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Abstract. Composite structures consisting of precast and cast in-situ concrete elements are increasingly common. These
combinations demand a mechanical model which takes into account the time-dependent behaviour and analysis of the
different ages of the connected concrete components. The effect of creep and shrinkage of the different concrete
components can be of relevance for the state of serviceability, as well as for the final state. The long-time behaviour of
concrete can be described by the rate-of-creep method, combined with a discretisation of time. The internal forces are
described for each time interval using a system of linear differential equations, which can be solved by Laplace-trans-

form.
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1. Introduction

Composite structures consisting of precast and cast
in-situ concrete sections are increasingly common in re-
inforced and prestressed concrete structures. Depending
upon span, load intensity and special requirements, the
prefabricated units are equipped with reinforcement and
prestressed steel. Due to the time gap between the pro-
duction of the prefabricated units and the cast-in-situ
sections of the elements, which are added at a later stage,
the different long-time behaviour of the concrete parts
in the cross-section has to be considered. The influence
of creep and shrinkage can be essential for the state of
serviceability, as well as for the final state, particularly
when the prefabricated units are prestressed.

The theory of creep allows a sufficiently realistic
description of the long-time behaviour of concrete. In
general terms, creep-induced deformation depends on the
concrete age at the moment of observation t and at the
moment of loading or change of stresses t. The creep is
connected to a redistribution of the stresses, and the
change of the stresses itself as a result of this redistribu-
tion will influence the development of time-dependent
deformations.

In the general theory of a linear elastic-creeping
body, the creep coefficient ¢ is a function of t and T:
0 = ¢(#,7) [1, 2]. Analytical solutions of the problem can
be found only for special cases [3, 4]. More general prob-

lems have to be solved numerically. Creep analysis based
on the principle of complementary strain energy and
mathematical optimisation [5-8] is methodically similar
to the approach of Cyras et al [9] used for the analysis
of elastic-plastic structures.

This paper deals with the case that creep function
can be approximately defined as the difference
0(1,7) = () — ¢(t). Such an assumption is acceptable
when sufficiently short time intervals are considered. This
method permits applying Laplace-transform to get solu-
tions in an explicit form and is an alternative to the wide-
spread practice to take creep-induced redistributions of
stresses in account by modification of the Young’s modu-
lus of elasticity [10—12], by a relaxation coefficient [13—
17] or simply by the lump-sum method of AASHTO [18].

The internal forces in a segment of the cross-sec-
tion increase during increase all time intervals (6'71’6')-
This increase has to be taken into account as an addi-
tional load when the creep for #, is considered.

2. Assumptions and conditions

The entire cross-section consists of n effective cross-
section segments. Concerning compatibility of deforma-
tion and material behaviour, the following assumptions
are made:

Assumption I:
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There is a rigid bond between the shear-resistant
cross-section segments. It is assumed that the entire cross-
section remains plane during deformation. This means
that all segments of the cross-section have the same
rotation angle k.

Assumption 2:
The concrete is uncracked (state 1) and participates
in the transmission of tensile stresses at all times.

Assumption 3:

The reinforcement (index s) and pre-stressed steel
(index p) are creep-resistant and linear-elastic. The strains
Ss(t),' Sp(t) and the stresses o (1), Gp(t) are related ac-
cording to the Hook’s law:

o, (1) dog(t)

gs(t) = E| ; des(t)=E—s, (1)
o, (1) do ,(t
e, = g P ode, ()= p().
J4 J4

Assumption 4:

The “old” and the “new” concrete components of
the cross-section behave like elastic-ageing bodies. The
intensity of creep deformation depends only on the age
of the concrete, not on the age at loading. Thus the creep
coefficient is defined by:

¢c(t’r)=(pc(t)_(pc(r)~ (2)

Under these conditions, the concrete strain € (¢) at

the time ¢ due to a variable concrete stress o ()

(t,<1< 1) during the creep period (#-,) can be described
by the formula

t

Gc(t)+J~Gc(T)_3(PC(T)
E.t) ' E.(t) ot

e.()= dr+eq(t,t5). (3)
lo

Thus the differential increase in concrete deforma-
tion, assuming a constant modulus of elasticity £, is
do (1) , 0.(1)

E—- do () +de (1) . 4)

c

dec(t) =

c
3. Computation model

The computation model has to take into account that
stress-strain relations, the equations of equilibrium and
the conditions of compatibility of deformation are time-
dependent.

Equilibrium conditions

For a time interval (tjfl, tj) the equilibrium of the
internal normal forces N _, and bending moments M ,
M, (r=1,2,. n)is defined by the differential equé—
tions

v, 0] N', (1),
r=1

YV 05, 0] = My f1).(5)
r=1

SV, M 0] = M),

r=1

where (..),'=d(..),/d® . The internal forces are related
to the centroid I (Fig 1).

-—— -

Fig 1. Internal forces of the cross-section

For sufficiently short finite time intervals, the in-
creases in the internal forces S;' can be approximated

by the gradient
Si'z (Si,j - Si’j_l)/((p(tj)_(p([j—l))-

Compatibility conditions

The infinitesimal rates of the strain df—:x’r(t) and the
curvatures deJ,(t) and dx_ (7) of the cross-section seg-
ment r are related to the internal forces by the differen-
tial equations

dNy (1) Ny (1)
de (1) =—= +—22d, (1) +deg AL
x’() E, -A, E,-A, (p””() Cs,x,r()
=de, (1) + de,i(t)' Zir +dx, (1) y;,
aM (1) M, (1)
dxy (1) = ¥ YL A, (1) +diegy (1)
Ep-Iy, Ep -1y,
’ ’ ©)
=de,i(t)
M , (t) M., (1)
di, (1) =——=" S do, (1) +dx,,, (1
Z,r() Er'IZ,r Er'IZ,r (pr,u() cs,z,r()
=dK, (7).

The index “u” indicates the time 7, when the load
increment is imposed.
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Fig 2. Deformations of the cross-section

Due to the different time-dependent material prop-
erties the creep and shrinkage of each cross-section seg-
ment can be related to a reference function ¢,(#) by the
multiplier

d,, (0
do, (@)

Thus the differential increase of the creep function
do, ,(t) of the cross-section segment r, starting at time
t,» can be expressed by the differential increase dg, (¢)
of a reference creep function. The deformations due to
shrinkage can be treated in a similar way:

(7

O, (1) =

decs,x,r,u (1)

s 0 de, (1)
dx (l)
= M , 8
B“7)’,r,u @) d(pu 0 ®
dx ou(t
Bi.zru ()= Weszru®)

do, (@)

Introducing these relations, the equations (6) can be
transformed as follows:

N'. (1) N, (1)
g (1) =—20 Ol rt)  +Bexrult)
X, Dr Dr (p ru X, 1, U
= Elx,i(t) + K’y,i(l)' Zir + K’z,i(l)' Yir
M, (1) M, (1)
Kry, r(t) = By r By r . (X(p, r,u(t) + BK,y, r,u(t)
»r »r ©))
= K'y,i(‘t)
, M, (1) M, (1)
K Z,r(t) = = =L * O{'(p,r,u(t) + BK,Z,I‘,M([)
B, B,
= K’Z,i(t);
where D, = E A is the tensile stiffness and B, = E [

the flexural stiffness of the segments.

The equilibrium conditions (5) and the compatibil-
ity conditions (9) represent a first-order linear differen-
tial equation system with constant coefficients, that is
used to determine the internal forces of the segments

. My v and M, L 38 well as the entire cross-section
deformations € , K . and K, forz= l (Fig 2).
y ,j g l] V1,

To get a matrix formulation of the equatlon system
the following vectors and matrixes are introduced:

vector functions 5; and s‘j for the internal forces of the
segments and their first derivatives:

Sj=[Nx,1,j My ; Moy o Nypj Mypj Mz,n,j]r’
Sj=[N xlj My Moy o Nypj My, M z,n,j]T’

stiffness matrix Q matrix of creep parameters 4_ . ,
Oj,u

vector B of shrlnkage parameters:
D, 0 0 ]
0 By
: Bz,l
Oy =
Dn
B,, 0
| 0 0 B,,|
-uq:,l,j,u 0 0
0 Ogrju
' %l ju
Agju =
Conju
Olip,njou 0
L 0 0 Cpnju |

Bj,u=lﬁ8,x,l,j,u BK,y,l,j,u BK,Z,I,j,u

Bg,x,n,j,u BK,y,n,j,u BK,z,n,j,u ]T*

equilibrium matrix A4 .:

G
1 0 O 1 0 O
Ag=lzy3 1 O Zin 10
yi 0 1 Yin 0 1]

vector bj of external load increments

bj =[ANx’i/A(pj_1 AMy’i/A(pj_l AMZ’i/A(pj—l]T,

vector q’j of the derivatives of the cross-section defor-

mations
K. ]T
1] :

Thus the differential equations (5) and (9) can be repre-
sented as follows:

Ags';
-1 -1
Oy.j8' j+0s,jA¢, jus j

L. 1 1
q9;= [E xij o Ky

—A(T;CI'J‘ =—Bju- (10)
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By transforming the differential equations (10), the
derivatives of the functions s(t}.)zsj and q(tj):qj can be
separated: '

\ -1
qj=Rjusj =PBju+0ijb;
\ _ (11)
sj+Gj,us] _F]B],M+KJbJ
. _1
with Qi,jAGA¢,j,u
-1
= Qi,jAGQs,j
_ T A1
Giu=2,ju—9s A9 i AcA, ju
Fj =0, jAGOI jAGOs.; — Os.j
j =¥, 4640, jAG5s, j ~ Ys, )

T -1
Kj=0s ;460

Dy Syi S

_ T _
Qi =469 jAc =| Syi Byi By
Sz,i VZ,i Z,0

Further transformations are necessary in order to get
an explicit solution for the vector function 5; of the lin-
ear differential equation system (11). First, the matrices
of the eigenvalues L, and eigenvectors 7, of the ma-

trix G are determmed then a transformatlon with the
matrlx G =T L. T ~1is carried out:
Jou S ju
}‘l,j,u 0
L, =
o A T] u |.Vl a7 V3n,j,uJ'
0 3n,ju

Thus the equation (11) can be represented as follows:

-1
AL st = Ju ,B,u+T Kb;

(12)

. * _ * _ N
with s'=T 1s ands” =T s .
j NA j Jou

J

By using Laplace-transform, this separated differ-
ential equation system can be transferred from the origi-
nal space to the image space

Fisp)= (pE+L;, J"s;p*
+(p2E+ pLj’u)_ TinFiB . )
+(p2E+ pLj'u)_ TiaK b,

where F(sj*) is the Laplace-transform of the vector func-
tion s..

For the time interval (tj—l’tj)’ the retransformation
into the original space, as well as. the transformation of
the internal forces vector s;= T s , leads to the solution
of the differential equation system

Sj= j,j—lsj*= Tj} 1Y] T j ls] 1
-1 -1 -1
+T; i\l -1 = Ly Y ‘—1)Tjj—1F'Bjj—1 (14)
1
+T e 1L LJ j_lY _1K ib;

e—MA(P Jajl 0
with Yj,j—l = .
0 e_)‘SnA(pj,j—l
u=j-1 beginning of loading and shrinkage by 7 =

v
AQ; ;-1 increases in the creep function of the load act-

ing since the point of time 1

For the computation of the subsequent time step,
the increase of internal forces 878 has to be introduced
as a new load and be superimposed on the creep func-
tion O(t +1,t) Abrupt changes in the load are accounted
for in the equation (15) using an additional term K d
The vector d; is defined as follows for a load 1ncrease
Asj at the time L acting at the centroid i:

d] = [AN)C,i,j AMy,i,j AMZ,i,j

Thus the computation of the internal forces s, at
the time ¢,, takes into account the redistribution over the
entire observation period (#,~%,), as the sum of all changes
in the internal forces As—sj 8 (j=0..k). It should be
noted that, at different times, initial segments of the in-
ternal forces vector 8; have to be superimposed on the
appropriate creep functions. Thus the equation (14) can
be represented as follows:

Y, T -

juTju—E Sj_sj—l)]l)

=3 3 [,

u=lj=u+1

+3 E [,u,(,u, L},lu,Yj,u,)TJu, Bm]) (15)

=1 j=u;+1

+E[ J_l( Uit =LY o j_,;—lKjbj]?))

+ 3k a,]
j=1

D redistribution as a result of creep with
so=[0 - o],

2) redistribution as a result of shrinkage for n cross-
section segments with initial shrinkage by 7, .

3) internal forces of segments as a result of creep of
an equal loading change,

4) internal forces of the segments as a result of
abrupt loading change.

Using this procedure, it is possible to determine the
internal forces s, at the time #, directly after the determi-
nation of the eigenvectors and eigenvalues of the matrix
G, of the different times #. The size of the matrices
and vectors can change due to newly added or elimi-
nated cross-section segments.
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4. Example

The computation of a floor system with a span of
15,30 m will illustrate the application of the aforemen-
tioned computation method. Prefabricated pre-stressed
elements with additional cast-in-situ concrete are used.
The prestressed elements are reinforced with prestressed
and unprestressed steel. The pre-stress of the tendons is
0 ,0,=103,2 kN/cm?2. After the release from the abutments
(2" day), the finished units are stored in such a way that
the dead weight is not activated. On the 28" day, the
precast is inserted and the cast-in-situ concrete supple-
mented. The composite structure consisting of old and
new concrete segments is supported by yokes until the
58" day, so that the dead weight of the entire cross-
section only becomes activated from this day onwards.
Table 1 shows the cross-sectional parameters as well as
the material characteristics. Fig 3 shows the loading re-
gime.

The results of computation are shown in Table 2
and in Fig 4. In the old concrete cross-section tensile
stresses develop up to the time ¢, as a result of shrink-
ing. The release from the abutments at the time #,=¢,
leads to the abrupt appearance of compressive stresses.
A stress reduction can be observed up to the time #, in
both the old concrete and the prestressed steel, which is
compensated for by the stress increase in the reinforcing
steel 4 . The new concrete is applied at the time ;.
This is free of stress at this moment. Tension and com-
pression stresses develop in the new concrete segment
due to creep deformations in the interval (¢, t,). When
the dead weight is activated, a stress jumps at the time
t5 in all cross-section segments involved. In the subse-
quent process it can be seen that the stress peaks in the
concrete segments, as well as the stress differences in
the contact area between old and new concrete, diminish
as expected. At the time #; = oo the entire concrete cross-
section is under compression (state I).

The development of the stresses, determined using
the computation model presented, corresponds almost
completely with the computations according to the theory
of the elastic-creeping body (Fig 4 prestressed steel). The
stress in the upper pre-stressed steel segment determined
according to the rate of creep method is less, and that of
the lower pre-stressed steel segment greater, than the
stresses computed according to the theory of elastic-
creeping body. This means that the calculated rotation
of the entire cross-section is greater. These differences
due to different assumptions concerning the time depen-
dence of stress-strain relations are small.

5. Conclusions

Sufficiently exact solution can be found by the
method presented when sufficiently small intervals of time
are considered. For each time interval a system of first-
order linear differential equations with constant coeffi-
cients has to be solved. This system of equations can be

Table 1. Values of cross-sections and materials

. Elastic
Cross-section . Area

segments Material [cm?] moduluzs
[kN/ecm?]

Old concrete C40/50 270x16 = 4320 3,500
Reinforced steel BSt 500 S 2x14 ¢10=21,98 20,000
Prestressed steel St 1570/1770 2x38 ¢'4" = 170,94 19,500
New concrete C35/45 270x16 =4320 3,350
Reinforced steel BSt 500 S 15 928 = 30,15 20,000

Self-weight: M=633,42 kNm
Shrinkage of the new concrete
prestress 6y0=103,2 kN/cm”

Shrinkage of the old concrete

B
L

o 1=tz t3 L=1s s ] lg=ar

Fig 3. Loading process

MNiem?
o g‘j'““ ! Old and new concrete
! Neubeton
0,0 p——oeet] !
0,4 | e == = ==
e R Sl e el st ol e o
0,8 | T r T T
I
1,24 { r’/_’_,__—
{ 1 — Old concrete
18 : I : I I —— New concrele
solzrtt———=13%,
2 o o
2,4
0 50 100 150 200 250 1[d] 300
”';N”'“" Reinforced steel
— Agup
| == Asdown

-25
0 50 100 150 200 250 t[d] 300

& [ifent] Prestressed steel

105
— The rate of creep theory

100 | The theory of the clastic-creeping body
— up
---- down

95

0 50 100 150 200

250 {[d] 300

Fig 4. Process of concrete and reinforced steel stress
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Table 2. Stress transfer as a result of creep and shrinkage of both concretes

Point of time |days| t|:2 t2=2 t3=28 t4:58 t5=58 t(,=120 t-=600 tsz?
before after 1o apply with without
presiress prestress new concrele support support
2
|L'II|| I i I R i i
Sitress [kN/em?®]| @, Gu o Ty o Gy T, Ty Go Ty Go Ty Ty Ty o [
Old concrete A 0,00 0.01] -0.73] -232| -0.62| -2.07] -0.63] -1.95] -067| -0.68] -0.70] -064| -0,67| -046] -0,62] -0.18
Reinforced steel As | -0.18] -0,18] -6,11]-11,50]-14,03]-19.41]|-15.96] -21,34| -14.76| -15,72| -14,90| -15,86| -19,15] -20,10] -26,37| -27,33
Prestressed steel Aps |103.03]103.03] 94.87| 92.55| 86.31| 83.98] 84.30| 81.98] 8742 87.01| 87.68] 87.27| 83.51| 83.10] 76.40| 75.99
New concrete A 0001 000 000 000] 000 000 010] -011] -1L17| -0.14] -1.02] -0.24] -0.83] -040| -0.61] -0.55
Reinforced steel Aq 0000 0007 0007 000 000] 000 =045 045 -6.27| -6.27|-11.19]-11.19]-15.08] -15.08] -21.53| -21.53

solved with the help of Laplace-transform. The example
shows that this approach is applicable to the analysis of
the time-dependent load-bearing behaviour of composite
sections. The method is compatible with the creep and
shrinkage theories of EC 2 and DIN 1045-1 [17].
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ILGALAIKE APKROVA VEIKIAMO KOMPOZITINIO SKERSPJUVIO ANALIZE, TAIKANT LAPLASO
TRANSFORMACIJA

E. Raue, T. Heidolf
Santrauka

Praktikoje vis dazniau pasitaiko kompozitiniy konstrukceijy, kurias sudaro surenkamojo bei monolitinio betono elementai.
Siy konstrukciju analizei batini skai¢iavimo modeliai, kuriais galima jvertinti ilgalaikius efektus bei atskiry betono
komponenty skirtingo amziaus jtaka. Betono komponenty valk§numo ir susitraukimo efektai yra svarbiis nagrinéjant tick
tinkamumo, tiek ir saugos ribinius biivius. Betono elgsena ilgalaikio apkrovimo atveju gali biiti modeliuojama taikant
valk§snumo deformaciju didéjimo metoda (angl. rate-of-creep method) bei diskretizacija laikui bégant. Vidinés jégos
kiekviename laiko intervale aprasomos taikant tiesiniy diferencialiniy lygéiu sistema. Si lyggiy sistema gali biiti i§spresta
taikant Laplaso transformacija.

Raktazodziai: betonas, valk§numas, susitraukimas, Laplaso transformacija, valksnumo deformacijuy didéjimo metodas,
kompozitinis skerspjiivis, elgsena veikiant ilgalaikei apkrovai, gelzbetonio ir jtemptojo gelzbetonio konstrukcija.
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