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Abstract. Prediction of mechanical, thermal, and chemical actions induced during man-made accidents (accidental ac-
tions) is of crucial importance to assessing potential damage to structures exposed to these actions. A logical result of
such a prediction may be expressed in the form of probabilistic models describing likelihood of occurrence and charac-
teristics of accidental actions. For many types of accidental actions the models are to be selected under the conditions
of incomplete knowledge about and/or scarce statistical information on intensities and likelihood of imposition of the
actions. This paper proposes a simulation-based procedure intended for a selection of the probabilistic models under
these conditions. The proposed procedure is formulated in the context of the classical Bayesian approach to risk assess-
ment. The main idea of it is that statistical samples necessary for fitting the probabilistic action models can be acquired
from a stochastic simulation of accident sequences leading to an imposition of accidental actions. Formally, the stochas-
tic simulation of accidents serves the purpose of propagating uncertainties related to the physical phenomena capable of
inducing accidental actions. These uncertainties are quantified in line with the classical Bayesian approach. The simula-
tion-based procedure can be used for damage assessment and risk studies within the methodological framework pro-
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vided by the above-mentioned approach.

Keywords: accident, accidental action, risk assessment, uncertainty, Bayesian approach, stochastic simulation.

1. Introduction

It has long been known that man-made accidents
occurring in industrial and transportation facilities include
such adverse, high-energy physical phenomena as explo-
sions, vehicular impacts on structures, internal and ex-
ternal fires (eg, [1, 2]). Mechanical, thermal, and some-
times chemical actions (effects) induced by these phe-
nomena can cause damage to property and threaten
people’s lives. The most probable targets of these ac-
tions are structures and large objects of mechanical en-
gineering which can be viewed as structures. In terms of
structural engineering, an action induced during a man-
made accident is called an accidental action (AA). Clas-
sifications of AAs are given, for instance, in the struc-
tural standards ISO 2394 [3] and DNV-0OS-A101 [4].

A complete prevention of accidents capable of in-
ducing AAs is not always possible or economically fea-
sible. What is possible it is a limitation of potential dam-
age which can be caused by AAs. Predicting character-
istics of AAs is indispensable for assessing this damage.
Characteristics of a particular AA can be predicted ei-
ther by experiment (direct measuring) or by means of
mathematical modelling, depending on the knowledge
about physical phenomena causing the AA. Full-scale and

scaled experiments imitating accidents and allowing di-
rect measuring action characteristics can be expensive
and cover only a part of values of the random factors
which determine these characteristics (eg, [5, 6]). Char-
acteristics of an AA can also be predicted by a simple
calculation or a computer-aided computation in situations
where knowledge behind the AA is available in the form
of more or less accurate mathematical models. They must
be amenable to adapting to a particular accident situa-
tion and backed by some data relevant to this situation
(eg, [7]). An approach of considerable promise for such
a computation is a stochastic (Monte Carlo) simulation
of accidents inducing AAs. Examples of predicting AAs
by means of the stochastic simulation are presented by
Cooke [8] and Hauptmanns [9].

Formally, the stochastic simulation serves the pur-
pose of propagating uncertainties through mathematical
models of AAs. The need to deal with the uncertainties
stems eventually from the fact that most AAs are rare
and unique events of short duration. Predicting AAs will
usually face the problem of scarcity of data on their oc-
currences and necessity of quantifying uncertainties re-
lated to action characteristics. The methodology of a
quantitative risk assessment (QRA) is naturally suited to
solve (alleviate) this problem. QRA provides means of
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dealing with data scarcity and quantifying uncertainties
related to physical processes occurring during man-made
accidents [10, 11]. It is also recognised that the design
of structures for AAs should be based on principles of
QRA [12]. Assessing damage from AAs can be formu-
lated as a QRA problem [13-15].

The present paper follows the idea that principles
and methodological approaches developed in QRA can
be applied to mathematical predicting AAs by selecting
probabilistic models (action models). These models can
then be used to assessing damage from AAs. The action
model suggested in this paper can be viewed as a
generalisation of the model known as “hazard curve”.
Hazard curves are widely used in QRA [16, 17]. It is
discussed how to select the action model on the basis of
a general approach to QRA known as a classical Baye-
sian approach (CBA) [18]. A procedure based on a sto-
chastic simulation of accident sequences (accident simu-
lation) is proposed for the selection of the action model
in CBA framework. This procedure relates uncertainties
in characteristics of an AA, to uncertainties in physical
phenomena, the sequences of which lead to an imposi-
tion of the AA, that is, it serves as a tool for uncertainty
propagation.

2. Problem: how to predict accidental actions by se-
lecting their models?

Potential damage to structures and non-structural
property from a particular AA can be assessed by means
of a probabilistic action model describing this AA. When
selected, the action model will serve as a tool for pre-
dicting characteristics of the AA and estimating prob-
abilities (frequencies) of damage events in question. The
problem considered in this paper is how to select an
action model which can be schematically defined as

H(m) = F(OAA)X P(m|OAA) ,

where H(m) is the frequency (annual probability, prob-
ability per year of operation, etc) of exceeding the mag-
nitude m of an AA; F(OAA) is the frequency of occur-
rence of AA which is considered to be random event
0OAA; and P(m|OAA) is the conditional probability of
exceeding m given OAA.

The action model H(m) breaks down the modelling
problem into smaller problems of modelling the likeli-
hood of the random event OAA4 and modelling action
characteristics. Such a partitioning is sometimes used for
modelling actions which can be classified as accidental
ones, for instance, in forecasting severe local wind phe-
nomena [19].

A more precise definition of the action model H(m)
and thus peculiarities of its selection depend on an inter-
pretation of the frequency F(OAA) and probability
P(m|OAA) . Estimating the frequency F(OAA) and fit-
ting the function P(m|OAA) solely on the basis of the
data gained from occurrences of an AA will be more
often than not impossible. Data on AAs are usually sparse

or unsuitable to a particular situation of exposure of struc-
tures (non-structural property) to AAs, or, what is not
uncommon, unavailable at all.

This situation may be alleviated by mixing hard data
(relevant experience data) with subjective information
(expert opinions, judgements of analysts and analyst
groups, etc) as is done in QRA [20]. In view of the se-
lection of the action model H(m), the above-introduced
CBA may be defined as a tool for estimating the fre-
quency F(OAA) and probability P(m|OAA). CBA uses
the concept of probability as the “analyst’s measure of
uncertainty” or “degree of belief” [18].

3. Classical Bayesian approach to selecting models for
accidental actions

3.1. Form of action model

In the setting of CBA, the frequency F(OAA) and
probability P(m|OAA) are treated as true, even if unob-
servable and unknown, quantities. Both F(OAA4) and
P(m|OAA) express the aleatory (stochastic) uncertainty
in the random events O4A4 and “exceedance of m given
0A4A”. Another type of uncertainty distinguished in CBA
is the epistemic (state-of-knowledge) uncertainty in the
true values of F(OAA) and P(m|OAA). Thus an action
model based on CBA should incorporate both types of
uncertainty.

In line with CBA, the action model H(m) can be
defined as

Hy (x)= {Fp, (pa|me).((1=Fy, (x|z ), p;)

, (1
(i=1,2,.,n)} M

where x is the vector of action characteristics; X is the
random vector which models an aleatory uncertainty in
x; p, is the frequency of OAA4; P, is the random variable
(rv) which expresses an epistemic uncertainty in p,;
F P, (palm,) is the cumulative distribution function (cdf)
of P, with a parameter vector m,; Fy (x|m,)
(i=1,2,...,n) are the cdfs of the vector X with the
same argument vector x and individual parameter vec-
tors . ; p; are the probabilities expressing epistemic
uncertainties in cdfs Fy. (xlﬂx,-)- A simplified example
of such an action model is the family of hazard curves
of ground motion acceleration used in a seismic risk as-
sessment [17].

The definition (1) follows principles of CBA which
require to keep apart the aleatory and epistemic uncer-
tainties in the final form of a risk analysis, say, a prob-
ability of the top event of a fault tree [18]. In the com-
munity of risk analysts, it is argued that distinguishing
between different types of uncertainty does not have a
solid basis and is done only for convenience of model-
ling and analysing complex systems [10, 21].

It follows from the definition (1) that a selection of
the action model H y (x)amounts to a selection of cdf
Fp (py|m,) and the family of cdfs Fy, (x|z)
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Fig 1. Event tree diagram with a path leading to an unconfined vapour cloud explosion (UVCE); mathematical models
describing physical phenomena leading to UVCE are listed in rectangles (LPG — liquefied petroleum gas)

(i=1,2,...,n) as well as assignment of the respective
weights p,. This selection is considered in the remainder
of Sec 3 as well as Secs 4 and 5 while Sec 6 discusses
an application of Hy (x) to damage assessment.

3.2. Selection of action model
3.2.1. Dealing with scarcity of data

In most cases the analyst will face a complete lack
of data allowing a direct fitting the cdfs Fp (pglmy)
and Fy, (x|7, .) . In principle, some data are almost al-
ways avallable say, from back (post-mortem) investiga-
tions of a small number of analogous accidents. How-
ever, it is usually impossible to group the data in samples
which are large enough for fitting cdfs Fp, (pqlm,) and
Fy (x|m,.).

The situation of the virtual lack of data is commonly
encountered when the analyst has to do with unique in-
dustrial equipment and/or unique exposure to AA. This
situation cannot be considered hopeless if the analyst can
employ probabilistic and deterministic models describ-
ing physical phenomena the sequences of which lead to
OA4A4. The selection of cdfs Fp (p,|%,) and
Fy, (x|7rxi) can be based on these models.

For example, the event tree diagram shown in Fig 1
lists existing models which can be used to select cdfs
Fp (p4|m,) and Fx (x|r, ) for an unconfined vapour
cloud explosion (UVCE) (see the book [2] and refer-
ences cited therein). The models given in Fig 1 are
aligned along a path of event tree diagram. This sug-
gests the use of the models for deciding, which of the
alternatives represented by event tree branching points
may take place in a numerical simulation of the UVCE
accident.

The mathematical models describing physical phe-
nomena leading to OAA are normally developed inde-
pendently of each other. Therefore it is hardly probable
that the entire set of models covering all phenomena,
which can escalate into OA4, will be present in a ready-
to-use form. In the author’s experience, extra effort will
usually be required to make the models “compatible” with
each other. This statement is true for the models men-
tioned in Fig 1.

The central idea of this paper is that in some cases
cdfs Fp (pylm,) and Fy, (x|7rxi) can be selected us-
ing a stochastic simulation of accident courses (scenarios)
involving OAA. This accident simulation can generate
samples of action characteristics and frequencies of OAA.
The cdfs Fy, (x|, ) and Fp (p,|m,) can be fitted to
the generated samples. The accident simulation can be
used for an uncertainty propagation and relate probabi-
listic models of the physical phenomena preceding OA4A4
to cdfs Fp, (pg|m,) and Fy, (x|71:xi). Such propagation
should supplement a usual propagation of uncertainties
through logical models of man-made accidents (event
trees, fault trees).

3.2.2. Procedure of accident simulation

The uncertainty propagation via the accident simu-
lation is visualised by Fig 2. The accident is represented
by an event tree path £, E\, ..., E, _;in which £ is an
initiating event, E, _; is the event O44, and m—1 is
the number of branching points. A “loop-in-loop” simu-
lation procedure can be applied to the propagation
[22, 23]. An application of the two loops stems from the
necessity to distinguish between the aleatory and
epistemic uncertainties expressed by the model sets

&y ={Fp (po|mp). Fo(zo|mo). Fiz, (|7 7,) }

and

By = {my (zx|mp). Fy, (mpmp ) (k=12,...m)} .

Elements of the model set E; describe the initiat-
ing event E, (Fig 2): Fp (po|mp)) is the cdf of the rv
P, which is used to model the epistemic uncertainty in
the frequency (annual probability, probability per year
of operation, etc) p, of Ey; Fy(zg|m) is the cdf of the
random vector Z, used to model the aleatory uncertainty
in characteristics of E; Fz (7 |7 m,) is the cdf of the
random vector IT; which is used to model the epistemic
uncertainty in vector 7 ; Tp,» 7o and Ty, are the
parameter vectors of cdfs FPO (), Fp(-), and FHO “),
respectively.

The model set E, describes the events succeeding
the initiating event, £, (k = 1, 2, ... , m—1) (Fig 2).
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Fig 2. “Loop-in-loop” procedure used for an accident simulation: 1 — initiating event, 2 — branching points of an event tree
path, 3 — termination of the jth simulation when OA4 does not take place, 4 — mathematical model yielding action character-

istics, 5 — results of the jth simulation in case of OA4

The model my (z;|m;) describes the physical phenom-
enon represented by the event £, where z; is the input
vector expressing known information; 7z; is the vector
of those model parameters which are considered uncer-
tain in an epistemic sense. The model my (z;|7m;) is a
vector-function defined as

’ ”
mlk(zk|7tk,7r,7t T ,)
my (2 |7) =| moy (zg |7y .7’ 7”0 |,

where 7, 7', 7", n"”,... are those model parameters
which can be considered either certain or uncertain in an
aleatory sense. A mathematical structure of the compo-
nents  my (+), mor (), ... is purely deterministic if
n,n’,n”, n"”,... are considered certain or, alternatively,
contains probabilistic models which express aleatory
uncertainties in 7, 7°, 7”7, 7””,.... In the latter case the
output variables my; (), my; (+), ... will be uncertain in
the aleatory sense.

The cdfs Fp (pol7p,) and Fr, (mlmp,) (k= 0,
1,2,...,n)in the sets E; and E, can represent prior
or posterior probability distributions (pds) depending on
the availability of hard data. Assigning and updating these
pds are discussed in Sec 5. The role of the models
my (z;|m;) in the accident simulation is twofold:

() models my (z;|7;) are used for the accident simula-
tion; output components of each model my (z;|m;)
(k <ny) serve as input values of the subsequent models
my (2 41| p41) 5 - my, (2, |7, ) ; the model applied
at the end, m,, (z,, |7rnk ), yields action characteristics,
see Fig 2; some models can be time histories of physical
phenomena and this can be denoted by adding a time
variable t to model arguments, namely, m(z;,7|7;);

(b) each of the models m(z;|7;) (k<ny) is also used

to decide which of the alternative accident courses rep-
resented by the kth event tree branching takes place in
the jth repetition of the inner loop, see Fig 2.

The rule used to decide at the kth branching repre-
sented by the complementary events £, and E; can be
expressed as

L 1 if my(zy |7y ) € A (event Ey occurs)
2kilr) = . =
(ki) 0 if my(zy |7y ) € A (event Ey occurs) ®
where A is the output domain defining an occurrence
of £ if the ve.ctor m (2 |7;) computed in the jth rep-
etition of the inner loop and the /th repetition of the outer
loop belongs to A; componentwise and a non-occur-
rence otherwise.

The jth repetition of the inner loop is terminated
and a new one started as soon as the current binary func-
tion 1z |my) takes zero value (Fig 2). The result

| J Ill(zk i|7) means that OA4 takes place in the jth
repetition of the inner loop and /th repetition of the outer
loop. The n, repetitions of the inner loop yield a simu-
lated sample of action characteristics, xy;, X7, ... ,

x, ;, and a relative frequency of OAA4 given by the ratio

nl >
ng/ng . The subscript / in the above notations means that
the sample and the relative frequency are related to the
Ith repetition of the outer loop.

The outer loop is used for sampling the parameter
values p, and 7y from pds represented by cdfs
Fpo(polﬂpo) and Fnk(ﬂ'klﬂ'nk) (k =0,1,2, .., nk).
On sampling the parameter values p,, and 7y (k= 0, 1,
2, ..., ny), they serve as input values of the inner loop,
and this is repeated n, times in each repetition of the
outer loop. The latter is repeated n, times.
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Fig 3. One-dimensional visualisation of the heuristic pro-
cedure for selecting the family of distribution functions
Fyx. (x|m,.) (i=1,2,...,n) in the case n=4
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Consequently, an application of the “loop-in-loop” pro-
cedure requires simulating the accident n,Xng times and
yields a sample of estimates of the frequency P , namely,

fn= Por——(l—l 2,..,np)

and n, samples of action characteristics x; (/ =1, 2, ...,
np), each defined as

Xl =(le,j=1,2,...,nal) .

These samples can serve as initial statistical mate-
rial for fitting cdfs Fp (p,|m,) and Fy, (x|m,,) as well
as assigning the weights p, (i = 1, 2, ... , n).

3.2.3. Fitting probability distributions

Fitting cdf Fp, (pyl|m,) to the sample fr, (I =1, 2,

s ”p) is a trivial statistical problem. It can be solved

by standard procedures of a univariate statistical analy-
sis.

In contrast to cdf Fp (p, |, ) . the selection of the
family of cdfs Fy, (x|m, ) (i=1,2,...,n) and assign-
ment of the Welghts p; to these cdfs is not straightfor-
ward. Any formal and ready-to-use statistical recipes to
do this seem not to be available. Because of this a heu-
ristic procedure to the choice of the family of the prob-
ability distributions is proposed in remainder of this sub-
section.

The main idea of the proposed procedure consists
in a choice of the cdfs Fy, (x|77: .) by fitting them to
respective clusters of samples X; (1 =1,2,...,n), each
obtained by grouping the samples X; and deﬁned as X; =
(x;,1e1;), where [, is the subset of values of the index
[ denoting numbers of all samples which belong to the
ith cluster. Simulated values of the vector X (compo-
nents of the vectors X; ) are pooled together in the clus-
ters x; (i =1, 2, ..., n) in such a way that each of the

samples x; belongs only to one cluster, that is,
LN, =@ (i#k and i, k=1, 2, ... , n). The sample
Xx; is associated with the cluster, the number which, i, is
equal to

1< j<n

i= argmin[ S| £ (x,) - 0.5(F, j(x.) = Fy j—1(x.)) |},
c=1

with ﬁqo(xc)=0 and I}qn(xc)=1, where x_ (¢ = 1, 2,
, n,) is a set of points dividing ranges of conAnponents
of the vector X into disjoint class intervals, F;(x.) is
the cumulative frequency at the point x, (value of em-
pirical distribution function at x,) computed for the
I:"q j(x.) and
of values of cumulative relative frequency at the point x,
defining the jth cluster for this point.
Pooling the samples x; (/=1,2, ..., np) is based
on the sets of cumulative relative frequencies

sample x; (Fig 3); I:"q’j_l(xc) is the pair

Fy(x), By (50), ooy B (30D, e Figy (3,)

Fya (), Fryp(x2)s o Fya (30D, Fgn (3, 5

Ey et () Fy ey (0)s oo By ey (500 By g (3,

Each set is used to separate two adjacent clusters. In the
above sets, the values ﬁqj(x ) G=1,2,

empirical quantlles with levels q; computed for the sample
Fl(xc) (I = ., n) (Fig 3). The probabilistic

weights p, p,, ... , gn— are

preset in such a way that 2;;1 pi=l,q,<q,<..<

dn-1,and q; =Y. p; G=1,2, ...,n—1).

The probabilities pi can be specified relatively free
according to how we want to group the samples x; . Thus
the distribution of epistemic uncertainty in probabilistic
models of the vector X, that is, the set of probabilities
Dy» Py --- » P, 18 specified in the proposed procedure in
advance.

,n—1)are

, p, and levels q,, g,, ...

4. Illustrative case study

The simulation-based procedure suggested in Sec 3
for selecting the action model H x (x) can now be illus-
trated by a case study. The consideration of Sec 3 started
with an example of accident involving AA generated by
vapour cloud explosion (UVCE, Fig 1). A stochastic
simulation of such an accident is complicated and com-
plex. Moreover, a description of this simulation in suffi-
cient detail is too cumbersome to be presented in this
paper. Therefore the case study given below will analyse
a less complicated accident which, nevertheless, can also
result in inducing explosive actions.
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Fig 4. Situation of an accident (explosion) on road in the jth inner loop and /th outer loop repetition

4.1. Problem: selection of model for an explosive ac-
tion generated by a vehicular collision

The action model Hy(x) defined by Eq (1) is to
be selected to describe peak positive overpressure x, and
positive impulse x, of an incident blast wave which can
be generated by an accidental explosion. The explosion
can occur on a two lane road (600 m x 30 m road sec-
tion) and can be triggered off by a collision of vehicle
carrying explosive materials (vehicle A) with an oppo-
site vehicle (vehicle B) (Fig 4). The incident overpres-
sure and incident impulse are to be estimated for the
point “4” on the facade of the hypothetical structural
system built in the vicinity of the road section.

A logical model (event tree) of the accident is shown
in Fig 5. The collision is described by the probabilistic
model H(zg|my,pp) . The event tree contains two
branching points (alternatives in accident courses), and
the models my(z;|m;) and my(zy|m,) are used to
choose between the alternatives during the accident simu-
lation. The model ms(z3|73) is used to relate the over-
pressure x, and impulse x, to physical values determin-
ing these two characteristics of the incident blast wave.
A detailed description of all four models is given in the
subsequent section 4.2.

Initiating event
(collision of vehicles A and B)

Hy (27 4, P5)

g7 . i - | 1| I'"l(zlhtl)'
= {Po, I (zplm )} - (event?)
“1

Energy of collision exceeds tolerable value
incapable to trigger explosion in vehicle A

yes (event [ )

4.2. Models used to the simulation of the stochastic
simulation of the accident

4.2.1. Collision of vehicles

The model H(zg|my.py) describes the initiating
event E (collision of vehicles A and B, Fig 5).
H(zplmgy, po) 1s used to express an aleatory uncertainty
related to a likelihood of the initiating event E; (colli-
sion) and its characteristics. The model has the structure

Hy(zg|7o, po) =1{Po. Fo(zolmo)}
where p, is the collision frequency (annual probability)
(year™); Fy(zglmg) is the cdf defined as the product
[, F,, (zol7,) » in which Zig i =1, 2, ..., 7) are vs
used to model the aleatory uncertainty in collision char-
acteristics (components of zg); F7, (z,0|7 ;) are cdfs of
Z,;s with the parameter vectors 7;, .

The arguments of the model
charactertistics) are represented by the vector zg= (z

(collision
10°
Zygpp +ee s z7O)T, where z,, and z,, is the collision coordi-
nates (m), Fig 4; Zyo is the speed of vehicle A at a colli-
sion moment (m/s); z,, is the speed of vehicle B at the
collision moment (m/s); z,, is the mass of vehicle B (kg);
Z, 1s the dimensionless variable expressing a mechanical
behaviour of vehicles A and B at the collision

Explosion of charge in vehicle A
(OAA)

yes (event £,) — x = m;, (z;ln _1)
3
i m, (51|ﬁ 25

no (event Ez)

Fig 5. Event tree diagram with a path leading to an explosion in consequence of a vehicular collision; mathematical
models related to events comprising the path are shown in rectangles
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Table 1. Random variables expressing stochastic uncertainty in characteristics of the initiating event £, (vehicular collision)

Variable Distribution Vector of distribution parameters

Zy U(0, 600)” Mo = (0 m, 600 m)” (a uniform distribution over the range 0 to
600 m)

Z U(0, 30) o= (0 m, 30 m)”

Zs N(13,9; 17,4) o = (13,9 m/s, 17,4 (m/s)*)” (a normal distribution with the mean of
13,9 m/s and the variance of 17,4 (m/s)?)

Zso N(22,2;30,9) o = (22,2 m/s, 30,9 (m/s)?)”

Zs L(7,8044; 0,19804)° 5o = (7,8044, 0,19804)" (a lognormal distribution with the mean of
2500 kg and the standard deviation of 500 kg)

Zeo Be(7 60, ﬂzqéo)d) M50 = (71,60, 71:2,60)T (a beta distribution with the uncertain mean 7, 4
and variance 7 6 related to its alpha and beta parameters by the respective
expressions 77 6o 71 60( 1721 ,60)/ 2,60—1) and 7 0( 1—77«'1,60)2/ 6071 ,60—1); the
epistemic probability distributions of 7 49 and 7, ¢, are specified in Table 2

Zy Discrete the vector of distribution parameters, 7, is not used in the explicit
form; Z; is a discrete rv distributed over the values 100 kg, 200 kg and
500kg with the probability mass function given by the set
{P(Z7=100)=0,4, P(Z;o=200)= 0,3, P(Z;,=500)= 0,3}

9 U — uniform distribution; © N — normal distribution; © L — lognormal distribution; 9 Be — beta distribution

0=z, =1;if z,=0, the vehicles are considered per-
fectly plastic bodies; if z,, =1, the vehicles are consid-
ered perfectly elastic bodies); z,, is the mass of the
explosive in vehicle A (charge mass) (kg). Probability
distributions expressing the stochastic uncertainty in com-
ponents of z, are specified in Table 1.

The uncertainty in the collision frequency p, is ex-
pressed by a rv. P, having a gamma distribution with
cdf Fp (pol7 ) and the parameter vector (alpha and
beta) 7, = (2, 10 year), that is, Fy ~ G(2,10) (the mean,
mode and standard deviation of P, are equal to 0,2
year!, 0,1 year’!, and 0,1414 year™!, respectively). Un-
certainty in components of 74 is expressed by the ran-
dom vector Ilg, = (H1’60,H2,60)T with cdf.

2
FHso (”(’Olﬂnso) = Hi=1FI_[[,60 (nisﬁ()l””i.ao) .

Epistemic probability distributions of the rvs IT; ¢y and
IT, g are specified in Table 2.

Components of z, serve as input variables of the
subsequent models my(z; |7m;) and ms3(z3|7®3) . The rvs
Z,(i=1,2,...,7) are assumed to be independent ones
only for simplicity sake. The pds of Z,s were chosen
hypothetically. Assigning and updating the pds repre-
sented by cdfs Fp (p0|71',,0) and Fnﬁo(nﬁomnﬁo) are
considered in Table 6. A simulation of the jth accident
course starts with sampling the value Zy from the pd
represented by cdf Fy(zo|mo;) , where @y, is the value
of 7y sampled in the Ith repetition of the outer loop.

4.2.2. Exceedance of the tolerable value of collision
energy

The model my(z;|m;) is related to a possible
exceedance of the tolerable value of collision energy
which can lead to an explosion in vehicle A. The phe-
nomenon of exceedance is represented by the random

event E| (Fig 5). The model m(z;|m;) is used to de-
cide whether the collision energy is sufficient to damage
a container with the explosive charge and trigger off an
explosion in vehicle A as well as to compute a standoff
of the explosion (radial distance from explosion centre
to location of the structure under analysis).

Model input is represented by the vector
=2 - ,z71)T, where z|, and z,, are the colli-
sion coordinates (m); z;, and z,, are the velocities of
vehicles A and B at the collision moment (m/s); z;, and
z¢, are the masses of vehicles A and B (kg); z,, is the
variable expressing the mechanical behaviour of vehicles
A and B at the collision. Values of arguments of the
preceding model H(zg|my,pgy) are assigned to compo-
nents of z, as follows: z;=2z0(=1,2,3,4);
251 =6000kg + 2705 24, = z505 27, = Z4,- Here the value
6000 kg is the mass of vehicle A without the load of
explosive.

Model output is given by the vector m, = (m,,, m,,,
m31)T, where m,, is the standoff (m); m,, is the collision
energy (kg m?/s?); mj, is the difference between the col-
lision energy and a “threshold” energy value which can
be tolerated by vehicle A without leading to an explo-
sion (kg m?/s?).

The structure of m;(z;|m;) is as follows:

(211 = 200)° + (200 = 2,,)?
751261 (1=2z71)
2(z51+ 261) (z31+ Z41)_2
my (21 |m) = my(z)—7"sFrpr (| my)

my1(zy) =

my(zy | m)={my(z)) =

where 77 is the "threshold" energy value (kg m?/s?);
F,.(’|m,) is the cdf of a rv. IT" used to model an
aleatory uncertainty in z’. It is assumed that
(H'x10_5)~N(77:11,77:21), where my; and 7, are the
mean and variance 7, of a normal pd, respectively.
Components of the parameter vector
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Table 2. Epistemic probability distributions of the parameters present in the models used to the stochastic simulation of the
accident involving an explosion on road in consequence of vehicular collision

Parameter | Distribution | Vector of distribution parameters

Model H,(z,|z,,p,)

I, 69 Be(25, 50) 7, = (25, SO)T (a beta distribution with alpha = 25, beta = 50, and
mean = 0,333, the parent variable Zg, is dimensionless quantity)

I 4 Ex(140)” @, = (140) (an exponential distribution with the mean of 0,00714;
the parent variable Zy, is dimensionless quantity)

Model m,(z, | ;)

I1,, N(6,1) m, = (6 kgm’/s?, 1 (kg m’/s*))"

1) G(20, 19)” ., = (20, 19 (kg m’/s’)’)" (the mean, mode and standard deviation
of the uncertain precision IT,' are equal to 1,05 (kg m%/s?) 2,
1(kg m*/s®)? and 0,235 (kg m?/s°) %, respectively)

Model m,(z, |x,)

I, N(700x10%; 4,9%10%) . = (700x10° kg m’/s*; 4,9x10° (kg m’/s%)")"

IT, N(7x10% 12,25x10°% 7., = (7x10" kg m*/s%; 12,25x10° (kg m*/s*)*)"

Model m,(z,|x,)

T} N(-0,125; 1,56x107%) m, = (-0,125;1,56x10™)" (the parent variable 11”7 s
dimensiénless quantity)

IT; G(15; 0,6) m, = (15; 0,6)" (the parent variable IT” is dimensionless quantity)

ITy; N(-0,159; 2,53x107%) m.=  (=0,159;2,53x107")" (the parent variable I1” s
dimensibnless quantity)

Iy N(15; 0,6) z,, = (5; 0,6)" (the parent variable IT” is dimensionless quantity)

ITs; NO0,1; 1,0x107% .= (0,1 MPa mvkg'”; 1,0x107* (MPa m/kg'?)")"

I N(0,43; 1,6x107°) 7, = (0,43 MPa m’/kg”’; 1,6x10°(MPa m’/kg™*)*)"

I N(1,4;2,25%107%) 7, = (1,4 MPa m’/kg; 2,25x107°(MPa m’/kg)’)"

ITy; N(6,3; 0,36) 7, = (6,3 MPa s/(m kg™?); 0,36 (MPa s/(m kg™*))*)"

“ Ex — exponential distribution; ” G — gamma distribution

= (71-11,71:21)T are considered to be uncertain in the
epistemic sense. Epistemic uncertainty in components of
m; is expressed by the random vector ITy = (ITy1,1T7)"
with cdf

2
Fp, (71"1|”171 ) = H,-zl Fr, (ﬂ'nl”nn) .

Epistemic probability distributions of rvs I111 and IT,;
are specified in Table 2.

The model component m3;(z;|7%;) is used to de-
cide which of the events E, or E, will occur:

1 if m3y(zy jlmy) =7 20 (E; occurs)
1(zy jlmy) = 0 if ma( s = ;
31(21 Iy ) — 75 <0 (E; occurs)
where z;; and ﬂ; are the values of z; and 7’, respec-
tively, used in the jth repetition of the inner loop. The
value zy; is obtained by sampling from the preceding
model H(zglmg,po) - The vector 7y is a value of pa-
rameter vector 7; sampled from the cdf Fp-(n”|7y;)

in the Ith repetition of the outer loop.

The main assumption underpinning the model
my(zy|m) is that only a frontal collision of vehicles A
and B is possible. This assumption is made for the sake
of simplicity.The expression of the frontal collision en-
ergy, my(z;), was adopted from [24]. The normal pd
of IT’ was chosen hypothetically. Assigning and updat-
ing the pd represented by cdf Fy (7|, ) are consid-
ered in Table 6.

4.2.3. Explosion of the charge in vehicle

An occurrence of explosion of the charge in vehicle
A is represented by the random event E, (Fig 5). The
model my(z,|m,) serves for a simulation of the occur-
rence or non-occurrence of £,. In particular, the model
my(25|,) is used to decide whether the collision en-
ergy when exceeds the safe “threshold” value will cause
the explosion in vehicle A.

Model input is represented by the collision energy
z, (kg m%/s?); values of z, are assigned by z, = m,(z).
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Model output is an auxiliary dimensionless variable m,
used in the decision rule related to the present model.
The structure of the model is

mz(zz|”2):={m2 = F];l(u|1,77:), T =Fy(z,|m,) }s

where where F,;'(u|l, ) is the inverse cdf of a bino-
mial pd with parameters 1 and 7 and argument ©€]0,1[;
F,,(z,|m,) is the fragility function (cdf of a normal pd
with the parameter vector 7, ); the parameter 7 models
an explosion probability, and the output variable m, mod-
els an occurrence or non-occurrence of the explosion;
m, can take on values 1 (event £, occurs) or 0 (event
E, occurs) (Fig 5). The inverse cdf F;'(u|l,m) is used
to suggest that the values m,(z, j|7r2,) of the variable
m, are simulated by applying the inverse transform
method (eg, [25]).

Components of the parameter vector 7, are con-
sidered to be uncertain in the epistemic sense. Epistemic
uncertainty in components of 7, is expressed by the

random vector IT, = (ITqy,I15,)! with cdf

2
FHz (”2|”172 )= Hi:l FHiz (”i2|nﬂiz )

Epistemic probability distributions of rvs I1, and I1,,
are specified in Table 2.

The value mjy(z;|7y) is used to decide which of
the events £, or E, will occur:

L if By (|1, Fy (z9m;)) =1 (E; occurs)

1(zy j|7y)= e el = ,
0 if F12 (u]| 1,F22 (szlﬂz[ ))=0 (E2 OCClll'S)

where Zy; is the collision energy value computed in the
Jjth repetition of the inner loop; u. is the value of u
sampled from U(0, 1) in the jth repetition; and 7,; is
the value the parameter vector 7, sampled in the /th
repetition of the outer loop from the pd represented by
cdf Frp, (7ol p,) -

The model my(z5|7,) is underpinned by the as-
sumption that an exceedance of the "threshold" energy
value used in the model my(z;|m;) does not necessarily
cause an explosion of the charge in vehicle A. However,
the probability of such an explosion, 7, is the higher,
the larger is the collision energy z,. The cdf of a normal
pd was chosen as the fragility function F,,(z,|®,) hy-
pothetically. Assigning and updating the pd represented
by cdf Fp, (®,|my,) are considered in Table 6.

4.2.4. Predicting characteristics of the incident blast
wave

The model m5(z3|m3) describes the incident blast
wave approaching the structural system under analysis.
This model is used to relate the charge mass and stand-
off to characteristics of incident blast wave (peak posi-
tive overpressure and positive impulse represented by the
vector x).

Model input is represented by the vector
23 = (213, 123)T, where z;3 and z,3 are the charge mass
(kg) and standoff (m), respectively (Fig 4). Values of
713 and zp3 are assigned by the expressions z33=2z7g
and zp3=my(z;). Model output is given by the vector
ms = (m13,m23)T, where m,, is the peak positive over-
pressure (MPa); m,, is the positive impulse (MPa s/m?).
In terms of the notation used in Sec 3.2, x; =my3 and
xy =my3 (Fig 2).

The model m5(z3|m3) has the following structure:

” ’
_[mz =n"my3(z3|ms3, 763, 7073)
my3(z3|m3) = r i7" ’
inrr”(Inz” |73, 753)
_ V.4 4
my3 =7 mzs(z3|”83)}
9

m Z2 T =
23(z3]73) {Flnn”’(lnﬂmmsyﬂn)

with
a8, @, m
4
mi3(23|7s3, 763, 7073) = 53—+ M3 —5—+ 73—
293 223 223
%
4
m)3(23|7mg3) =783 ——>
23
where 7”7 and 7" are the dimensionless adjustment fac-

tors (relative overpressure and relative impulse of the
explosive in vehicle A compared to an equivalent weight
of TNT explosive); m/3(2ls3,Te3.73) and myy(z)ss)
are the models relating components of z3 to the over-
pressure and impulse of a TNT explosion, respectively;
F,p-(nn”|7 ,7,,) and F, ;.(nx”|m,,,7,,) are the
cdfs expressing an aleatory uncertainty in logarithms of
the factors 7” and z””. The rvs I1” and I1” are
used to model the aleatory uncertainty: InIT” ~
N(m3,7m»3) (a normal distribution with an uncertain
mean 7j3 and variance 7y3); InI1” ~ N(733,743) (a
normal distribution with an uncertain mean 733 and vari-
ance 743 ).

Components of the parameter vector 73 (distribu-
tion parameters 73, 7p3, 733, 743 and regression
parameters 7s3, T3, 773, Tg3) are considered to be
uncertain in the epistemic sense. Epistemic uncertainty
in components of 73 is expressed by the random vector
H3 = (H13,H23,...,H83)T Wlth Cdf

8
FH3(”3|”H3):Hi:1Fn,-3(7[i3|”l'l,-3)'

Epistemic probability distributions of components of the
vector II5 are specified in Table 2.

The models m/5(z,)7s3,73,773) and my;(z5)rgy) were
adopted from [26]. The lognormal pds of the random
adjustment factors IT” and IT” were chosen hypotheti-
cally. Deterministic values of these factors suitable to an
adjustment of the TNT models m;(z;|Ts;,74;,7,;) and
my3(z3)g;) can be found, eg, in [27]. Assigning and up-
dating the p.d. represented by cdf Fy; (7,|m ;) are con-
sidered in Table 6.
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Distribution: gama(1,66, 15,2 year)
Kolmogorov-Smirnov d = 0,0403, p = 0,897
Chi-Square test = 1,77, df = 3 (adjusted), p = 0,621
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Fig 6. Fitting a gamma distribution used to model the
epistemic uncertainty in the explosion frequency p,

4.3. Fitting a probabilistic model for the explosive
action

An accident simulation with n_= 200 and n, = 1000
generated a sample of frequencies, pyn,/ng (I =1, 2,
..., 200), and samples of action characteristics, x; (/=1,
2, ..., 200). Descriptive measures of the samples 7,
(I=1,2,..,200) and pony /ng (I =1, 2, ..., 200)
are given in Table 3. A gamma distribution with the
parameter vector 7, = (1,66; 15,2 year) can be fitted to
the sample pgng /ng (I =1, 2, ..., 200) as cdf
Fp (p,|m,) (Fig 6). This gamma distribution expresses
the epistemic uncertainty in the explosion frequency p,.

0,6

=
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o
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sformed positive impulse (MPa s/m2)
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fran
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Transformed peak positive overpressure (MPa)

Fig 7. Scatter diagram containing transformed values of
peak positive overpressure Yy and positive impulse Yy

drawn for the second cluster y)

The cdfs Fy (x|m, ) (i =1, 2, 3) can be fitted by
applying the heuristic prlocedure suggested in Sec 3.2.3.
This procedure requires to preset number n and probabi-
listic weights p, (i = 1, 2, ... , n) in advance. In the
present case study, it is assumed that » = 3 and p, =
py= 0,25, p, = 0,5. With these values, the samples x;
(I=1,2, ..., 200) were grouped in three clusters x;
(i=1, 2, 3) with descriptive measures given in Table 3.

A transformation of the clusters x; (i = 1, 2, 3) is
necessary to allow fitting a widely known bivariate pd.
For instance, the intuitively chosen transformations given

Table 3. Descriptive measures of samples related to the accidental explosion on road

Descriptive measures of samples consisting of the simulated values of number of explosions, 7, and estimates of annual
probability of explosion, p,n,/n,*

Descriptive measure

Sample n, (I=1, ..., 200)

Sample p,n,/n, (I=1,...,200)

Mean 0,109 year '
Coefficient of variation (%) 26,8 % 78,5 %
Minimum 0,228x107* year '
Maximum 0,513 year™'
Skewness -0,473 1,70
Kurtosis —-0,131 4,18
Descriptive measures of clusters x; (i =1, 2, 3)
No of Weight Size of Mean of cluster ~ Coef of var (%) Stnd skewness of Stnd kurtosis of
cluster i Di cluster n,; cluster © cluster®
Descriptive measures of simulated samples of the initial overpressure X; (MPa)
1 0,25 31324 2,78x107 44,8 61,1 17,0
2 0,5 57 039 2,39x107 41,9 277 32,9
3 0,25 21630 1,96x107 423 57,2 26,4
Descriptive measures of simulated samples of the initial impulse X, (MPa s/m°)
1 0,25 31324 0,912 59,4 90,5 47,8
2 0,5 57 039 0,850 57,1 -337 28,3
3 0,25 21630 0,717 57,0 70,3 28,9
Coefficients of correlation between simulated samples of initial overpressure and impulse
1 0,25 31324 0,726
2 0,5 57 039 0,759
3 0,25 21630 0,767

Y o = 1000
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in Table 4 yield another three clusters y; (i = 1, 2, 3).
A scatter diagram of the second cluster y’ is shown in
Fig 7. The size of the second cluster, 7 ,, (number of
points in the diagram given in Fig 7) is equal to 57 039
(Table 3). Scatter diagrams of the remaining two clus-
ters are similar. Descriptive measures of the clusters y;
(i =1, 2, 3) suggest that the pairs of rvs

.Y =
= (sign(lg(-1gX,) 0 %.) | 1g(-1gX )=t Ty, 1PV,
sign(lg(—1gX 5) =01 X;1.) [1g(=1gX ) = 0t %oy, P21

i=1,2,3)
can be considered to be approximately normally distrib-
uted, correlated rvs. A bivariate normal distribution can
be fitted to each of the clusters y; (i = 1, 2, 3). Param-
eters of this distribution can be derived from descriptive
measures given in Table 4. In such a case the general
expression of the action model Hy (x) can be reformu-

lated for the vectors ¥; = (Yll-,Yzl-)T (i=1,2,3), that is,

for the transformed peak positive overpressure and trans-
formed positive impulse and represented as

Hy (3):={Fp, (palmty). (Fy, (3| y . 2 ). 0.25),

(FY2 (y|.u'y2’2y2 )7 075)9(FY3 (y|.u'y3’2y3 )’ 0’25)}5 (2)

where F, (p,|7,) is cdf of the gamma distribution with
the parameter vector =z, =(1,66; 15,2 year);
Fy (ylu,.Z,) (i =1, 2, 3) are cdfs of a bivariate nor-
mal distribution with the mean vectors U, and covari-
ance matrices X, given in Table 5.

The action model H, (y)defined by Eq2 can be
considered to be a result of uncertainty propagation. The
“lower-level” aleatory uncertainties in characteristics of
the initiating event £, are transformed into the “higher-
level” aleatory uncertainties in the peak positive over-
pressure x, and positive impulse x,. The “lower-level”
uncertainties are quantified by c.d.f. F,(z,|m,), whereas
the “higher-level” uncertainties are expressed by the fam-
ily of cdfs Fy (ylu,.2,) (i =1, 2, 3). At the same
time, the “lower-level” epistemic uncertainties related to
the models H,(z,|m,,p,), m,(z,|7,), and m,(z,|7,)
and m,(z,|m,) are transformed into the “higher-level”
distributions of epistemic uncertainty which appear in the
expression of H, (y), namely, a continuous distribution

Table 4. Descriptive measures of the clusters y, obtained by transforming the initial clusters x| (i=1,2,3)

Descriptive measure/characteristic of cluster

No of T T /B, Mean of Std dev of Stnd skewof Stnd kurtosis of
cluster i kiak kL kT cluster cluster” cluster” cluster”
Descriptive measures of transformed samples of the initial overpressure (MPa), k = 1
1 0,414 — 1,011/ 1,12 -3,15x107 0,0231 1,084 0,0908
0,424 — 0,984 /1,165 4,00x107° 0,0177 0,119 0,378
3 0,437 — 0,983 /1,159 4,46x107° 0,0175 -0,874 —0,158
Descriptive measures of transformed samples of the initial impulse (MPa s/m?) , k = 2
1 — 0,111 0,8/1,22 -1,67x107 0,197 0,348 —-0,0763
— -0,137 0,828 /1,315 -1,52x1072 0,170 —-1,188 0,144
3 — -0,210 0,81/1,34 -2,63x1072 0,163 0,562 0,247
Coefficients of correlation between transformed samples of overpressure and impulse
1 -0,731
2 -0,770
3 - 0,796

? The clusters y; (i=1,2,3) are obtained from clusters x; (i =1, 2, 3) by the transformations

. e p— ﬁli . —_— p— ﬁ?i
Y = 51gn(lg(—lg xlj) - alixliZL) | lg(-lg Xij )— alixli2L| and Y2 = 51gn(lg Xoj ™ azixzm) | lg Xy; =0 Xy

with X, =n/ Zj:llgxkij and X,,, =n; Ej:llg(—lgxkij), where x,; is the simulated value of the kth action characteristic

treated as the jth element of the ith cluster; 1g denotes the common logarithm
Y «Stnd”= Standardised, “Std dev”” = Standard deviation, “skew”= skewness

Table 5. Parameters of cdfs F, (y|u,,Z,) (i=1,2,3) present in the expression of the action model H,(y) (Eq(2)) 2

. . 1 p),

i u, X, =diag(o, )[p. q/ )dlag(ay’ )P
1 (= 3,15x107> MPa, — 1,67x102 MPa s/m?)” o, =(0,0231 MPa, 0,197 MPa s/m’), p; =— 0,731
2 (4,00x107> MPa, — 1,52x107> MPa s/m?)” o, =(0,0177 MPa, 0,170 MPa s/m’), p, =— 0,770

3 (4,46x107> MPa, — 2,63x107> MPa s/m%)”

o, =(0,0175 MPa, 0,163 MPa s/m’), p; =— 0,796

% Values of the parameters were derived from the descriptive measures given in Table 3.

® Expression diag(a”) denotes a diagonal matrix of order 2 with diagonal elements grouped together in the vector a”
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represented by cdf F, (p,|7,) and a discrete distribu-
tion represented by the probabilistic weights
p,=r;=025,p,=0,5.

The case study described in this section is illustra-
tive and input information represented by the probability
distributions related to the models H,(z,|7,.p,) ,
m(z,|m,), and m,(z,|m,) is hypothetical. In actual
practice the selection of H, (y) would require a collec-
tion of available hard data and elicitation of expert judge-
ments. On the other hand, the present case study may be
considered to be a practical intermediate result. It pro-
vides a list of physical variables and model parameters
for which data and judgements are to be obtained in order
to select probabilistic models used as input of the model
selection problem. The collection of real world informa-
tion was beyond the scope of this case study.

5. Expert judgement in Bayesian predicting acciden-
tal actions

5.1. Need for expert judgment

A need for expert judgement, which can be ex-
pressed mathematically in CBA framework as “lower-
level” (input) information suitable for quantifying uncer-
tainties related to AAs, arises from the fact that these
actions are typically rare events backed by scarce his-
torical data. The action model H, (x) defined by Eq (1)
reflects uncertainties expressed by the set of “lower-level”
models =, and =, described in Sec 3.2.2. Let, for brev-
ity, elements of these two sets group into one set B
defined as

E= {FPO (po |”P0 ), Fy (20|70,
mk (Zk |”k)9 (k:1’2""’ nk)
Fp (|7, ) (k=0,12,...n,)} .

Given the model set =, the selection of Hy(x)
amounts to an uncertainty propagation by means of the
simulation-based procedure proposed in Sec 3.2. The
main technical requirement for an application of this
procedure is a possibility to sample (generate) sets of
values {Py>20;»%, (k=0,1,2,...,n,)} from corresponding
pds represented by elements of E. In most cases this
requirement is easy to meet (eg, the book [25] for tech-
niques of random variate generation).

According to the model classification used in QRA,
models m,(z,|7,) (k=1,2, ..., n,) can be considered
to be process models, frequency p, and cdfs
Hy (2|, p) » Fy(zolm,) and F, (7, |”Hk) (k=0,1,
2, ..., n) belong to stochastic models, and the event
tree underlying the model set E falls into the category
of decomposition models [20, 28]. The structure of =
depends mainly on the available knowledge about physi-
cal phenomena leading to OA44 (event tree path E, E|,

B E, s Fig 2). A part of this knowledge should be
the process models m,(z, |7,) (k=1,2, ..., n,) which

describe the physical phenomena and are a prerequisite
for an application of the simulation-based procedure de-
scribed in Sec 3.2. Another part of the knowledge should
be information which allows assigning and updating the
stochastic models included in E . This information may
consist of available hard data and expert judgements. In
some instances expert judgements can represent the only
source of information for specifying elements of = .

Expert judgement can be incorporated in modelling
AAs by applying organisational and mathematical meth-
ods developed in the field of QRA. These methods de-
termine choice of experts, formal elicitation of expert
opinions as well as quantification and combination of
the opinions [8, 20, 28]. It is beyond the scope of this
paper to give a detailed review of those QRA methods
which allow the use of expert judgement for specifying
elements of E. The following discussion seeks to cap-
ture only essential methods and to illustrate their appli-
cation in the context of the case study described in Sec
4. The discussion given in the reminder of Sec 5 covers
the use of expert judgement for assigning the stochastic
models (probabilities and pds) and quantifying uncertain-
ties related to the process models included in E .

5.2. Expert judgement in assigning probabilities and
probability distributions

Formal means applied in QRA to combining expert
judgement with available hard data are provided by the
Bayesian statistical theory [10, 28]. In CBA, elements of
this theory are used for updating expert opinions ex-
pressed as prior (posterior) distributions of epistemic
uncertainty when new information becomes available.
These distributions are related to input parameters of such
QRA models as event trees and fault trees. Bayesian
updating schemes can be used for combining probabili-
ties and pds subjectively assessed by experts [29].

A number of methods for constructing prior distri-
butions (priors) have been proposed in the Bayesian sta-
tistical theory, eg, [30, 31]. Certain of them can be used
for constructing prior distributions in situations where
relevant hard data are sparse or where such data are not
available and constructing priors has to be based on other
forms of information. Some effort has been directed to-
wards the use of expert judgement for determining the
likelihood function which is an integral part of Bayesian
updating schemes [29, 32, 33, 34]. Formal methods for
eliciting probabilities and pds from experts have been
extensively developed in the field of QRA [29, 35, 36].
Many practical situations covered by the above-mentioned
methods can be encountered when modelling AAs. These
methods can be applied to specifying the epistemic un-
certainty measures included in the model set = .

Constructing and updating an uncertainty distribu-
tion defined in the entire model and parameter space of
a QRA problem based on CBA is considered to be an
impracticable task [37]. A practical way out of this situ-
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ation is to assign marginal uncertainty distributions only
to some selected parameters and models as is done in
the case study described in Sec 4. The cdfs included in
the model set E quantify epistemic uncertainties only in
selected parameters which are modelled as independent
rvs As a result, distributions of epistemic uncertainty
represented by the action model (2) reflect only the un-
certainties expressed by these marginal cdfs.

Specifying the stochastic models belonging to E is
to a large degree a case-specific task. It is determined
by available knowledge (general information on the physi-
cal phenomena related to s, relevant hard data on Es,
and expert judgements) as well as procedures suitable
for assigning and updating the stochastic models of = .
Case-specific sets of such procedures can be regarded as
integral parts of individual AA modelling problems.
Table 6 contains methodological (“how-to-do” and
“where-to-find”’) descriptions of the procedures which can
be applied to assigning and updating the stochastic mod-
els used in the case study given in Sec 4.

5.3. Expert judgement in modelling physical phenomena

An incorporation of expert judgement in modelling
physical phenomena, which can escalate into OA4A4, is to
a large degree a problem that can be solved by QRA
means deve+loped for a model uncertainty analysis and
closely linked to an expert opinion use, see, for instance,
relevant bibliography in USNRC Regulatory Guide [38].
The meaning of model uncertainty and the role of expert
judgement in quantifying this uncertainty under the CBA
format are discussed by Nilsen and Aven [39].

In this paper, expert judgements related to the mod-
els m(z, |m,) are expressed by cdfs Fy (7, |my ), see
the description of the model pairs {m,(z, |7,),
Fp, (ﬂk|ﬂHk)} in Sec 3.2.2. Uncertainty in the models
m(z,|m,) is treated as parameter uncertainty. Expert
judgements represented by cdfs Fy (%, |7, ) can be
assigned and updated within the Bayesian framework
discussed in the previous section.

QRA leaves room for describing a physical phenom-
enon lying behind the event £, by a plural model

{mek(zeklﬂek)’FHek (”eklﬂﬂek)}(e = 1’ 2a ey ne; ne >1)

(a set of n, plausible process models m,(z,|z,) with
individual input and parameter vectors, z, and 7, , as
well as individual epistemic cdfs Fpn, (7, |7, ), eg,
[10]. The plural model can be used instead of the single
model {m,(z, |7, )y Frp, (7, |7 g, )} in cases when the phe-
nomenon related to £, can be described by several alter-
native models m (z, |7, ) and none of these models
can be justifiably selected over others.

A need for plural models stems from a model vali-
dation problem which is frequently encountered in QRA.
The methodology of QRA accepts using empirically in-
validated models because QRA models and QRA itself
are viewed as decision policy tools, not as tools for

determining truth [28, 42]. A validity of the plausible
models m,(z,|7,) is expressed by the experts'
(epistemic) probabilities p, that corresponding models are

correct, where 2:11 p, =1. The epistemic uncertainty

measures p, and F (%, |%; ) can be averaged out to
obtain an unconditional deterministic plural model out-
put, m (z,), or, alternatively, a cdf FMk (my|z;) ex-
pressing an aleatory uncertainty in this output:

— if the output vectors m  are deterministic, then:

Ouput of the plural vector = deterministic vector m (z, )

ne
=Y Pe ,[ Mo (Z o |7rek)dFHek (0 o1 |”Hek )
e=1 a]lﬂ'ek

—if m,s can be expressed as random vectors M, with
aleatory cdfs Fy,, (Mo | 2o o) , then:

Ouput of the plural vector = aleatory cdf F), L (my |zy)

N
=Ype [ Fu, my|ze.ma) dF, (o |7y,
e=1 allm,

where z, = (2, Zy» --- » %nk ) 1S the matrix express-
ing known information (set of n, individual input vec-
tors). Methods for building plural models as well as elic-
iting the experts' probabilities p, are discussed in [43,
44].

The above expressions of the output of plural model
are based on the so-called Apostolakis-Laskey scheme
[43] which can be used for the model uncertainty analy-
sis in CBA setting [39]. Viewed in the context of the
accident simulation described in Sec 3.2, these expres-
sions are impractical because they take the measures p,
and Fp (7 |7 m, ) out of the uncertainty propaga-
tion which yields the action model H(x). In order to
incorporate p, and Fpy (7 . |7 m,, ) in this propagation,
the model set m,,(z,.|7,) (e =1,2, ..., n) should be
integrated into the accident simulation by taking the fol-
lowing three steps: (1) a value e, of a discrete rv E with
the probability mass function P(E=e)=p, (e = 1, 2,

., n,) is generated in the jth inner loop and /th outer

loop repetition; (2) the eth model m, (7, |7, ;) is
. J . J J J

chosen to describe the physical phenomenon represented

by E;; (3) the model output m,; (z, 4|7, ) is com-

puted and used to decide whether £, occurs or does not

occur and, if occurs, to provide input values for the sub-
sequent models m (2, ,|%;0), ... . m, (z, |7, ).

A practical application of the procedure proposed
in Sec 3.2 can be complicated by the fact that math-
ematical models, which embody the state-of-knowledge
about the physical phenomena related to the events E,
(k=1, 2, ..., n~1) and of which the models
m,(z,|7,) can be composed, are typically deterministic
and imperfect (not error-free). This can require to supple-
ment deterministic constituents m,, (2, |7,), m,, (2, |7,),
... of the models m ,(z, |m,) with subjective uncertainty
distributions which could allow to apply these models in
the Bayesian framework. Candidate approaches to such
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Table 6. Survey of literature on assigning and updating the epistemic uncertainty distributions used in the case study (Sec 4.2)

Unobservable parameter(s): components of 7, Parent model(s): H,(z,|7,,p,)

Measure(s) of epistemic uncertainty: F, (p,|7,)

Form of evidence: £ = {r collisions in the time interval [0, 7]}
Updating procedure: for the alpha parameter, 77:1'% =TT, + r ; for the beta parameter, 7, = Tp, +1

Prior constructing procedure: constructing the prior distribution for 7, is considered, eg [31]

Unobservable parameter(s): components of 7 Parent model(s): cdf F, (z,|7,)

“60

Measure(s) of epistemic uncertainty: F; (7|7, )

Form of evidence: E = {zq;, i= 1, 2, ...}, where z¢,; = value of Zy, obtained from the ith experiment (collision)
Updating procedure: posterior distributions in closed form are not available; the Bayes formula for density updating
must be evaluated numerically

Prior constructing procedure: constraints on the distribution moments, 0<7; 69<1 and 0<7 6,<0,25, allow to apply

60

the maximum-entropy method to assigning the prior density f; (%) [31]

Unobservable parameter(s): components of 7, Parent model(s): fragility function Fy, (z,|7,)

Measure(s) of epistemic uncertainty: Fy (7|7, )

Form of evidence: E= {(zy, P(E,|z,)),i=1,2,...}, where z,; = value of the collision energy z;; P(E,|z,) =
estimate of the probability of explosion £, given a collision with the energy z,;

Updating procedure: assigning and updating cdf Fnz(”zlﬂnz) can be stated as a problem of a simple linear
regression analysis in the Bayesian setting if the pairs (zy;, P.(E,|z,,)),i=1,2, ... are represented in the coordinate
system of a normal probability graph paper; the components of /1, can be expressed as functions of uncertain linear
regression parameters and the prior Fy (”z|”nz) improved by updating these regression parameters, eg, [40] for

updating priors of regression parameters
Prior constructing procedure: sce [41] for assigning priors to parameters of linear regression models; see also [42]
for estimating fragility functions from expert opinions

Unobservable parameter(s) 71, Ty, T3, M3, M3, g3 Parent model(s): m(z,] ©)) and ms(z3| m3)
Measure(s) of epistemic uncertainty: F, (n,|n; ) (i=1,2), F; (7|7, ) (i=1,2,3,4)

Form of evidence: E'={x,i=1,2,...}, E’'={lnxn/,i=1,2,...}, E"={lnn’,i=1,2,...}, where x =

experimental value of the tolerable energy of collision; 7] and 7] = experimental values of relative overpressure and

relative impulse

Updating procedure: procedures developed for updating priors of mean and variance (precision) of a normal pd
allow expressing posterior distributions in closed form, eg, [40]

Prior constructing procedure: see prior constructing procedures given by Congdon [40]

Unobservable parameter(s): 7ss, 73, 773, 7is; Parent model(s): m,(z,|m,)

Measure(s) of epistemic uncertainty: Fy, (7, |7z'n,3) (i=5,6,7,8)

+
i

Form of evidence: E' ={( p/,z13520.),i=1,2, ...}, E"={(4, 2135 223.),i=1,2, ...}, where p; and 1 = values

of the positive overpressure and positive impulse measured in the ith experiment, respectively; z;;; and z,3; = mass and
standoff of explosive charge used in the ith experiment, respectively

Updating procedure: 73, 73, 773, and 7ig; are parameters of the non-linear, multiple regression models m/,(z; |-)
and m),(z, |- ; to the best of our knowledge posterior distributions of these parameters cannot be expressed in closed

form and, moreover, practical procedures of numerical updating priors of 73, 73, 7773, and g3 specifically and
parameters of non-linear regression models generally are still to be developed
Prior constructing procedure: the cdfs Fj; (7|7, ) (i=5, 6,7, 8) were chosen by assigning normal distributions

to respective regression parameters; mean values of these distributions were chosen to be equal to values of
conventional least squares estimates of 73, 73, 7173, and /g3 given by Luzin et al [25]
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a probabilistic “upgrading” of the deterministic models
are approach of adjustment factors [44] and approach
known as a Bayesian processor of forecast [45]. Both
approaches consist in modifying output variables of a
deterministic model by coupling them with random ad-
justment factors (statistical post-processors) which are
described by prior (posterior) distributions. The adjust-
ment factors are applicable in CBA setting and the un-
certainty expressed by these factors can be of the
epistemic type only or both epistemic and aleatory [39,
44]. An example of applying the adjustment factors are
the variables 7” and z” included in the blast wave
model m;(z5|7my) (see Sec 4.2.3).

6. Discussion: how to apply Bayesian action models
to damage assessment?

When selected the action model H, (x) defined by
Eq (1) may rise questions concerning its (i) complexity,
(ii) ability to be updated in the Bayesian framework when
additional knowledge (information on the AA in ques-
tion and/or the events E, escalating into O44) becomes
available as well as (iii) suitability for assessing damage
to objects of structural and mechanical engineering ex-
posed to AAs. Answers to these questions can be formu-
lated as three arguments in favour of the model H, (x).

Firstly, the complexity of the model H, (x) is de-
termined by its informativeness. It quantifies two types
of uncertainty, aleatory and epistemic, and provides, so
to say, a full informative service for the analyst. The
model H, (x) enables one to quantify the epistemic un-
certainty (state-of-knowledge) related to the frequency p,
of OAA and exceedance probability 1— P(X < x|OAA)
associated with given x, where “ X < x ” means “is less
componentwise”. In principle, the epistemic uncertainty
expressed by cdf F, (p,|m,) and probabilistic weights
p; can be averaged out and so a simpler version of
H , (x) obtained; however, the selection of H, (x) is
not an end in itself and it makes sense to propagate the
epistemic uncertainty further by introducing epistemic
uncertainty measures into results of assessing damage
from AAs.

Secondly, the model H, (x) can be updated in the
Bayesian framework; however, this can be done not di-
rectly but by reapplying the procedure used to its selec-
tion. This procedure implies that additional knowledge
should be used for standard Bayesian updating some of
the “lower-level” epistemic cdfs F, (p,|®my),
Fr,(molmp,). and Fp (7, |75 ). Once the “lower-
level” distributions have been updated, H, (x) can be
updated by reapplying the model selection procedure
using these distributions. Generally additional knowledge
should decrease the epistemic uncertainty quantified by
Hy(x).

Thirdly, an apparently “loose” structure of the model
H, (x) allows a simple integration of its constituents
into damage assessment, provided that results of this as-

sessment are expressed in terms of probabilities (frequen-
cies) of damage events. If a particular damage to a struc-
tural or mechanical object, say, industrial building or
distillation column is interpreted as a random event D,

one can apply aleatory cdfs F' X; (x| ”xi) to calculating
a set of damage probabilities, P,(D,|0AA) (i = 1, 2,
..., n), each defined as

P(Dy|0AA)= [ P(D,|x)dFy,(x|7y,)

all x ’
where P(D,|x) is the so-called fragility function, the
value of which is equal to a conditional probability of
D, given that an AA with characteristics x has been
imposed (eg, [16]). The epistemic probabilistic weights
p,» which are assigned in the model Hy(x) to cdfs

Fy, (x | Ty,) , can be automatically assigned to the dam-
age probabilities P,(D,|OAA) . The variability of the set
P(D,|OAA)(i=1,2, ..., n) can be used to assess how
certain is a statement about the likelihood of the damage
represented by D,

The expression of P,(D,|OAA) transforms the
model H,(x) into a set of intermediate uncertainty
measures, { F, (p,|7,), (P(D,|0AA), p,) (i=1,2,...,
n)}, which can be used in different ways to extracting a
message of damage assessment for decision-makers. For
instance, one can calculate a single probability
P(D,|0OAA) and frequency H(D,) of the damage event
D,, which are obtained by simple averaging out mea-
sures of epistemic uncertainty and can be called in line
with Bayesian terminology the “predictive” ones, namely,

P(D, | OAA) = ZB(D[I | OAA) p;
i=1

and

H(Dd) = P(Dd |0AA) J‘ padFPa (pa |7ra) .
all p,

Frequencies like H(D,) can be calculated for a set
of damage events, D, (d = 1, 2, ... , n,), which includes
either all foreseeable damage events, together with the
event of no-damage (survival), or only some damage
events of interest. With the frequencies H(D, ), a com-
prehensive result of damage assessment can be repre-
sented by a risk of damage [14, 15]. It can be expressed
as the set {(H(D,), O,), (d =1, 2, ... , n)}, where
0, is the outcome of D, the significance of which can
be measured, say, in lost money. The set of pairs “dam-
age frequency” and “outcome of the damage” is a some-
what simplified version of the general definition of risk
used in the field of QRA (eg, [11]). The above risk of
damage is not the only form of message which can be
obtained using CBA as an approach underlying the se-
lection of H,(x). Aven and Porn [18] as well as
Apeland et al [20] provide a broad methodological dis-
cussion about representation and attractiveness of results
of QRAs carried out by applying CBA.
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7. Conclusions

The prime objective of the present paper was to
propose a computational procedure intended for a selec-
tion of mathematical models for actions induced during
man-made accidents or, in brief, accidental actions (AAs).
The selection of mathematical models for AAs (action
models) can be carried out in the framework of the quan-
titative risk assessment (QRA). Methods of QRA allow
taking into account the specific nature of the physical
phenomena occurring as AAs. A proper context for se-
lecting action models is provided by the classical Baye-
sian approach to QRA. This approach is well suited to
quantifying aleatory (stochastic) and epistemic (state-of-
knowledge) uncertainties related to AAs.

The proposed procedure is based on a stochastic
simulation of accident sequences (courses) which lead to
an imposition of AA. The essence of the procedure con-
sists in relating the aleatory and epistemic uncertainties
in characteristics of AA to the uncertainties in physical
phenomena, the sequences of which end in an imposi-
tion of the AA. Thus the procedure serves the purpose
of propagating uncertainties. Action models selected by
applying the proposed procedure are probabilistic and
contain measures of both aleatory and epistemic uncer-
tainty.

A practical application of the proposed procedure
requires establishing a set of mathematical models de-
scribing the physical phenomena which precede an oc-
currence of AA. These models determine initial infor-
mation (hard data and expert judgements) which must
be collected and transformed via uncertainty propaga-
tion into an action model. The Bayesian approach to QRA
provides a formal basis for combining hard data and
expert judgements within the problem of predicting AAs.
Compensation of scarce experience data by subjective
information (expert opinions, judgements of analysts and
analyst groups, etc.) is a burning issue in case of AAs.

A short review of application of expert judgements
to the prediction of AAs is given in this paper. From
this review it can be concluded that the number of reci-
pes given in QRA and Bayesian statistical theory for a
formal use of subjective information is relatively large.
However, a systemisation is necessary to allow applying
these recipes on the practical level, that is, the level of
predicting AAs and damage from them.

The simulation-based procedure proposed in the
paper can be used for reliability-based design of protec-
tive structures as well as damage assessment and risk
studies within the methodological framework provided
by the classical Bayesian approach.
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APKROVOS, VEIKIANCIOS KONSTRUKCIJAS TECHNOGENINIU AVARIJU METU: PROGNOZAVIMAS
NEAPIBREZTUMUS MODELIUOJANT STOCHASTINIO MODELIAVIMO BUDU

E. R. Vaidogas

Santrauka

Mechaniniai, terminiai ir cheminiai poveikiai, pasireiskiantys sunkiy technogeniniy avarijy metu (avariniai poveikiai),
gali sukelti didelius statybiniy konstrukciju pazeidimus ir grifitis. Prognozuoti Siuos poveikius yra svarbu norint ty
pazeidimy ir grifi¢iy ir iSvengti. Logiskas tokio prognozavimo rezultatas yra tikimybiniai matematiniai modeliai, nusakantys
avariniy poveikiy pasireiskimo tikétinuma ir charakteristikas. Daugeliu atveju tokius modelius reikia parinkti stokojant
informacijos apie poveikius, sukelianCius fizinius reiSkinius. Sitiloma stochastinio modeliavimo procedira, kuri turéty
palengvinti avarinio poveikio matematinio modelio parinkima ribotos informacijos salygomis. Si procediira sukurta laikantis
klasikinio Béjeso pozitirio i rizikos analiz¢ principu. Pagrindiné straipsnio idéja yra ta, kad statistinés imtys, biitinos
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poveikiy modeliams parinkti, gali bliti generuotos atlickant stochastini avarijos modeliavima. Siiiloma stochastinio
modeliavimo procediira gali biiti taikoma vertinant potencialius konstrukcijy pazeidimus avariniais poveikiais ir atliekant
rizikos analizg, grindziama klasikinio Béjeso pozilirio principais.

Raktazodziai: technogeniné avarija, avariné apkrova, rizikos vertinimas, neapibréztumas, Béjeso poZiiiris, stochastinis

modeliavimas.
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