmoidal).

input- linear Activating function
signal combination 1 X

Yk

Fig 4. Model of a single neuron

Input-signals  Level with Level with
with source hidden output
nodes neurons neurons

Fig 5. Multiplayer network architecture — multilayered
feed-forward network (n-—n,—1: 3-4-1)

Multilayer networks, however, are quite powerful
(Fig 5). For instance, a network of two layers, where the
first layer is sigmoid and the second layer is linear, can
be trained to approximate any function (with a finite
number of discontinuities) arbitrarily well. This network
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architecture seems to be a valid alternative, not often
looked at.

Different learning rules exist as a procedure for
modifying the weights (w, ;) and biases (q,) of a network
[31]. All of these algorithms use the gradient of the per-
formance function — direction of the steepest decent — to
determine how to adjust the weights to minimise perfor-
mance. The performance function for this type of feed-
forward networks is the mean square error — the average
error between the network outputs and the target out-
puts. The target outputs are those, obtained from experi-
ments. The step-size in the direction of the steepest de-
cent is optimised and may vary during the learning pro-
cess [32]. To further increase the convergence speed,
quasi Newton learning rules are applied, such as the
Levenberg-Marquardt learning rule. The Hessian-matrix
of second-order derivatives of the performance function —
is calculated numerically based on the gradient. Again
optimal step-sizes are looked for [33].

4. Benchmark examples

The methodology has been validated using 15 bench-
mark examples. These examples cover a wide variety of
possible limit state functions of varying complexity. The
examples were developed to compare different reliabil-
ity methods with respect to the following preset criteria
[10, 22]: multiple critical points, noisy boundaries, unions
and intersections (system behaviour), space dimension (n:
number of random variables), probability level, strong
curvatures in the LSF and no roots in the axis direction.
Benchmark example 12 and 15 are highlighted. The in-
dividual results of the other benchmark examples can be
found elsewhere [34].

4.1. Benchmark example 12 — series system with 4
branches

The limit state function has 4 branches (Eq 12). Both
variables are standard normal distributed random vari-
ables. The results of the reliability analysis are
summarised in Table 1.

EB,O+O.1(u1 —up )’ — (g +up)/2
[B0+0.1(uy —uy )2 + (U +u,)/v/2
Ehh—u2)+&5J§
Hu, —uy)+35v2

g=min

(12)

4.2. Benchmark example 15 — cantilever beam

The structure under consideration is a cantilever
beam with rectangular cross-section. The beam is sub-
jected to a uniformly distributed load. The resulting limit
state function reads [35]:

g=18461-7,477x1010 X . (13)

5

Table 1. Benchmark example 12 — reliability analysis

Simulation method Directional Sampling

Adaptive Meta-Model / RS SP NN
B (=2,85) 2,79 3,03 3,00 | 3,05
p; 0,0026 | 0,001 | 0,001 | 0,001
N 2750 500 375 800
nLSFE 9192 830 107 67
A gD aaa / 1,77 0,20 | 0,025

Simulation method Monte Carlo with Variance

Increase
AMMI / RS SP NN
B (=2,85) 2,84 2,84 281 | 2,76
P, 0,0022 | 0,002 | 0,002 |0,0029
N 4750 | 5402 3753 | 5651
N 4750 | 3877 724 125
Mol / 1,83 0,05 | 0,04

Legend: preset accuracy for convergence: 6(B)=0,15. N is
the number of samples in the simulation process; n; ¢
number of limit state function evaluations; DS: Directional
Sampling; MC+ VI: Monte Carlo with Variance Increase; RS:
pure quadratic polynomial Response Surface; SP: Splines;
NN: feed-forward Neural Network ( n—-n —1: with n_ the
number of neurons in the hidden layer — n =2n+n, (,../4);
learning function: scaled conjugate gradient method

The random variables are summarised in Table 2.
It can be seen that this functional form will not be esti-
mated easily with a low order polynomial. The results of
the reliability analysis are presented in Table 3.

Table 2. Benchmark example 15 — random variables

Random | Probability density | Mean value | Standard

variable function deviation
X, Normal 0,001 0,00002
X, Normal 250,0 37,5

Table 3. Benchmark example 15 — reliability analysis

Simulation method Directional Sampling

AMM / RS SP NN
B (=2,35) 2,38 2,42 2,40 2,50
p; 0,0085 | 0,0078 0,008 | 0,0062
N 288 70 300 69

| 674 135 315 56
7»36,01//Ag;adcl / 3,27 1,36 0,34
Simulation method | Monte Carlo with Variance Increase
AMM / RS SP NN
B (=235) 2,35 2,29 2,41 2,34
p; 0,0094 0,011 0,008 | 0,0096
N 10749 760 1050 2120
I 10749 158 247 39
}\'add//Ag;add / 6,63 9,43 0,81

Legend: see Table 1
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4.3. Global efficiency — discussion of results

It has already been demonstrated that, given a pre-
set accuracy, the number of calls to the real LSF re-
mains proportional to the number of random variables
[10]. The proportionality is mainly function of the pre-
set accuracy on the obtained reliability index or failure
probability and the complexity of the original LSF. The
proportionality (k) is mainly function of the preset accu-
racy on the obtained reliability index or failure probabil-
ity and the complexity of the original LSF. The latter is
demonstrated by the large spread on the proportionality
(k). The values listed in Table 2 are derived from the 15
benchmark examples treated.

Table 4. Global efficiency

n, qep=kn Directional Sampling

(A) Meta-Model / RS SP NN
u(k) 1834 80 50 47
o(k) 2288 121 48 36
n LSFE=kn Monte Carlo with Variance Increase
(A) Meta-Model / RS SP NN
u(k) 2327 452 83 35
o(k) 2299 983 93 43

From these benchmark examples, the efficiency of
applying a Meta-Model is evidenced.

The different techniques all result in a good esti-
mate of the system reliability. System behaviour is ac-
counted for intrinsically. The overall efficiency of DS
and MC+VI plus an adaptive Meta-Model is comparable
and depends on the problem at hand. If several direc-
tions in the standard normal space (u-space) have a com-
parable contribution to the global failure probability, DS
will be more efficient. This is the case in benchmark
example 12, Table 1.

Advantage of the DS procedure is that it finds the
roots of the LSF, where MC+VI only returns the out-
come of the LSF for each sample given. The roots of
the LSF contain interesting information with respect to
the failure modes of the structural system. On the other
hand, MC+VI does not require any complex root-find-
ing algorithm. Therefore, the procedure remains very
simple and straightforward.

The overall efficiency of any type of Adaptive Meta-
Model is clear from the results listed in Tables 1, 2 and
3. Whenever the low order polynomial Response Sur-
face is not capable of estimating the real LSF behaviour
accurately, the use of Splines (SP) or Neural Networks
(NN) is beneficial. Splines and even more Neural Net-
works are far better in estimating more complex system
behaviour. This results in a lower number of calls to the
real limit state function. This is evidenced from a mu-
tual comparison of the values for A, (DS) or Ag’ad d
(MC+VI), respectively. The smaller these values, the

smaller the error in between the Meta-Model and the
real limit state function.

A feed forward Neural Network with a (n-n,-1)
network architecture is capable of matching any func-
tional form with limited restrictions. This general state-
ment is, however, function of the number of neurons in
the hidden layer: n,. Only indicative rules are available.
On top of that, finding the weights of the neurons is a
global optimization problem. Depending on the size of
the problem (n-n,), this might take significant computa-
tional capacity. In large problems with a significant num-
ber of random variables (n), it will be a trade of be-
tween the CPU in evaluating the real LSF and estimat-
ing a NN. With large numbers of random variables,
Splines seem to be computationally more efficient. In
case the limit state function remains relatively smooth
and does not contain discontinuities, the use of Splines
is preferable.

The working space in which the Meta-Model is fit,
differs from author to author. Up to now, no arguments
in favour of one or another have been presented. In this
contribution, the experimental design is executed in the
standard normal space (u-space). The fitting of the Meta-
Model, however, is done in the physical space (x-space),
because of its physical meaning. In case of using a low
order polynomial Response Surface, this might, however,
be of importance. Based on the experience of several
examples, some of the low order polynomials fit well in
the u-space but do not result in good estimates of the
LSF in the x-space or vice versa. This depends on the
problem at hand. Furthermore, if a low order polyno-
mial is not capable of capturing the global behaviour of
the limit state function, it might be capable of fitting the
edge between safe and unsafe. Therefore, when Direc-
tional Sampling and an adaptive Response Surface are
used, often only the roots are used to estimate the Re-
sponse Surface. The intermediate values are omitted.

When a more uniform estimator of the limit state
function is used, such as Splines or Neural Networks,
the difference in quality between a Meta-Model fit in
the x- or u-space is believed to become smaller. Fitting
the roots only is no longer required because of lack of
power to capture the overall behaviour.

5. Practical application — Romanesque city wall

The Romanesque city wall of Leuven (B) dates from
1150. The medieval wall is in a severe state of decay.

The part studied in this paper is a piece of the edi-
fice between the former Biest- and Minneporte (2 gates).
This part of the Romanesque city wall near the river Dijle
has a total length of about 150 m and comprises 2 towers.

5.1. Problem definition

This example only covers the most critical part of
the wall [35] (Fig 6). A global view of the structural
layout of the wall is given in Fig 7. The wall consists of



L. Schueremans, D. Van Gemert/ JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT — 2004, Vol X, No 2, 131-141 137

Fig 6. Global overview of the critical part A — city side

an inner or city side (B) and an outer or rural side (A).
Round foundation arches of 2 m high and 3,5 to 4 m
wide carry the outer wall. The inner wall is a continuous
arcade of 4 m wide round arches with their tops 3 m
above the outer arches. A walkway of 0,90 m width (C)
is present on top of the arcades. The outer wall was
equipped with shooting holes centred in the arches of
the inner part (D) and crowned by a parapet also bear-
ing shooting holes. These are no longer present. On the
city side as well as on the rural side, the wall was lined
with a sloped embankment (F, E) covering the founda-
tion pillars and arches. This embankment is no longer
present at the rural side, and only partly at the city side.
For the construction of the wall, a local type of lime-
sandstone (Diegemse Zandsteen) was used. An iron con-
taining sandstone (Diestiaan sandstone) was mainly used
for decorative purposes, for example, in the inner ar-
cades.

- )
r L B ]1 R Cross section

[ fa g = r 4 Remaining

B = ﬂ |

' |25 o

_ it | : g [Sp ]
Citysde & o i
[

Fig 7. Reconstruction of structural layout of city wall

To assess the structural safety, an extensive survey
was conducted in the diagnosis phase. Following items
were covered: visual inspection, historic survey, deter-
mination of used materials and their physical and chemi-
cal properties, foundation survey, soil investigation,
photo-grammetric survey and profiles of wall inclination
[36].

Determining the target probability of failure is not
a technical problem solely. Whether or not an historical
building should meet the target probability of failure
value p,. = 5,10 according to Eurocode 1 [6], is sub-
ject of discussion. Several authors suggest to widen the
discussion [22] and propose a differentiation with respect
to various performance criteria listed in Table 5. The
formula proposed to determine nominal target failure
probabilities is a mix of proposals presented by different
authors [22]. It is very suitable as it accounts for a so-

Table 5. Factors influencing the nominal target probability of
failure (used values in bold)

* ¢,: residual service life [years]: 100
* n_: number of lives put to danger: 10
P
Economical factor G
* not serious 10
* serious 1
* very serious 0,1
Warning factor w
» Fail -Safe condition 0,01
* Gradual failure with some warning likely 0,1
* Gradual failure hidden from view 0,3
* Sudden faulure without previuos warning 1,0
Activity factor A,
* Post-disaster activity 0,3
* Normal activities 1,0
» Buildings or Bridges 3,0
» High exposure structures (offshore) 10,0
Social criterion factor (Preservation value) S,
* Places of public assembly, dams (historical 0,005
buildings of great importance for mankind,
listed by UNESCO, eg)
* Domestic buildings, offices, trade buildings, 0,05
industrial buildings (listed historical buildings)
* Bridges 0,5
e Towers, masts, off-shore structures 5

cial criterion that can be reinterpreted to encapsulate the
importance of historical buildings or the preservation
value. The values used in this analysis are shown in bold,
Table 5:

_107*St ACy

PiT =
an

=1667x107°.  (14)

5.2. Safety assessment

A single arcade — the repetitive structural element -
is taken as an individual control unit. To clarify the ben-
efit of using a reliability based assessment, different lev-
els to assess the safety are used:

e Level 0: To obtain a measure for the remaining
safety margin, the structure is checked using nomi-
nal values for the applied loads and resistances. The
resistance-load ratio (r) is used as a measure for
the remaining safety margin with respect to a cer-
tain ultimate limit state;

e Level I: The analysis is performed according to the
partial safety factor method;

e Level III: The analysis is performed using probabi-
listic evaluation algorithms based on sampling tech-
niques. An accurate value for the system reliability
is obtained. The same limit state functions that are
used for the Level I analysis, are accounted for.
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The probability density function and the parameters
for the different random variables, are listed in Table 6.
These cover the different types of uncertainties encoun-
tered during the survey: accuracy of the geometry, the
uncertainty on the material properties (subsoil and stone
masonry), actual loads and future loads.

Following limit states are checked, Table 7, (defini-
tion of symbols, Fig 8):

* Rotational-equilibrium. The centre of gravity is de-
termined (yg, ) accounting for the structural geom-
etry and the slant of the wall. As long as the value
is positive, the centre of gravity remains within the
cross-section, thus the rotation limit state is met. The
eccentricity (e, ) is checked. Whenever the eccen-
tricity exceeds the mid-third (d/6), part of the cross-
section is in tension. As use is made of a non-ten-
sion material model, the force equilibrium is met
using compressive stresses only. This leads to an
increased stress level [22];

* Compressive stresses are calculated in the masonry
(o ) as well as in the soil at foundation level
(Ggr,max,el and ogr,max,pl)' Maximum stresses are found

at the foundation tip of the pillars, due to the slant
of the wall. For both materials, a non-tension mate-
rial model is used. For the soil, a linear-elastic (e/)
as well as an elastic-plastic (p/) material model is
used [22].

m,max

Table 6. Romanesque city wall — Random variables

Vertical crosssection

o

Vertical crosssection

.
T a——— O
i . . 1,00.1,75 1.
N mid third L0 v 04
Soail stresses Soil stresses
Yerot= 1,48 m €=0,52 m
Level 0 11 FEFFFTT
Ogr.max,p= 0,50 N/mm? Ogre= 0,11 N/mm? !0g.= 0,01 N/mm?
dg=0,52 N/mm? r=1,04 dy=0,63 N/mm? = 5,94
Yeror= 1,42 m ei=0,57 m
Level I fEv=ve

Ot maxpl & 0,67 N/mm? Ogr el & 0,15 N/mm? Ogrel, &= 0,01 N/mm?
dga= 0,19 N/mm? Notok dge¢=0,21 N/mm? ok

Fig 8. Stress distribution in the subsoil at foundation
level — left: original situation; right: with foundation
strengthening

The results of the safety assessment of part A of
the wall are listed in Table 7. From the Level 0 and
Level I analysis, it is clear that the structural stability is
in doubt. The remaining safety (r=1,04) is limited; the
limit state function of the stresses in the subsoil is vio-
lated. The probabilistic method offers an objective way
to assess the remaining safety, accounting for the present
uncertainties: Pr= 0,12. This value does not meet the
preset target value.

Besides the general remarks already stated from the
benchmark examples, it is clear from Table 8 that the
efficiency of the different Meta-Models is comparable.
This can be seen from the additional distances A A g add?
as well for the DS as for the MC+VI sampling proce-
dures. In case the limit state function can be estimated
relatively well by a low order polynomial, the additional
benefit in using Splines or Neural Networks is limited.

Table 7. Results of structura reliability

Random variable PDF| Mean | 5td
value | dev.

Initial assessment — n=23

Load:

p,, [kN/m3[:density of masonry N 19 1,9

Geometry (n=17)

Geometry of wall N | nom | 0,05

Resistance of subsoil:

¢ [kN/m?]: cohesion LN | 30,11 | 15,29

@[°]: friction coefficientg N | 2556 | 4,59

Y,, [KN/m?]: dry density N 16 1,6

Resistance:

f_: stone masonry strength LN | 232 | 43

Uncertainty:

€ [m]: model uncertainty N 0 0,01

Strengthening with reinforced concrete foundation slab —

additional random variables: n=23+5

Load:

P [kN]: permanent load N 40 4
q [kN/m?]: floor load LN S 2
P, [KN/m?]: proper weight N 2 1
Geometry (reinforced concrete slab):

L., [m]: length of slab N | 400 | 0,05
Wslab [m] width of slab N 4’00 0’05

LSF// Rotation | Stresses in the | Stresses in the
Assessment | equilibrium masonry subsoil
level [m] [N/mm?] [N/mm?]
Level 0 O mn=074< [0, =050<
£ =232 d,=0,52
r=30,5 r=1,04
Level 1 y ,tot=0’35>0 Gm,max,d=1’00< Ggr,max,el,d =
(OK) £ =162 0,90>d_, =
e, =053> | 0,19 ~
d/6=0,29 OK NOT OK
NOT OK
Level Il | System reliability p = 1,2 < B, = 4,2
Corresponding failure probability:
p,=011>p, =17 107
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Table 8. Comparative results of reliability analysis

Simulation . . .

method Directional Sampling
Adaptive

Meta-Model / RS SP NN
B (= 1,217) 1,16 1,15 1,23 1,15
P; 0,12 0,13 0,11 0,13
N 4000 1658 508 3408
n o 7253 269 166 196
Ay d//Ag;a w / 0,60 0,23 0,33
Simulation Monte Carlo with Variance Increase
method

Adaptive

Meta-Model RS SP NN
B (=1,217) 1,27 1,23 1,29 1,18
P; 0,10 0,11 0,10 0,12
N 20042 700 949 1545
n oo 20042 124 152 215
Xidl B aaa / 0,17 0,14 0,11

Legend: preset accuracy for convergence: ¢(f)=0,15.
N is the number of samples in the simulation process;
N, ¢ Number of limit state function evaluations; DS:
Directional Sampling; MC+ VI: Monte Carlo with
Variance Increase; RS: pure quadratic polynomial
Response Surface; SP: Splines; NN: feed-forward
Neural Network (n-n ~1: with n, the number of
neurons in the hidden layer —n =n+n, (,./4); learning
function: scaled conjugate gradient method

The following remarks can be made and overlap with
the conclusions stated from the benchmark examples:

¢ Crude Directional Sampling and Monte Carlo with
variance increase do require significantly more LSFE
compared to the simulation procedures with an adap-
tive Meta-Model. The use of any Meta-Model is
evident;

¢ The efficiency of the different Meta-Models is com-
parable. This can be seen from the comparable val-
ues for the additional distances A_, G]//A&al 4 as well
for the DS as for the MC+VI sampling procedures.

e In all cases an accurate value for the system failure
probability is obtained.

5.3. Strengthening — reliability-based design

The lack of safety originates from the limited load-
bearing capacity of the soil in combination with the large
slant of the wall. This is partly caused by the removal of
the original sloped embankments at the rural and city
side. At present, the top part of the foundation is above
the original ground level. Thus, the depth of the founda-
tion decreased significantly. To increase the safety to an
acceptable level, two options are available:

* Widen the foundation at the support. This will re-

duce the soil stresses (Fig 9);

A-A: vertical cross -section B-B: horizontal cross -section

Romanesque
city wall

,0m

‘i”>4

n
1,00 1,75m 1,00 R
—r——>

New concrete foundation slab

Fig 9. Foundation strengthening — new reinforced con-
crete foundation slab

* Increase the load-bearing capacity of the soil by re-
storing the original sloped embankment at rural side.
For this part of the wall, a strengthening of the foun-
dation is proposed. A new concrete foundation slab will
be established at the basis of the existing foundation (Fig
9) for a schematic representation. This reduces the soil
stresses at the support. The effect of these strengthening
measures on the structural safety is recalculated. The
results are summarised in Table 9 and visualised in (Fig
8). In all cases, a sufficient safety margin is obtained.

Table 9. Summary of structural safety for part A of the wall-
strengthened situation

LSF - Rotation Stresses in Stresses in the
Assessment | equilibrium | the masonry subsoil
level [m] [N/mm?] [N/mm?]
Level 0 Gm max= 0’74 Ggr max, cl=0’11<
<f =232 dg=0,63
r=30,5 r = 5,94
Level I yg,tot 1’77>0 0-m,max,d= Ggr,max,el,d=0’1<
€, =0:35<  |1,00<f = dgd=0,21
d/6 16,2 N/mm? " OK
Level IIl | System reliability f = 4,8 > B = 4,2
Corresponding failure probability:
p,= 94 107 < Py = 1,7 107

6. Conclusions

For the evaluation of the bearing capacity of exist-
ing structures, the interest in probabilistic evaluation
methods is growing. This paper describes a methodol-
ogy to calculate the reliability of structural systems. The
focus is on a methodology that results in an accurate
value of the system reliability index, within an accept-
able CPU time. Therefore, use is made of a procedure
based on Directional Sampling or Monte Carlo Sampling
with Variance Increase and an adaptive Meta-Model.
Using an adaptive Meta-Model, the limit state function
is only evaluated if needed.

Besides low order polynomial Response Surfaces,
the use of Splines and Neural Networks is incorporated.
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Based on several benchmark examples, their mutual
efficiency is discussed. The advantages and drawbacks
are clear from the examples presented. From these ex-
amples it is evident that Response Surfaces work well
for problems that can be easily described by a low order
polynomial. In case the limit state function is more com-
plex, the use of Splines and Neural Networks demon-
strated to be beneficial.

The practical application treats the safety assessment
of the Romanesque city wall of Leuven (B). The focus
of the application is mainly on the structural stability of
the most critical part of the wall. The structural safety is
assessed at different levels. Because of the uncertainties
on geometry, soil resistance and loading, a structural
evaluation is also performed based on probabilistic tech-
niques. For the reliability analysis, use is made of simu-
lation procedures combined with an adaptive meta-model.
This is done, first, to check the present safety of the
wall and, second, to propose a consolidation and strength-
ening treatment. In both cases, the probabilistic evalua-
tion method results in an accurate value of the failure
probability. In combination with a preset target value,
this results in an objective way to assess the safety.
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