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Abstract. An actual structural design, especially that of lightweight structures, must evaluate strength, stiffness and
stability constraints. A designed structure must satisfy optimality criteria. One faces known difficulties when trying to
implement several from above mentioned requirements into optimization problem for further successful numerical
realisation. A method to formulate the optimization problem, incorporating all above described criterions, mathematical
model and algorithm to solve it numerically, taking into account the geometrically non-linear structural behaviour are
presented for truss type structure. In each optimization cycle the member forces obtained in the previous optimization
cycle via elastic-plastic non-linear analysis procedure are employed to obtain the new optimal design values. During the
optimization procedures, the tension members are assumed to be loaded up to the yield limit, compression members are
assumed to be stressed up to their critical limits, the nodal displacements are restricted to limited magnitudes in
prescribed directions. Design examples are presented to demonstrate the application of the algorithm.

Keywords: elastic-plastic structure, optimization, stiffness and stability constraints, geometrical non-linearity, tangent
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1. Introduction

The main target of a engineer-designer is to create
a structure, following the certain codified requirements,
to be safe in respect of external actions and achieve cer-
tain economical effect. The lightweight structures are
widely applied in current engineering practice, but those
are sensitive to various kinds of deformations. The ac-
tual displacements of such structures must be evaluated
applying the geometrical non-linear behaviour. Thus, the
actual design of lightweight structures must be provided
via the geometrical non-linear analysis in order to de-
scribe their actual response to external loading.

The structural design is a selection of certain struc-
tural members to satisfy optimality and safety criteria in
respect of maintenance (strength, stiffness, stability) re-
quirements. It is important to note that stiffness and sta-
bility constraints often dominate versus strength condi-
tions in actual design of optimal structures [1]. When
solving the limit equilibrium problem [2—4], the struc-
tural parts deformations or nodal displacements can ex-
ceed the fixed admissible magnitudes and/or fail due to
stability loss. Thus, the main optimal structural design
problem is to be stated as the structural optimization
problem under the stiffness and stability requirements. A
certain type discrete structure stiffness constraints are
formulated in form of inequalities of nodal displacements

versus limited displacement magnitudes; the stability
constraints — in form of inequalities of critical forces
versus compressive internal forces of structural units.

There optimality criterion-based method [5] employ
the single (most critical constraint idea) in order to avoid
the calculation of large Lagrange multipliers sets. Ap-
plying the above technique one transforms the constrained
problem into an unconstrained one via the Lagrange
multipliers. The necessary condition for the local con-
strained optimum is derived from the Lagrange function
stationarity conditions [6, 7]. But no one can guarantee
that the Kuhn-Tucker complementarity conditions are to
be satisfied applying the method. The identified local
extremum can fail then.

The above lack can be overcome when the more
general method, based on the simultaneous application
of the mathematical programming theory and that of ex-
treme energy principles [1, 8, 9] is applied. The obtained
optimization problem is the multiextremal one, as it con-
straints contain the complementarity condition. The last
defines the field of solution to be discrete, ie consisting
of the certain number of separate points. The investiga-
tion [10] proposed the complementarity conditions to in-
clude into objective function of the optimization prob-
lem [1, 11]. The latter in case of convex yield condi-
tions result in convex admissible set of solutions and
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unique optimal solution. But analysing the problem from
the point of mathematical programming, the practical
solution of the problem is hard to obtain, even unavail-
able.

The task of the present investigation is the further
development of the optimization problem solution meth-
ods, applying extreme complementary energy principle
[1, 4] for elastic-plastic lightweight structures, subjected
by external load, under presence strength, stiffness and
stability constraints.

We assume the optimal structure to be in the state
prior to plastic failure, resulting from stiffness and sta-
bility constraints. Some structural elements can be in a
full plastic state, some partially plastically deformed or
in elastic state. The optimization problem procedure
realises iterative procedures, for each iteration applying
in previous iteration identified set of limit forces, to sat-
isfy requirements identified via previous analysis prob-
lem solution). The optimization procedure is continued
until certain convergence.

2. Lightweight structure optimization problem math-
ematical model and algorithm

The structure optimization problem under the stress,
stiffness and stability constraints consists of three princi-
pal parts of optimization cycle:

1. Determining truss-type structure elastic inner
forces Sy and displacements U, taking into account non-
linear behaviour of external loading versus displacements
(geometrical non-linearity) for presribed cross-sectional
areas.

2. Defining the actual stress and strain state of the
structure, applying the magnitudes of the limit forces
Sg and critical forces Sg due to the solution (extremal
point) obtained in previous optimization cycle via analy-
sis problem solution.

3. Optimizing areas of bars (conditioning the limit
Sp and critical S, forces) to satisfy strength, stiffness
and stability constraints.

Each part consists of separate problems to be solved
one after another during each iteration until convergence.
The iterative optimization procedure is conditioned by
the circumstance that elastic forces and displacements
from one side and limit and critical forces from the other
side depend on the actual cross-sectional areas of bars;
being as input and output data of optimization iteration
parts 1 and 3.

2.1. Evaluation of elastic forces and displacements by
the tangent stiffness method

If large displacements of structure appear when
loaded, its is described as the non-linear one, ie strain -
displacement relationships contain the non-linear terms.

To identify the elastic magnitudes of all internal
forces, selected into the vector

Se=(Se;) =(Ser Sezr o Sen)'

and that of joint displacement

Ueg = (ue,i )T = (Ue,lv Ug2ses ue,m)T >

one must solve the following problem:

[Ku=F, M
where [K{] = [Kd + [Kg] is overall tangent stiffness
matrix of structure; [Kg] is linear elastic overall stiff-

ness matrix; [K g] is geometric stiffness matrix; n — total

number of truss-type structure bars and m — number of
global displacements.
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Fig 1. Computational procedure

The computation technique principle employed to
determine the structure non-linear response values, graphi-
cal view is presented in Fig 1. The applied method
realises the Newton-Raphson iterations, chosen in the way
to satisfy truss-type structure equilibrium equations (1)
obtained for nodes. Applying the Newton-Raphson
method for certain load magnitude F the iterations v
are provided to eliminate the unbalanced (compensating)
joint forces, resulting from unbalance of joint external
forces and internal joint forces, ie:

Feo=F —Fsu. 2)

The above tolerance appears, when the actual prob-
lem is linearised in the iteration under consideration, ie
the tangent stiffness matrix is created due to the actual
nodal displacements, identified during the previous it-
eration.

Consider the tangent stiffness method realisation
steps from the starting one, ie [Kg] =[0]:

1. Define initial joint displacements U aplying the
linear elastic analysis equations:

[Keluo=F. 3)
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Note that elastic stiffness matrix remains constant
per optimization cycle. The matrix [Ke] is obtained by
the assemblage of the element elastic stiffness matrix (as
suggested in [12])

im[keJ] [kej]D
el elE @

in the global coordinate system, where

[Kej]=

2
%:os aj COSOl j COSP | COSO j COSY j B
[IZe j]: %:OSB | COSQ | cos®B j cos; cosaj;%
%:osyj cosaj cosyjcosP; cos’y; E

2. Identify the structure new joint coordinates X
for the following iteration v (v >0):
Xy = Xy-1 +Uy. (5)

3. Determine the v -th iteration internal joint forces,
corresponding to linear deformation of structural mem-
bers:

EA
Sij :| (Ij,U_Ij,U—l)3 (6)
jo-1
where is material elasticity modulus Aj, |} are j-th bar

area and length, respectively.

4. Calculate direction cosines of structural units.
Applying equilibrium equations of nodes find new joint
forces Fg .

5. Calculate unbalanced (compensating) joint forces
given in eqn (2).

6. Create geometric stiffness matrix [Kgyu], which
is associated with the changes in the geometry of the
space truss. The matrix [Kg U] is obtained by the assemb-
lage of the element geomet’ric stiffness matrix ([12, 13])

[K _ ]_S]UD[k] u] [kJ u]D
o+ J v @'[kj u] [kJ u]@
in the global coordinate system, where

[Ej,u] =

01-cos?q;
O 1o

(7

—cosalj , cosBj, —COSa j, COSY| E

E— cosB;, cosatj, 1-cos?PB;,
L : :
H oSy, €osal |

—cospj,, CosYj y S(S)

—CosYj y cosBj,U 1-cos? Yiu E

7. Create the structural tangent stiffness matrix

[Kio] = [Kel + [Kgo] ©)

and calculate its determinant. In case when it yields the
negative magnitude, one states the structure to be geo-
metrically unstable and must interrupt calculation. When
the determinant magnitude is positive, one must create
equilibrium equation (1) for unbalanced joint force

[Kiluy = Feu
to correct the obtained joint displacements.

8. Calculate new nodal coordinates, adding the dis-
placements, resulted from unbalanced nodal forces F
to the ones obtained in the step 2.

9. Repeat the calculations of steps 3-8. Iterations
are interrupted when the unbalanced forces F , are ob-
tained to be infinitesimally small or satisfy prescribed
tolerance magnitude.

2.2. Mathematical model of the stress-strain analysis
problem

The structure is subjected by known external load-
ing, the areas and physical-geometrical properties of
structural units are fixed. The critical stresses for tensile
bars are proportional to yielding limit. The critical stresses
for compressive bars are determined taking into account
buckling behaviour, ie taking into account slenderness of
the bars. The truss-type structure stiffness is constrained
by limiting its nodal displacements.

The structure prior to plastic failure stress-strain state
evaluation problem is provided via the following math-
ematical model [1, 14]:

find
M [G]r - —% [G]7»2+ 1[Gl +
A (se—so)+ Ay (—se—scr)_, max
subject to (10)
A =0,
Ay 20.

The quadratic programming problem (10) contains
the following values:

kl:()‘l j)T — vector of Lagrange multipliers of
complementarity conditions for tensile bars, reading:

Mj(-sr,j-se,,-+so,j)=0 (11)

S, i Jj-th finite element (bar) residual force of the
running analysis process;

S,j — J-th finite element limit axial force (yielding
force), &,j =0y A}, Oy~ A -
J-th finite element area, arbitrarily fixed or identified via
previous optimization process;

material yield limit,

Ao = ()\ 2, )T — Lagrange multipliers of complemen-
tarity conditions for compressive bars, reading:

)‘21( +SeJ+Sch)

Sr,j — J-th finite element limit buckling axial force

(12)

arbitrarily fixed or identified via previous optimization
process;
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[G] — constant per optimization cycle structure fi-
nite element discrete model (nxn)-dimensional influence
matrix for residual internal forces, reading:

6] =[d KR« TR K]E -[ 4] (3)

Here:
[ X] - tension-compression diagonal stiffness

EA
—1 matrix of structural elements j=12..,n(n-

tO'[EJll number of bars), where E, | j are material elastic-
ity modulus and j-th bar length, respectively;

[Ki{] - structure finite element (mxm)-dimen-
sional discrete model global tangent stiffness matrix,
where m number of global displacements;

[B] - (nx6n)-dimensional configuration matrix,

containing either zero elements or configuration
submatrices for internal forces

(14)

expressed via direction cosines of deformed structure in
the global coordinate system:

[B]=(b;x) k=6i-56j-4..56],

[Bj]:(o 0 0 cosu; cos; cosy;): (19

[IZ]— quasidiagonal (6nx 6n)-dimensional matrix, con-
taining j-th space finite element elastic (4) and geomet-
ric (7) stiffness diagonal submatrices

[Kj]z[Ke,j] *{ng,L] ; (16)

[R] - (6nxm) -dimensional configuration matrix of
local and global displacements, containing unit and zero
components.

Solution of the quadratic programming problem (10)
yields the Lagrange multipliers A; and A, magnitudes.

The components of residual internal forces S; = (Sr i )T
that of
u, = (Ur,i )T = (Ur,l’ Up 2, ooes ur‘m)T are determined by:

S; =[Gl (k1 —12), (17)

up =[H](r =2p). (18)

(M= ) (87K

Note that one cannot state the above obtained re-
sidual structural response values to be the exact ones.
Having identified above-mentioned values of residual
response, the total magnitudes of internal forces and dis-
placements are obtained by:

and residual displacements

Here

S =S, +Sg
(19)

U =U, +Ue.

The member forces resulting at the end of non-lin-
ear analysis are employed to obtain the new design vari-
ables magnitudes for the next optimization cycle. The
minimum weight truss-type structure members cross-sec-
tions must adapt to the current parameters of deformable
state.

2.3. Mathematical optimization model of structure
bars cross-sectional areas

The structure bars cross-sectional areas optimization
model under stiffness and stability constraints consists
of:

1. Axial plastic strength conditions expressed via
areas of optimized bars;

2. Strength conditions versus buckling of bars;

3. Displacements limitations constraints;

4. Constructive limitations for bars areas.

The structure optimality criterion expresses total
material minimum weight of the bars.

Thus, the structure optimization model under pres-
ence of all above-mentioned conditions is as follows:

find
o g _
W=p3 A >l -min
k=1 r=1
subject to
_GyAk,j Ssj,
—0¢ Aj < 5j, k=12, .., ng,
n §,; 080,
U=y ——— <U ma:
jzl EA mex
= (20)
“"%St'j[si'jmj U o t=12 0, my
tT = in? y ey ]
= E'Ak,j t,min
Ak 2 Ak,min-
Here:

A¢ is the optimized cross-sectional area of the
k-group of bars; ny is the number of bars of k-th group
and |y is the lengths of the bars;

M+ +..+Ny =Nn; Ny is the number of opti-
mized parameters - number of different group of. bars;

P is structure material density;

Oy, Oq are material yield limit (critical stress for
a tension bars) and critical stress of compressive-buck-
led bars, respectively;

U; is displacement being constrained along the cer-
tain direction ¢, and m is the number of limited dis-
placements;

Ut max >0, Ut min<0 are the upper and lower
bounds for displacement to be limited;

A min 1s the lower bound of cross-sectional area
magnitude (constructive limitation).
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Applying the virtual displacement principle, dis-
placement U; can be expressed by:

U = QL St
= EA

€2y

Here:

St,j is j-th bar internal force defined by (19),
resulting from the elastic-plastic non-linear analysis prob-
lem solution;

S,j is j-th bar internal force caused by unit load
applied in the direction of the restricted displacement ¢
of the truss, being in the state prior to plastic collapse.

The structural unit design stress versus buckling due
EN3 [15] are calculated by:

Ocr =XOy, (22)

where X is certain bar reduction coefficient, depending
on compressive element dimensionless slenderness A .
The dimensionless slenderness is prescribed by ratio:

N=MAg. (23)

Here the unit slenderness is defined by A =I,/i , where
l, is an actual length of the buckled member, i is the

radius of gyration, Ag = ﬂ is the Euler's slender-
(0}
y

ness.

For example, the tube cross-sectional reduction
coefficient analytically is described by relation as is sug-
gested in [15]:

1

X:¢+\/¢2—F

<1. (24)

Here
o :%[1+G(X2 ~02)+7, (25)

where o is the variance coefficient (eg a =0,21 for hot
laminated pipes, that of o =0,34 for cold laminated
pipes).

The structure bars cross-sectional areas optimization
problem is convex non-linear mathematical programming
problem with one extremum. Two solution cases due to
possible admissible sets of variables are shown in Fig 2
and Fig 3 for two optimized parameters.

Fig 2 presents an optimal solution in the case when
the displacement constraints are not activated. The opti-
mization process is preconditioned by strength/stability
constraints.

Fig 3 presents the case when the optimal solution is
preconditioned also by stiffness constraints. In the con-
sidered case the optimal solution contains the satisfied
as equality leastwise one strength/stability condition in
concert with stiffness constraint. It is obvious that the
optimal solution objective function in this case results in
a more structural weight magnitude, when compared with
the obtained one, presented in Fig 2.
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Fig 2. Piecewise-linear admissible set
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Fig 3. Non-linear admissible set
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Analysing the above figures, one can obviously find
that the optimization process converges to unique solu-
tion for both possible cases, in case when leastwise one
truss-type structure member is deformed plastically. When
all truss members are elastically deformed, the structural
optimization is provided in the elastic range in respect
of displacement constraints.

2.4. Analysis and optimum design algorithm main
steps

The minimum weight elastic-plastic truss-type struc-
ture optimization consists of the following eight steps:

1. Create local and global displacements configura-
tion matrix containing unit or zero components.

2. Determine limit axial forces Sg and Sg (Choose
primary cross-sectional areas of bars for the start of op-
timization procedures, introduce the new ones according
to the previous iteration optimization result for the cur-
rent optimization iteration).

3. Create structure discrete model quasidiagonal tan-
gent stiffness matrix [K] for tensile-compressive elements
(16) and global tangent stiffness matrix [Kt]-

4. Determine the force S, and displacement Ug,
available at the end of geometric non-linear tangent stiff-
ness analysis.

5. Create influence matrix [G] of residual internal
forces.

6. Solve the stress-strain state evaluation quadratic
programming problem (10) to find residual response val-
ues.

7. Find the Lagrange multipliers A, and A, mag-

nitudes. Applying the eqns (17)—(19) determine the total
magnitudes of internal forces and displacements for the
next optimization cycle.

8. Solve structure areas optimization problem (20)
under present strength, stiffness and stability constraints.

9. Check the optimization problem prescribed con-
vergence criterion in respect of previous iteration result.
When it is not satisfied, repeat steps 2-9. The prescribed
criterion can be the fixed admitted tolerance of structure
weight function that of the bars areas (both criteria are
correlated).

Note that the structure, subjected by external load-
ing, optimization problem solution number of iterations
depends on successful starting point (ie chosen for 1-st
step primary input data (bars areas)). They can be cho-
sen arbitrarily, solving eg the linear-elastic problem or
any similar one, being naturally close to actual constraints
of the problem under investigation.

2.5. Numerical examples

The proposed design algorithm is illustrated when
applied for design of two different elastic-plastic steel
pipe type cold laminated member truss-type structures.
Geometrical non-linear deformable behaviour is evaluated.

As for the first example consider the structure of
25 bars (Fig 4) subjected by four external forces, ap-
plied to 1, 2 3 ir 6 nodes, respectively. The above forces
to structure global axes are as follow:

F =120kN,  F, =30kN,  Fy, =80 kN;
Fa=100KN,  Fpy =30KkN,  Fp, =60 kN;
Fay =0, Fay =0, Fa, =30 kN;
Fox =0, Fey =0, Foz =30 kN.

Eight groups (ie eight different truss areas) of pipe
type bars (Fig 4) are optimized to ensure truss minimal
weight under strength, stiffness, stability and construc-
tional constraints. The material properties are as follows:
yield limit oy =240 MPa, elasticity modulus E =
207 GPa.

Truss nodes 1 and 2 extreme displacements are con-
strained in directions x and z by 1 c¢cm. The construc-
tional requirement introduces minimal bars area to be
2 cm?.

The design history is given in Table 1. As starting
point input data (see row wu of Table 1) was taken an
optimization solution of the considered truss, when ne-
glecting the dispalacements limiting constraints, loaded
by the same four loads. The starting point was obtained
in fifteen iterations, applying the same algorithm (20),
for its starting point taking all areas to be equal to 10 cm?
ones (row s of Table 1). One must note that the start
problem, neglecting the displacement constraints, is a
linear programming one.

190.5¢cm

Fig 4. Truss design scheme
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Table 1. Optimization problem solutions per iterations

Iteration A4, A,, As, Ay, As, Asg, A, Ag, Truss weight
number (cm?) (cn®) (cm?) (cm?) (cm?) (cm?) (cm?) (cn®) (kg)
s 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 659,00
wu 2,000 8,892 6,956 2,000 2,098 5,924 3,360 11,890 42747
1 2,000 10,173 10,453 2,000 2,097 5,925 3,635 17,339 532,50
2 2,000 16,207 9,870 2,000 2,737 5,501 3,101 15,592 559,79
3 2,000 11,859 9,240 2,000 2,097 5,577 2,854 18,172 532,25
4 2,000 10,946 9,963 2,000 2,675 5,437 2,768 18,229 527,98
5 2,000 10,090 10,634 2,000 3,251 5,404 2,720 18,229 525,33
6 2,000 9,287 11,264 2,000 3,764 5,390 2,694 18,213 523,14
7 2,000 8,579 11,882 2,000 3,726 5,380 2,696 18,243 520,94
8 2,000 8,025 12,331 2,000 3,992 5,367 2,751 18,167 519,78
9 2,000 8,271 12,488 2,000 4,150 5,359 2,745 17,753 519,54
10 2,000 8,053 12,522 2,000 4,146 5,380 2,758 17,870 519,30
11 2,000 8,198 12,542 2,000 4,179 5,375 2,753 17,738 519,50
12 2,000 8,189 12,542 2,000 4,163 5,375 2,754 17,717 519,48

The truss optimal solution was reached in twelve
iterations (last row of Table 1) with 0,12 % tolerance
for 2-nd and 8-th areas, less then 0,5 % for 4-th and
7-th areas and 0 % tolerance for remaining areas and
total weight of the structure.

Some notes on optimal truss behaviour being adapted
to the considered loading process. The 1-st node reached
it allowable 1 cm extreme magnitude, while other dis-
placements do not achieve this magnitude.

The 1-st and 4-th areas reached their minimum equal
to 2 cm? area magnitudes. The 1-4 and 4-9 truss com-
pression members are loaded up to the critical values —
the buckling constraints are dominant ones. Critical states
for tensile members are not achieved. A deformable
behaviour comparison of the optimized truss with one,
obtained when neglecting the displacement constraints (ie
with the starting point representing optimization result —
row wu of Table 1). When ignoring the truss displace-
ment constraints the solution yields the compression
members 2—4, 3—4, 4-7, 4-8 and 4-9 were loaded up to
the critical values. Critical states for tensile members were
neither achieved. It is interesting to find the optimal so-
lution, obtained when taking into account the dispalcemt
limitations yields the 21,5 % more weighted truss. The
same truss was design is provided in [6]. One can con-
firm the complete of optimal solution with the one ob-
tained by proposed method for analogous constraints.

As for the second example, the spherical shell shape
hinge-bar structure (Fig 5) is investigated. The truss is
subject to a vertical loading of 150 kN at all joints, act-
ing in the negative direction of y-axis. The structure has
21 joints and 52 members are collected into eight differ-
ent groups. The grouping of members is as shown in the
above Figure. The truss members are produced of cold
laminated pipes, of thickness 3 mm, elasticity modulus
E = 210 Gpa, yield limit 0y= 240 MPa, density
p=7850 kg/m’>.

Having provided the pipe assortment analysis, it was
found the ratio of cross-sectional area and radius gyra-
tion to be constant one, equal to A/i =2,65. Applying
the latter relation the pipe profile buckling condition yield
the lower bound of cross-sectional area Apip, = 2,65l /A
(lp— actual buckling length, A, — limit slenderness).
The calculations resulted in the following cross-sectional
area limits:

First, second and third groups — Ay, =8,0 sz;

Forth, fifth and sixth groups — Ay, = 9,0 cm?;

Seventh and eighth groups — Ay, =14,0 Cm2;

The structural optimization is provided in respect
of three types of displacement constraints:

1. All nodes displacements are limited to 1 cm;

2. Node 1 displacement is limited to 2 cm, all re-
maining nodes — to 1 cm;

3. Node 1 displacement is limited to 3 cm, that of
for nodes 2-5 to 2 cm, remaining nodes — to 1 cm.
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Fig 5. 52-bar space truss

Eight variables are fixed as unknown for the design
problem. The initial values of these are chosen to be 20
cm? (s row of Table 2).

The optimal solution in case of first displacement
limiting condition was obtained in five iterations (row
W1 Table 2). All the members of the truss are com-
pressed. Note that the displacement constraints predomi-
nate in the optimal solution. The displacements reach the
limiting magnitudes for all nodes. Any truss member is
loaded up to yielding.

The similar view is obtained in case of the second
displacement limiting condition. The problem starting
point was chosen the solution of the first problem (row
W2 of Table 1). The optimal solution was obtained in
three iterations. All members are under compression, but
nodal displacement reach their limit magnitudes only for
1, 2, 3, 4 ir 5 nodes. The plastic deformations do not
appear. Find that both displacement limitations yield elas-
tic behaviour of the structure.



R. Karkauskas / JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT — 2004, Vol X, No 2, 97-106 105

Table 2. The design history of 52-bars truss

Iteration Ay, A,, As, Ay, As, Ag, A, Ag, Truss weight
number (cm?) (cm?) (cm?) (cm?) (cm?) (cm?) (cm?) (cm?) (kg)
s 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 6963,1
1 45,258 8,000 35,257 16,301 9,000 27,820 14,000 14,000 6131,5
2 38,764 8,000 32,291 11,963 9,000 28,126 14,000 14,000 5769,0
3 38,525 8,000 32,960 11,478 9,000 28,354 14,000 14,000 5763,4
4 38,389 8,000 33,131 11,371 9,000 28,439 14,000 14,000 5762,8
Wi 38,372 8,000 33,153 11,370 9,000 28,445 14,000 14,000 5762,7
1 15,113 9,497 30,666 12,045 9,000 27,285 14,000 14,000 5359,3
2 15,298 9,280 30,542 12,154 9,000 27,135 14,000 14,000 5353,8
W2 15,292 9,238 30,497 12,193 9,000 27,116 14,000 14,000 5353,2
1 15,095 8,000 13,530 9,000 9,000 13,106 14,000 14,000 4218,5
2 14,462 8,000 10,864 10,575 9,000 14,273 14,000 14,000 4290,8
3 15,037 8,000 11,844 9,000 9,000 13,105 14,000 14,000 4186,5
4 14,592 8,000 11,594 9,899 9,000 13,631 14,000 14,000 4242,0
5 14,602 8,000 11,562 9,906 9,000 13,605 14,000 14,000 4242,30
W3 14,598 8,000 12,536 9,902 9,000 13,594 14,000 14,000 4242,20

The deformational behaviour of truss changes in
principle in case of the third displacement limiting con-
dition. The problem starting point was chosen the solu-
tion of the second problem (row W2 of Table 2). The
optimal solution was obtained in six iterations. All mem-
bers are under compression, the plastic deformation is
reached in members 2—-6, 3—8, 4-10 and 5-12. The mem-
bers 6-14, 7-15, 8-16, 9-17, 10-18, 11-19, 12-20 and
13-21 are close to stability loss, but all the structure is
still geometrically stable. The Table illustrates the weight
optimal solution convergence dynamics per iterations.

The analysis of obtained solution proves that the
proposed optimization method is compatible to the struc-
ture actual behaviour.

3. Conclusions

1. The design algorithm is developed for space truss
members cross-section optimization, coupling the dis-
placement and combined stress and stability constraints.

2. The new truss structural optimization model is
presented. The proposed optimization method principles
can be implemented for other types of structures.

3. Created design algorithm splits the structural op-

timization problem per cycle into three main parts. Each
part provides solution of separate problems, employing
the solution result obtained in the previous optimization
cycle. The optimization cycles are continued up to pre-
scribed tolerance criterion.

4. The overall stability loss has been checked dur-
ing the optimization process to insure that the obtained
optimum design truss is geometrically stable one.

5. The performed numerical experiments illustrates
efficiency of proposed algorithm, when applying the pro-
posed optimization under presence stiffness, stress and
stability constraints method for the truss, subjected by
known external loading.

6. Numerical trusses simultanously have proved that
the employment of the tangent stiffness method for the
geometric non-linear truss analysis is rather effective one,
requiring two-three iterations to reach the redistribution
of the unbalancing loads.

7. It is prudent to remark that evaluation of geo-
metrical and material non-linearities in the optimal struc-
tural design lead as well as to the closer actual structural
behaviour description comparing with an actual one, as
to the minimization of the material resources for the
optimal solution ensuring a structural reliability.
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