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Abstract. Application of discrete element method (DEM) to keel penetration in granular media is investigated. The
basic relations for visco-elastic granular media composed of spherical particles are presented, together with Sth order
Gear predictor-corrector scheme for time-integration. The background version of DEM and numerical time integration
algorithm are developed and implemented into DEMMAT code. The implementation of time-integration algorithm is
verified by simple tests concerning particle-particle, particle-wall interactions, for which analytical expressions exist. By
limiting the size of the media domain, the three-dimensional problem is reduced to particular case presented as two-
dimensional domain of spherical particles. The variation of keel reaction and distribution of the particle forces due to

different material properties are investigated.
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1. Introduction

The response of granular media depends on the in-
teraction between individual particles and their quantita-
tive observation and registration are required [1]. The
experimental measurements are extraordinarily difficult
because the duration of interaction of the particles is very
short and the displacements of individual particles are
relatively small [2]. On the other hand, the increasing
capacity of the advanced computer technologies opens
up new vistas for modelling of the granular media by
the discrete concept, which is an attractive alternative to
continuum model [3].

Among various numerical simulation techniques, the
discrete element method (DEM), initiated by P. Cundall
and O. Strack [4], is one of the most powerful tools.
The DEM allows for the simulation of particle motion
and interaction between the particles, taking into account
not only the obvious geometric and material effects such
as particle shape, material non-linearity, viscosity, fric-
tion, etc, but also the effects of various physical fields
of surrounding media, even of chemical reactions [5].
Recently, the DEM has been used for the solution of
discrete and continuous problems including solid, fluid
and molecular mechanics, heat transfer, etc [2, 5-10].

One of the most promising areas of future applica-
tions of the discrete element method seems to be
geotechnical engineering. The discrete approach assumes
the soil as an assembly of granules or discrete particles,
where macromechanical behaviour of soil is predefined
by micromechanical intergranular properties.

Large varieties of engineering applications are re-
lated to dynamic actions of different machine parts and
mechanical tools contacting the soil. A penetration prob-
lem belongs to the category of relatively simple but fun-
damental problems of geotechnical engineering [3, 11—
13]. Its qualitative and quantitative description forms the
basis for future investigations in terms of micromecha-
nical models as well as providing suitable software tools.

It should be noted that commercial codes of the
DEM have not been developed to such an extent to be
applied for a wide variety of problems. As a rule, their
main disadvantage lies, for example [14], in the fact that
they do not allow to handle new specific models. For
the above reasons, the development of specific software
tools and codes is open for future investigations remain-
ing promising activity.

The current work presents the application of DEM
technique to the analysis of penetration in granular me-
dia. The background version of DEM and the numerical
time-integration algorithm are developed and implemented
into the original DEMMAT code. The quality of imple-
mentation is verified by physically observable behaviour
of interactions of particle—particle, particle—wall and by
the comparison of results of the present tests with the
analytical solutions.

The developed DEMMAT code was applied to simu-
lation of keel penetration into visco-elastic granular me-
dia composed of spherical particles. By limiting the size
of the media domain, the three—dimensional problem may
be reduced to a particular case presented as two—dimen-
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sional domain of spherical particles. The variation of keel
reaction and distribution of particle forces due to differ-
ent material properties of granular media are investigated.

2. Discrete state formulation

The granular media present a space filled by the
particles termed here as discrete elements. The media
are assumed to be composed of spherical particles with
different radii R,. The particles are assumed to be de-
formable bodies, deforming each other by normal and
shear forces.

The composition of media is time—dependent be-
cause individual particles change their position by free
rigid body motion or by contacting with neighbour par-
ticles or walls. Each particle may be in contact with other
particles.

The visco-elastic material of granular media is de-
fined by the modulus of elasticity, Poisson’s ratio and
damping coefficients in normal and shear directions.

The boundary conditions of media are determined
by planes and treated as particles with an infinite radius
and mass. The external action is induced with kinematic
boundary conditions which are implemented by the walls
movements.

The dynamic behaviour of media is considered as
the dynamics of each particle. Consequently, the overall
response of media is predicted by the behaviour of indi-
vidual particles, the dynamics of which is evaluated by
applying the second Newton’s law. One of the most im-
portant issues considered by a discrete approach is the
detection of interaction forces between contacting par-
ticles. The interaction forces of each contacting pair are
locally resolved on the basis of actual geometry and the
appropriate constitutive relationships employed. This
chapter focuses mainly on the description of geometry
of kinematic contact between two spherical particles,
inter-particle contact forces and boundary conditions.

2.1. Geometry of kinematic contact of spherical
particles

The kinematics and contact geometry of spherical
particles are considered by normal component acting in
the normal direction denoted by subscript # and the tan-
gential component denoted by subscript 7. Consequently,
contact deformation of the particle i in respect of an-
other particle j may influence the contact kinetics of
particle 7 in respect of particle .

Two spherical particles in the contact, i and j, are
defined by the positions x, and x; of the centres of grav-
ity O, and o of the particles and by the velocities v; and
v and the rotation velocities w, and w, (Fig 1). Rela-
tions presented below generally reflect the DEM model
with rotation previously developed by Dziugys [10, 15].

The vector x; of the relative position points from
the centre of gravity of particle i to that of particle j

Xij =X =Xj. @

The contact point Gy is defined to be in the centre
of the overlap area with the position vector X The depth
of the overlap is defined by 4,

hj =R +R; _‘Xij , ()
where R; and Rj are the radii of the spherical particles i
and j.
The normal vector n;; is a unit vector pointing in
the direction of the contact surface through the centre of
the overlap area towards the particle i

nij =Xi . (3)
i
It holds that njj =—Nji. (4)

Fig 1. Geometry of overlapping contact of two particles

The vectors d,; and d, are pointing in the direc-
tion from the centre of the particles to the contact point
C

g
daij = Xcij =X :‘(R ‘%hj)nij- (%)

The relative velocity of the contact point (Fig 2) is
defined as:

Vij = Vdij Vi, (6)
where Vgij = Vi W xdgj (7
Vi =V +W;j xdg, ®)

are the velocities of the particles i/ and j at the contact
point. It holds that

Vij = Vi (€))

The angle between vectors of relative velocity
Vij and unit vector Njj can be defined by the expression
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cosp = ———— (10)

j i
|

Vi
vi

The vector of an angle between global and local
coordinates system is expressed by

o =arccodn;; ). (11

e

Fig 2. A scheme of the relative velocity vectors

Taking into account relations (10-11) the modulus
of normal contact relative velocities Vpjj is obtained as
V:: [
|Vn,ij| :|Vij|EOS¢ =4 (12)
gl
Taking into account relations (10—12) the normal
component of contact relative velocities Vnjj is obtained
in the following way:

Vhjj :‘Vn,ij ‘d:‘vn,ij‘nij, (13)

Vi = (vij i . (14)
The tangential component of the relative velocity

of the contact point may be established by vector sum-
mation

Viii = Vij ~ Vnij - (15)

The slip distance follows from temporal integration
of the relative velocity, starting at the point in time when
particles i and j come into contact. The slip distance is
expressed by the vector of tangential displacement Bm.i
and is defined by the expressions given in [1, 10]

Btij = [Viij (t)dt . (16)

If the tangential component of the contact velocity
Vi is not equal to zero, then the unit vector t; of the
tangential contact direction is directed along A If Vi
is equal to zero, t; has the same direction in which the

slip occurs. Otherwise t, is equal to zero if Vi and 5mj
are equal to zero. Finally,

OVy jj
O—7 Vijj#0
OVt,ij
_ b _

tj=cosp=0G—7, Vijj =0 820  (17)
00t,ij
EJ, otherwise
g

2.2. Inter-particle contact forces

A model of inter-particle visco-elastic contact forces
describes the following effects: particle elasticity and
energy dissipation in normal and tangential directions

(Fig 3).

-——=

Real deformatiory

Modelling as overlag

S ———-

Fig 3. A model of inter-particle contact forces

The contact force Fij of a visco-clastic collision
between two particles i and j acts on the contact point
C[j and can be expressed as sum of the normal and the
tangential components

Fi] = Fn,ij +Ft,ij . (18)

A model for the normal repulsion force depends on
the contact geometry and on the properties of the par-
ticle material [10, 16]:

4 EE; 2-0 .0
F . Py \ 7 \Ri- hn , (19)
njj.elastic = 5 Eitl—vf)+Ej b-_ViZ) I )

_ RR

"R *R; (20)

where Ri

is the reduced radius of two particles.
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For the Hertz contact model the power coefficient
o = 3/2, while for Hook’s law a =1; E; and Ej, v, and
v, —are elastic moduli and Poisson’s ratios of particles i
and ;.

In the normal direction, the energy dissipates dur-
ing real collisions between the particles (Fig 3). The dis-
sipation can be modelled by the non-conservative vis-
cous force during collision. Based on the linear depen-
dency of the force on the relative velocity of the par-
ticles at the contact point (14) with a constant normal
damping coefficient y, [10, 17]

I:n,ij viscous — ~YnMyj Vn,ij > (21)
m.
where m; = (MM (22)
m + mJ

is the reduced mass of the contacting particles 7 and ;.

The formulation of model for the tangential force is
more difficult, since the phenomena of tangential defor-
mation and friction (static and dynamic) have to be mod-
elled, whereas, in general, they depend on the normal
force ij and depth of overlap hij as well as on the
history of the tangential contact force. The model of en-
ergy dissipation in tangential direction must also be in-
cluded for static friction; otherwise perpetual oscillations
in the time of static friction will occur.

Two major approaches can be found in literature to
model tangential forces: global models, where the tan-
gential force is modelled by one law, and separated
models, where static and dynamic friction are modeled
by separate equations. The most popular approach com-
prises the evolution of tangential force F L divided into
parts of static friction or dynamic friction

Feij = ~tij mmﬁ':t,ij,static E (23)

Dynamic friction force can be described by the equa-

Ft,ij ,dynamic

tion

Filt

Fejii dynamic = ~HFnjij{tij - (24)

The expression (24) of the dynamic friction force
(where | is friction coefficient) is widely used, but there
is no common agreement about the model for the static
friction. The most popular approach is based on the as-
sumption that static friction can be calculated by the sum

of energy dissipation and spring models

Ftij, static = Fi.ij alastic * Ft.ij viscous - (25)

The most general form of the spring model for static
friction was used by Kohring [18, 19] in simplified ex-
pressions of Mindlin's [19] theory, assuming that no par-
tial slipping of the contact surface occurs

F __16,  GC/RN
Lij elastic 3 Gi(z—\)j)+Gj(2—Vi

)6t,ijtij ,(26)

where G, and G; are the shear moduli of particles i and ;.

The model for energy dissipation in tangential di-
rection was adequate to the model for energy dissipation
in the normal direction (21)

Ft,ij viscous — _Vtmj Vt,ij > 27

where Yy, is tangential damping coefficient.

2.3. The surrounding media

The effects of the surrounding media or physical
fields acting on the particle may be added as additional
forces. In the current approach the effect of gravity field
is taken into account.

2.4. The boundary conditions

The setting up of boundary conditions is very im-
portant for correct simulation of the granular material
behaviour. The walls constructed by planes may be
treated as the particles with an infinite radius and mass

(Fig 4).

Fig 4. Geometry of boundary plane and neighbour point S

The geometry of boundary plane surface is defined
by equation

Ax+By+Cz+D =0, (28)

where (4, B, C) #(0, 0, 0) are the components of the
plane surface normal vector N.

The equation for every point R(x, y, z) of the bound-
ary surface is defined as (N EIR)+ D =0. Therefore, if
we have point P(x YV zp) of the plane, we can calcu-
late constant D by expression
D= —(AXp +By, +CZp): —(N EP) If we have a point
on the plane and a normal vector of the plane, it is easy
to calculate the distance L from the plane to the adja-
cent point S.
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3. A numerical algorithm

3.1. The basic relations

The time—driven discrete element method was used
to simulate the behaviour of granular media, which means
that the mutual impact of particles is approximated by a
representative overlap area or volume of particle shapes
in the vicinity of the point of impact. The motion of
each particle 7 in time ¢ is described by the second
Newton’s law:

2 .
2
2
I dd 2' =T;, (30)

where x;, 0; are vectors of the position of the centre of
gravity and orientation of the particle, m, is the mass of
the particle i (i =1, N), [, is the inertia moment of the
particle.

Vectors F, and T, present the sum of gravity and
contact forces and torques, which act on the particle i
respectively. The contact forces is defined by relat

N
SFi, 31)

i1

F contact =

where F[j is a force acting on the contact area of elastic
impacts between the particles i and j.

The summation of torques T,
contact forces between particles

is caused by the

I,contact

N
> daij XK (32)

=L

N
> Tij =

=L

T contact =

The kinematic relations of equation (29-30) are ex-
pressed by (1-17) while the forces and torques are rep-
resented by (18-27).

3.2. The time integration

The state of all particles at the time ¢ is obtained by
the integration of the equations (29-30). The numerical
solution of these equations is obtained by a 5"-order
Gear predictor-corrector [10, 20] scheme.

First, the particles positions x, velocities v}, ac-
celerations aip and higher order dimensionless time de-
d"x at"
d" n
hereafter by superscript p, are predicted by expressions:

rivatives brﬁ)i =0 (where n = 3, 4, 5), denoted

xP(t+at)=

)+ 80, 0+ %, ()0 )+ b ()05

vP(t+at)=vi )+ At (t)+Ait(3ba- (t)+ 404 t)+ 55 (1)

(34)

%(3b3i (t)+ 60y (t)+ 1005 (t)). (35)

aP(t+at)=a(t)+

bg (t+At)=bg (t)+4b, (t)+1005 (),  (36)
bj (t+At)=by )+ 505 (t), (37)
b& (t +At)=bg t). (38)

After the prediction, the particle forces and accel-
erations are calculated according to the new positions
and velocities taking into account relationship (29)

(P vP)
af(t+nt)="1 Xr'n’v' :

Finally, the positions, velocities and higher-order
time derivatives), denoted hereafter by superscript ¢, are
corrected:

(39

At +At)=aC(t +At)-aP(t +At), (40)

Ae(+at) § BPE+at)H B)ScoAtZH
Ge(e+at) O BP(+a0)E Doseat O
eleo) O BPEHA)E e,

(-0 ") fpsoae 2041
0o (t+At)D P (t+at)g D5csat?D

S +a0f b2+ a0 oscsn?E

The values of the constants ¢, depend on the de-
sired accuracy, and for a second order of differential
equation are c,=3/16, ¢, =251/360, c,=1.0,
c;=11/18, ¢, = 1/6 and c5=1/60 [20].

The time step, Dz, of the integration of the particle
position, velocity, orientation and angular velocity is a
basic parameter of accurate results of simulations and
depends on the time of contact. Two main criteria are
applied to a time step:

1. Cundall and Strack [4] proposed that the time
step must be smaller than the critical time step,

A= M, (42)
k
which was estimated on the basis of the single degree-
of-freedom system of the mass m connected to the ground
by a spring of stiffness £.

2. For sufficiently accurate simulations, the over-
lap depth must be considerably smaller than the radius
of the particle hyg <<R;, therefore time step must be
considerably smaller than the time of collision between
two particles At <<T.



In spite of the assertion of Thompson and Grest
[21] that an accurate simulation requires Af ~ 7 /50, other
authors use a larger time step. Dury and Ristow [22]
used Ar= T /15, Langston et al [23] — At ~ T /30. Analysis
of accuracy of numerical integration of equations (29—
30) using various integration schemes will be presented
below.

3.3. Computer implementation

The application of DEM to a system involves the
following basic steps:

1. Set-up of initial conditions of the particles and the
walls.

2. Searching for the contacts between particles.

3. Applying interaction laws (calculating forces and
moments) to all particle—particle and particle-wall
contacts.

4. Applying Newton’s second law to determine par-
ticle motion (29-30). Predicting positions, veloci-
ties, accelerations and higher-order time derivatives
according to (33-38).

5. Updating the current state of particles and the walls
according to (40-41).

6. Assigning a new time ¢ = ¢ + At.

7. If current time is within entire time period (¢ < T) —
go to the item 2, otherwise go to the next item.

8. Post processing, visualisation.

An original program called DEMMAT has been
written in Compagq Visual FORTRAN language to imple-
ment the algorithm and method described above.

4. Validation tests

The validation tests were performed to check two
aspects the algorithm and the developed software. Firstly,
unidirectional contact motion test of a single particle was
checked and the results were compared with analytical
solutions. Secondly, the validity of the model was con-
firmed on the basis of the realistic physical observations.

The evaluation of the time integration scheme de-
pends on calculation time resource presenting the most
important part of the numerical simulation technique of
DEM. Various integration schemes for the numerical
solution of differential equations (29—30) can be used,
but, according to Sundaram and Collins [24] at least the
third-order accuracy is required to accurately track the
particle trajectories. The Taylor Expansion Series and
Velocity Verlet are the simplest and mostly used schemes.
For granular materials the Taylor Expansion Series was
used by Taguchi [25], and Velocity Verlet was applied
by Akiyama [26], Kopf et al [27]. Recently, more so-
phisticated but more accurate 5"—order Gear predictor-
corrector [10, 20] has come into its own rights. To ob-
tain sufficiently accurate numerical simulations and ad-
equate analytical solutions, the above three time integra-
tion schemes were used in current investigation.
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During the first validation procedure the time inte-
gration schemes with different time steps were examined.
Here, several models of normal contact forces were con-
sidered:

Test 1: normal elastic force;

Test 2: normal elastic and damping forces,

Test 3: normal elastic, damping and gravity forces.

To test the particle-wall collision, the particle mov-
ing at the initial velocity and hitting the wall’s base were
simulated. To test the particle—particle collision, an iden-
tical test is conducted, but the particle hits a stationary
particle. In these tests, the tangential forces are set to
zero. Test model data is described in Table 1.

Table 1. Test model data

Quantity Symbol | Value
Particles radii, m R 0,05
Particle mass, kg m 10,0
Wall mass, kg m 00
Particle and wall elastic modulus, Pa E 3-10°
Particle and wall Poisson’s ratio v 0,30
Normal damping coefficient Ya 10,0
Initial velocity, m/s Vo 1,0

In order to estimate the artificial damping of these
time-integration schemes, the following relationship was
applied

(43)

Ay = It\/ % (Xanalytical (t) = Xmethod (t))z ,

where Ay — artificial damping error, while Xgnaytical (t)
is a position of particle at time ¢ defined by analytical
expressions [28, 29] according to the test models and
Xmethod (t) is a position of particle at time ¢ defined by
time integration schemes according to the test models.

Table 2. Test model results

Artificial damping error, A,
Scheme

At=T,J/10 At=T,/30
Test 1:
5" _order Gear predictor- 0,000018 0,000002
corrector
Velocity Verlet 0,000179 0,000021
Taylor Expansion Series 0,006101 0,002079
Test 2:
5t _order Gear predictor- 0,000111 0,000033
corrector
Velocity Verlet 0,000300 0,000082
Taylor Expansion Series 0,000657 0,000139
Test 3:
5" _order Gear predictor- 0,000427 0,000034
corrector
Velocity Verlet 0,000594 0,000083
Taylor Expansion Series 0,000805 0,000140




R. Balevicius, et al / JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT — 2004, Vol X, No 1, 3—14 9

The results of adequacy tests of analytical and nu-
merical solutions for different time integration schemes
depending on time steps At and the time of collision 7,
are presented in Table 2. As one can see, the accuracy
mainly depends on dissipations and the number of active
forces. The analysis of the artificial damping error shows
that accurate simulation requires the ratio Ar= T,/ 30.
The trajectory of particle motion is illustrated in Fig 5.
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According to Table 2, the 5 —order Gear predic-
tor-corrector scheme results in the lowest artificial damp-
ing error. The Velocity Verlet algorithm resulted in
slightly higher errors, whereas the Taylor Expansion
Series expansion leads to considerably higher lowest ar-
tificial damping error. In order to obtain sufficiently ac-
curate numerical simulations the 5% —order Gear predic-
tor-corrector scheme was used in further development.
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Fig 5. The trajectory of particle motion for different time integration schemes versus the time step Ar and

the time of collision 7,
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The validity of the above algorithm and the model
was also checked in simulations of particle behaviour in
the 3D wall’s box in the real time. The initial data de-
scribed in Table 1 are supplemented with the value of
particle density p = 1000 kg/m?, the friction coefficient
M = 0,5 as well as the normal and tangential damping
coefficients y = 10 s!, y,= 5 s7. The initial scheme and
results of numerical simulation of particle motion under
gravity force and initial velocity v, =0,5 m/s are pre-
sented in Fig 6.

Fig 6b shows the trajectory of an elastic particle
which moves at the horizontal initial velocity under the
force of gravity. Merely, the dynamic friction effect on
the trajectory of particle is taken into account. As can
be seen, the particle rebounds horizontally between the
two walls of the box. The movement of the particle

changes in the manner similar to a linear spring. The
delay of particle motion may be explained by the fact,
that a part of translation energy is transformed into rota-
tional energy when the particle comes into contact with
the wall.

Fig 6¢ shows the trajectory of a visco-elastic par-
ticle, where energy dissipation is caused by tangential
and normal damping. When the particle rebounds, it fails
to reach the original height and its height decays due to
damping.

The trajectory of the elastic particle under action
of the initial velocities v, = Voy~— 0,5 m/s is presented in
Fig 6d. Here, the energy dissipation is not taken into ac-
count and viscous forces (21) and (7) are set to zero. As
can be seen, the particle rebounds with horizontal trajec-
tory between the four walls of the box.

by N . . ,

d)

Fig 6. Simulation of particles trajectory in 3D box: a) initial scheme; b) graph of elastic particle trajectory with effect
gravity and dynamic friction forces; ¢) the same of visco-elastic particle; d) graph of particle trajectory under action of the

initial velocities v, Voy
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Fig 7. Trajectory of particle with different elasticity moduli
after collision with the wall: 1 — E=10° MPa, 2 — E=108
MPa, 3 — E=10!! MPa

The following example illustrates the effect of elas-
ticity properties. The particle with different elasticity
moduli and constant velocity V= 0,5 m/s hits the wall.
The relatively low value (E = 10° Pa), the medium value
(E=10®% Pa) and high value (E=10® Pa) of elasticity
moduli have been considered.

Fig 7 presents the trajectory of the particle after the
contact with the wall. It shows the effect of spring elas-
ticity on the amplitude and frequencies of oscillation of
the particle. The high elasticity particle has a smaller
amplitude and higher frequency of oscillation than a par-
ticle with a low modulus of elasticity. This effect is also
discussed below in considering the behaviour of granu-
lar media with different elasticity properties.

5. Penetration problem

The granules are subjected to the action of the keel
at the constant moving velocity v, and placed into an
open box with deformable walls, the central section of
which is shown in Fig 8.

The discrete approach described above generally
presents a three-dimensional model. By reducing the
thickness of the box until it reaches of two times of ra-
dius of particle @ = 2R, _, the problem, actually, is trans-
formed into a two-dimensional one. This 2D model are

Fig 8. Illustration of penetration problem
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investigated and solved numerically. The 2D media con-
tains about 2000 spherical particles.

The plane dimensions of the box under consider-
ation are taken as »=0,25m and h=0,15m. The de-
formed boundary is constructed by the particles of infi-
nite radius. The initial data of the model are given in
Table 3.

Table 3. Initial data of the penetration problem model

Quantity Symbol Value

Particle radii, mm R 3-5

Material density, kg/m’ P 2000

Poisson’s ratio v 0,20

Elastic moduli, Pa E 10°, 10%, 10"

Shear modulus, Pa G 0,3-10°

Normal damping coefficient, Va 10,0

1/s

Shear damping coefficient, 1/s Y 10,0

Friction coefficient u 0,3

Keel velocity, cm/s Vi 10

Time step, s At 1:10%,1-10°,
2:107

Time simulation stopped, s T 0,5

The initial position of the particles was obtained by
particles motion under gravity force while the particles
reached the rest state and its kinetic energy was near to
zero. The simulation of the penetration problem is car-
ried out by introducing the keel, which is constructed of
two walls and can be moved down at constant velocity
Vi =0, Vi = -0,1 m/s.

The numerical simulation is performed for the par-
ticles with different elastic properties. The relatively low
(E = 10° Pa), medium (£ = 10® Pa) and high (£ = 10'!
Pa) moduli of elasticity of particles are analysed.

The results of 2D simulation for different elasticity
moduli are presented in Figs 9—11. The composition of
particles illustrates the deformed shape of granular me-
dia while the column illustrates the particle force. The
particles average force is shown in grey colour. The scale
of blackness of gray colour was obtained by summing
up of inter-particle contact forces

fi :_Z‘Fij‘. (44)
iZ]

As can be seen (Figs 9-11), the distributions of
particle forces depend on the particle moduli of elastic-
ity dramatically. The forces of granular media with low
(E = 10° Pa) elasticity modulus distribute more or less
uniformly in each particle. The forces of granular media
with high (E = 10'! Pa) elasticity moduli are not uni-
formly distributed. Forces acting upon most of the par-
ticles equal zero, but there are some particles acted by
high forces.

Vertical F, and horizontal F, components of the
reaction of the keel were obtained by summing up verti-
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Fig 9. Simulation of penetration in granular media with a low (£ = 10° Pa) elasticity modulus a) initial distribution of
forces; b) deformation of media and distribution of forces in 0,4 s (forces given in N)
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Fig 10. Simulation of penetration in granular media with a medium (£ = 10% Pa) elasticity modulus: a) initial distribution
of forces; b) deformation of media and distribution of forces in 0,4 s (forces given in N)

045 045

035

0.25

015

005

Fig 11. Simulation of penetration in granular media with a high (E=10!! Pa) elasticity modulus: a) initial distribution of
forces; b) deformation of media and distribution of forces in 0,4 s (forces given in N)
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cal and horizontal components of the left and right side
forces of the keel:

I:ky I:ry + I:Iy (45)

Fkx = Frx + FIX 5 (46)

where L keel’s right and left side vertical force
component respectively, F, , F, — the same for horizon-
tal component.

In order to smoothen the pulsation of average reac-
tions of the keel, T time rectangular filter was applied

(Rt) == 2R e (47)

where T — width of the filter.

The time variation of the absolute and relative ver-
tical average reaction of the keel for different elasticity
moduli are shown in Figs 12—13.

14 : : . _
— E=10°Pa fL

12} |"° E=10°Pa g
— E=10""Pa

0 0.1 0.2 03 04
time, s

Fig 12. The evolution of the filtered vertical reaction force
of the keel (rectangular filter width T=0,01 s) for three
cases of the elastic moduli £ of particles
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Fig 13. The dependence of the ratio of filtered vertical
reaction force (rectangular filter width T = 0,0065 s) on
keel displacement

The analysis of numerical results (Figs 12—13) shows
that curves of vertical average reaction of the keel are
irregular due to the irregular local deformation of indi-
vidual particles.

The values of the average horizontal driving force
of the keel was about zero, but its oscillation amplitude
increase with higher elasticity of the particles. In gen-
eral, it was stated that the influence of particles size dis-
tribution on a horizontal driving force is very small.

6. Conclusions

The results obtained in the present investigation may
be generally described as follows:

1. The described discrete element model composed
of visco-elastic spherical particles is implemented into
the developed DEMMAT code, the quality of which is
proved by the solution of standard tests. This code open
for new elements and interaction models may be consid-
ered as the first step in the development of an advanced
simulation tool for granular and other inhomogeneous
materials and is intended for modelling more complex
geotechnical problems.

2. The time integration tests conducted with par-
ticle—particle and particle—wall interactions have proved
that the performance of 5" —order Gear predictor-cor-
rector scheme is the better compared to other integra-
tion methods. This scheme is implemented into the code.

3. The developed DEMMAT code is applied to
simulate keel penetration into two-dimensional visco-elas-
tic granular media to investigate the influence of elastic
properties of particles. The simulation results show that
the increase of elasticity modulus E from lower value
10° Pa to medium value 10® Pa provides about 1,9-2,9
times increase of vertical keel’s reaction force, while the
increase to a higher value E=10'! Pa gives up to 2,2
4,3 times reaction increase.
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