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Abstract. This paper deals with a theoretical and a numerical analysis of tapered beam-columns subjected to a bending
moment and an axial force. A standard FEM code COSMOS/M has been used for a numerical estimation of a critical
load multiplier. It has been assumed that the critical force of an axially loaded tapered column could be calculated in an
analogous way as for uniform member just with an additional correction factor o, . Similarly, a critical bending mo-
ment of the tapered column subjected to a pure bending could be determined by using a correction factor o.,, . A large
number of simulations carried out within a wide range of the ratios of second moments of area allowed to determine the
proper values of theses two factors. For practical engineers, solution of such kind of problems can be easier when an

equivalent cross-sectional height f,_ is used.
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1. Introduction

During the last years, light steel structures have been
extensively used as being the most effective in practical
application. The main advantages of such kind of struc-
tures are the effective usage of materials and quick erec-
tion as well as their good service characteristics. Over
the past two decades, solution of the buildings with ta-
pered frames, manufactured from high-tensile steel, have
become a standard. The use of automatic welding tech-
niques minimises the cost of such tapered members. Their
contours are quite close to the bending moment diagram,
so the bearing capacity of cross-sections is effectively
utilised. With this type of frames the web depth-to-thick-
ness ratio can exceed 200. There is no need of many
additional stiffeners in this case.

Analysis of such a kind of frames is rather compli-
cated and not widely investigated. For example, there
are no recommendations in European design codes [1]
how to calculate such structural members. A thin-walled
column subjected to an axial force and bending moment
can lose stability in lateral torsional buckling mode.

Stability of axially loaded tapered columns was in-
vestigated in [2—4], authors of which proposed to calcu-
late tapered columns as uniform members, using addi-
tional factors.

It is obvious that results of buckling analysis for a
tapered column under the combination of an axial force
and a bending moment cannot be obtained just by add-
ing the solutions obtained for those loads acting sepa-
rately because this dependency is non-linear. A stability

problem of tapered columns subjected to combinations
of load factors was numerically investigated in [5]. There
a possibility to solve stability problem depended on well-
known separate buckling shape modes as well as on cor-
responding load factors of an axial force and bending
moment was presented which provided the accuracy sat-
isfactory for practical applications. As one can see from
this review, there are no commonly accepted methods
for an analysis of tapered columns in the literature.

2. Stability theory of thin-walled beam-columns
2.1. Concepts of the problem

The first solutions of the buckling problem for struc-
tural members were considered using the classical theory
of thin-walled beams S. P. Timoshenko [6], V. Z. Vlasov
[7], F. Bleich [8], A. N. Dinnik, [9] etc. Generally, the
stability problem of thin-walled beams is complicated due
to warping phenomena of their cross-sections [3, 7]. For
a more easy analysis of this problem some researchers
have been trying to give an effective tool by using ana-
lytical and numerical methods [10, 11].

More general cases of the problem are considered
with an element with the curvilinear longitudinal axis [12],
with analysis of stability of plates with additional stiff-
eners [13, 14], with calculation of stability of beam-col-
umns with an additional number of degrees of freedoms
(DOF) [15], etc.
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One of the first wide-known and popular in the prac-
tical usage publications in field of stability analysis
applying the finite element methodology (evaluating warp-
ing phenomena of a cross-section) and using the classi-
cal theory of thin-walled beam-columns and shells be-
longs to R.J. Plank and W.H. Wittrick [16], Y.K. Cheung
[17], P.O. Friberg [18], N.W. Murray [19], etc. A funda-
mental paper in the stability analysis, using one-dimen-
sional finite elements with the warping effect, was pub-
lished by Y.-B. Yang and W. McGuire [20] in 1986.
Various authors [21-24], applying different assumptions,
have shown some possibilities to make the geometric non-
linear stiffness matrices for solving of such a problem.

On the other hand, some practical methods for
stability analysis of the beam-columns, based on finite
element discretisation idea, have been evaluated [25-27].

2.2. Axially loaded structural member

As an example, the stability problem of an indus-
trial column with a variable cross-section is considered.
The axially loaded slender tapered column looses its ini-
tial stability shape, when it is subjected to an external
force N, which exceeded the critical value N, :

N>N,,. (1)

The flexibility differential equation of the axially
loaded beam-column with longitudinal axis Ox (Fig la)
may be expressed as:

2
L(2x)+£v(x)= 0, (2a)
dx EI
or, in the most popular manner, as:
EI-V'(x)+N-v(x)=0. (2b)

Here v is a transversal displacement, EI stands for a
minimal rigidity of flexibility for the bent member.

For a uniform cross-section of the column (tradi-
tionally — constant in the longitudinal direction), results
of solution of the equation (2) obtained by L. Euler:

a) b) ) d)
N N N
n=a
n=2
'-‘; n=1
N N Y

Fig 1. Axially loaded pin column (a) and its buckling
shape modes: the first (b); the second (¢); the third (d)

nm 2
Ncr =(T) EImin, (3)

where n marks a theoretical number of a buckling shape
mode (Fig 1) and L is the column length.

In case of a tapered column (with a variable cross-
section) the formula (3) depends on the variable in lon-
gitudinal direction stiffness factor EI(x). Therefore, the
law of distribution of the second moment of area may
be presented as:

I(x)=12|: 1_(1-k2m)2ﬂ, 4)

here x is a distance from the column end, named by
symbol "1", to the considered cross-section (Fig 2). The
other end of the column is marked by number "2". The
most valuable factor in expression (4) is described as
[9]:

R 5)
where m is a factor of the longitudinal distribution of
the second moment of area. This factor can be changed
as m=1, 2,3 or 4, depending on a cross-sectional type.

A differential equation of the tapered column was
proposed by A.N. Dinnik [8]:

El(gjm V' (x)+ N -v(x)=0, (©)

where d is a distance from the bigger edge of a column
section up to a fictional point, the second moment of
area of the column in which tends to zero.

In such case, the expression of the above-mentioned
equation (6) may be presented as:

]("!_\'I'Al)

Y
Fig 2. Axially loaded tapered column and its cross-sec-
tion
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2
T
Nepor =0y [m] EIyZ > (7
where o, is an algebraic factor, depending on variabil-
ity of the second moment of area.

2.3. Case of pure bending

The next case, when each of the cross-sections of
the slender tapered column is subjected to bending mo-
ment only. Such a case in Vlasov’s theory of thin-walled
beams [7] is investigated as pure bending, so a value of
critical bending moment can be solved for a uniform
beam with an /-section, according to European design
code [1], as:

2
T T
M. = EI. |-| GI, +| — |EI
“ (MZL] ¢ ( t (%L] ‘”}’ ®

where EI,, GI; and El, are corresponding stiffness:
flexibility about the minor axis; torsional from the clas-
sical B. Saint-Venant's theory; warping. The factors
u,L and uyL are described as the effective lengths of
the considered beam for flexibility and warping.

The critical value of the bending moment for the
tapered column can be easily defined by formula (8),
using an additional parameter:

T T
My = am(ﬁ}\/EIz (Glt +(@} EI(D} , 9)

where o, is a factor, depending on the longitudinal dis-
tribution of the second cross-sectional moment of area
1, (x). In case of a tapered column, the following cross-
sectional parameters are also varied: warping constant
I,(x); torsional moment of inertia 7,(x).

3. Stability analysis by the finite element method
3.1. Concepts of the stability analysis

The FEM has long been recognised as one of the
most effective techniques for analysing common thin-
walled structures and their structural members under ar-
bitrary loading and boundary conditions. Exact analyti-
cal solutions for the stability problem are well-known
and popular for particular cases of separate loading (3)
and (8).

The most general critical condition, at which stabil-
ity of a structure impends, is obtained considering the
second variation of the total potential energy. By apply-
ing a standard finite element approach, the system of
geometrically non-linear equations can be symbolically
written in the following form:

A(Fu)=0, (10)

where A is a differential operator, in the most general
case non-linear in load F and displacement u. This

equation can be presented by an incremental form:
([Kp] + [Ko] + [K,]) Au=AF . (11)

where [K;;,] is a linear elastic stiffness matrix, [ K]
is an initial stress stiffness matrix, [Ku] is an initial
displacement stiffness matrix, Au is a vector of displace-
ment increments and AF is the external loading incre-
ment.

In the presented research, the stability problem is
limited by linearised formulation of the lateral buckling,
thus AF =0, when only small strains and finite rota-
tions have to be considered, ie [Ku] =0. It is assumed
that the load state is described by external load vector
F and a scalar load-intensity factor A... The second
variation of the total potential energy provides a math-
ematical model of the stability problem expressed as well
known in mathematics as eigenvalue problem:

([Klin] + }"cr[Kg] )rcr = 0, (12)

where [K g] is a geometric stiffness matrix, while A,
is the stability load factor and r,, is the vector of buck-
ling mode shapes. The number of given values for the
load factor and shape modes depend on the number of
the equations, included in system (12). The most inter-
esting research in civil engineering is the first value and
corresponding shape mode, while other results are more
important for theoretical analysis.

Warping is a particular mechanical phenomenon in
the classical theory of thin-walled beams. It is a case of
out-of plane cross-sectional deformation, which is ex-
pressed by geometrical function of cross-sectional sec-
tors. In such a case, normal and tangential stresses in a
cross-section are considered. A general parameter, which
is expressed by the combination between these stresses,
is a longitudinal bimoment. The widely used hypothesis
of a plane cross-section is a special case of the Vlasov's
hypothesis of sectors [7].

The tapered column has been simulated by using
two kinds of finite elements (FE): one-dimensional for
the column modelling as a bar and two-dimensional shell
finite elements. Material of the thin-walled column has
been considered as homogenic, isotropic as well as obey-
ing the Hooke's law.

For numerical modelling of the axially loaded and
bent column with a variable cross-section, one-dimen-
sional FE described by 14 DOF [20] was applied (Fig 3).
Each end of the FE is described by three linear displace-

ments u,, u, andu, in corresponding directions, two

r)
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Ora Pon thaf e ol LU
/um / Uz Xd—
Z Ao L ©u

Ve

Fig 3. One-dimensional FE with warping and its DOF
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rotations ¢, and @, about the cross-sectional transver-
sal axes, twisting @, around the longitudinal axis and
warping DOF 0.

Using a standard FEM technique, the tapered col-
umn was simulated by the FE with warping, each of them
was defined by a constant cross-section (Fig 4). The
values of an external load Ny and M, as well as
boundary conditions of the column were defined by ex-
perimental results of a real industrial steel frame. At this
stage of modelling a standard well-tested FEM package
STAAD.Pro has been used.

.I.. X
+J, b,
b P
" ] P P-
..S _ 1
1
o,
; w7
y 1 "P * (p.. I
X =

Fig 4. The tapered column: geometry (a) and FE model (b)

For a more "exact" modelling the typical triangle
shell element from the code COSMOS/M was applied
(Fig 5). These finite elements are defined by 18 DOF.
Each node of such FE is described by three linear
displacements Uy, Uy andu, and three rotations
?y, ¢yand@, .

X
* (pm q’.\'b *
i e Y O 1 Uxa Uxb * _123,_:{):!: _

u_vb Z

Fig 5. Shell FE with its DOF

The above-mentioned finite elements have been used
for the static linear analysis of the whole industrial frame.
Therefore, at the first stage of investigations an initial
axial force and a bending moment as well as a combina-
tion of these factors were defined. Next, the linearised
stability problem [12] was analysed by applying two-di-
mensional finite elements.

3.2. Numerical solution of the axially loaded column

There were carried out a large number of simula-
tions within a wide range of variation of the second cross-
sectional moment of area [25]. First, the column has been
loaded by a critical force N, ,, solved as for a uni-
form member, using the geometrical characteristics of the
bigger end "2". Second, by using an original programme
COSMOS/M the correction factor o, has been calcu-
lated. Next step — a critical force of tapered column is
given by multiplying the critical axial force N, by
the uniform column and the correction factor o, .

olN

o.sla i

0,6 //’
0,4 1>
0.2
0 Ivi/ly2
0 0,5 1

Fig 6. Function of the correction factor o, depending
on a relative second moment of the pinned column area

From these simulations many values of the correc-
tion factor o, for the axially loaded pin-end column
have been calculated (Fig 6). By using computer simula-
tions there have been determined that values of correc-
tion factor o, found for pin-ended column can be also
used for other column support types.

3.3. Beam subjected to pure bending

When the column has been modelled by using an
assumption that its cross-sections are subjected by bend-
ing moments only, end-sections "A" and "B" have been
supported in the cross-sectional direction and one of the
ends had the axial node, which cannot move in a longi-
tudinal direction. Many of solutions with a wide range
of the ratios of cross-sectional characteristics have been
formed. At both ends the column has been subjected to
the critical bending moment M., (Fig 7), given as
for a uniform member by using the bigger end geometri-
cal characteristics.

Section "B"

X, . ¥
- > Moy

Section "A

Fig 7. Geometry and external loading by two end-moments
of the tapered column
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Fig 8. The first buckling shape mode of the tapered col-
umn, according to the solution by FEM code COSMOS/M

By using the FE programme COSMOS/M the val-
ues of a correction factor o, have been calculated. Later
a critical bending moment M, , of a uniform member
and the given correction factor o, have been multi-
plied. Column lost stability in the lateral torsional
manner (Fig 8).

From these simulations the correction factor o,
for pin-end member subjected to pure bending have been
calculated (Fig 9). By computer simulation it has been
found that values of factor «,, , determined for pin-ended
columns, can be also used for other types of column
supports.

oM

1

08 P, acaill
0,6 /
0.4
02
0 Iy1dy2
0 0,2 0.4 0,6 0.8 |

Fig 9. Function of the correction factor ,, depending
on a relative second moment of the pinned column area

4. Practical solution method

For practical solution of such tapered beam-columns
subjected to an axial force or bending moment it is more
easy to use equivalent cross-sectional height #,_, which
may be obtained from the following equations: for the
axially loaded tapered column

2 2
T T
— | El,.=0,| — | El;
[MyL] tr n[MyL] y2 >

for the tapered column, which is loaded by bending
moment only

I 2 T
EIZ(GIt P +(m)EIO‘)”) = O(‘mEIZ(GIt +(M(D_L)EIU‘))

For a practical calculation such equivalent cross-sectional
heights may be used (Table):

Py =0y -hys (13a)
epy =y ho. (13b)

The values of the factors o, and o,
Iyl/lyz 0,010 | 0,050 | 0,100 | 0,200 | 0,300 | 0,400
o, 0,563 | 0,629 | 0,676 | 0,740 | 0,788 | 0,829
1,/1,, 0,500 | 0,600 | 0,700 | 0,800 | 0,900 | 1,000
o, 0,864 | 0,895 | 0,924 | 0,951 | 0,976 | 1,000
1,/1, 0,010 | 0,050 | 0,100 | 0,200 | 0,300 | 0,400
Oy 0,561 | 0,633 | 0,684 | 0,755 | 0,814 | 0,857
1,/1,, 0,500 | 0,600 | 0,700 | 0,800 | 0,900 | 1,000
Oy 0,891 | 0,933 | 0,957 | 0,979 | 0,990 | 1,000

Conclusions

1. From an analysis of references concerning the in-
vestigation of resistance of single-span frames' steel ta-
pered columns, the absence of satisfactorily spread and
grounded methods of their practical design was determined.

2. From the numerical experiments with axially
loaded tapered column, using the FEM, the correction
factor o, has been described and a critical force
obtained. After the analysis of the results it has been
determined that this factor, differently from the existing
methods, depends only on the column ends second cross-
sectional moments of area, ie ratio 1, /1, . Therefore,
it is possible to use this factor as universal one for all
types of column supports.

3. From the numerical experiments with the tapered
column subjected to bending moment only, the correc-
tion factor o, has been obtained. This factor depends
only on second cross-sectional moments of area ratio
1,,/1,, in the column ends, too.

4. For practical engineering calculations the
proposed algorithm and the usage of equivalent cross-
sectional heights £, , and h,, are recommended.

n tr,m
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LENKIAMU-GNIUZDOMU KOLONU ANALIZE BAIGTINIU ELEMENTU METODU

V. Sapalas, M. Samofalov, V. Saragkinas

Santrauka

Teoriniais ir skaitiniais metodais analizuojamas trapecijos pavidalo kolonos, veikiamos lenkimo momento ir asinés jégos,
stabilumas. Konstrukcijos stabilumo analizei atlikti taikoma tipiné baigtiniy elementy metodo programa COSMOS/M.
Trapecinés kolonos kritinei jégai nustatyti sitiloma tokia metodika, kai gerai zinomos bei placiai taikomos pastovaus
skerspjiivio strypu kritinés jégos reikSmés dauginamos i§ specialiai gauto trapecisSkumo korekcijos koeficiento a,,.
Analogiskai, pritaikius specialiai apskai¢iuota koeficienta «,,, nustatoma trapecinés kolonos kritinio lenkimo momento
reik§mé. Siems koeficientams apibadinti atliktas jvairaus trapeciskumo kolony skaitinis modeliavimas. Sitilomas uzdavinio
supaprastinimo biidas numato imti ekvivalentini skerspjtivio auksti. Tokia metodika yra paranki inZinieriui praktikui.

Raktazodziai: plonasienis strypas, erdvinis stabilumas, trapeciné kolona, baigtiniy elementy metodas, deplanacija.
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