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Abstract. The paper concerns the optimum reinforcement design for r/c cross-sections through the simultaneous consid-
eration of multiple load cases. The problem is solved by methods of non-linear mathematical programming. In the first
part, the calculation model for cross-sections is derived from extremum principles. The second part deals with the
comparison of design strategies using step-by-step and parallel calculation. Finally, a numerical example is provided.
The discussion shows the efficiency of the presented algorithm compared with traditional design concepts. The strategy
demonstrates a considerable decrease in the amount of reinforcement required.
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1. Introduction

A huge amount of computation algorithms exists for
the calculation of reinforced concrete cross-sections. Thus
the minimum cost design is a special subject. The costs
are generally divided into those for steel, concrete and
formwork. These models are provided with objectives
such as topology, shape or cost functions. Models that
use these methods can be found in [1-3]. However, these
models consider only one load case as an external ac-
tion simultaneously. The effect of multiple loading is
neglected.

The design of cross-sections under different load
cases is one of the standard tasks in construction. Tradi-
tionally, load cases will be treated separately and the
resulting maximum reinforcement will be used. If the
envelope reinforcement is chosen, an ineffective
utilisation of reinforcement may result.

However, there are few optimum design models that
can describe reinforced concrete sections at ultimate limit
state. Here the influences of cracking and non-linear stress
distribution must also be considered. As mentioned be-
fore, a major disadvantage of these models is the single
load case consideration in section design.

In this article, a numerical approach is used for
determining the reinforcement by taking multiple load
cases into account.

2. Mechanical models

In this chapter, the derivation of optimisation prob-
lems from variational principles is shown. Therefore, the

models from [4, 5] are extended by a general deforma-
tion condition.

A kinematical formulation can be derived from the
principle of virtual displacements, which contains stresses
¢ and displacements u. For a volume V with a surface S
the following expression is used:

[ASuTodV - [8uT fodV - [SuSAScdS=0. (1)
\% \% S

The operator matrix 4 and transformation matrix A are
included. The internal strains € are connected with the
external displacements u by the kinematical relation

g=Au. 2
With the restriction that only volumes without implied
displacements u_ will be investigated, the variational prin-
ciple with internal strains changes to

[8eT odA- [su” fadA=0. 3)
A A

If the influence of torsion and shear is to be neglected,
only components of strain and stress in x direction are
considered.

[8efoxdA— [duy fodA=0. 4
A A

By introducing the material law, plasticity conditions, the
load vector f, and the deformation vector u

o= flexa), Gg_) <o, < 08’),

fOZ[NX My Mz]Ta sz[sx,m Ky KZ]T (5 a-d)
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the variational equation becomes
[8e) g flexa )JdA+ [ SK(i)csg—r)dA
A A ©)
—[NXSsX'm +Mydky +M ZSKZ]Sf =0.
Therefore, the following extremum principle can be de-

rived:

Of all kinematically admissible deformation fields, that
one will be adjusted, for which the total potential be-
comes a minimum.

The extremum principle can be formulated as:

Fle dA+ X o5 dA
[Flexa )JdA+ [A5cl)
A A

[N+ My, + Ml = Min (72)

under the subsidiary conditions
ed,x+k(+)—7»(‘) =&y m+ 2Ky + YK, (7b)
AT >0. (7c)

Equation (7b) describes the deformation law and equa-
tion (7c) the non-negativity conditions. The extremum
principle (7a-c) can be used to derive optimisation prob-
lems for the state analysis of cross-sections.

For the reinforcement design, a more general prob-
lem is needed. A set of subsidiary conditions can be
derived by the method of Lagrange multipliers:

L= [Fleyq )dA+ [AfcSIdA
A A
- [Nxﬁx,m +M yKy + M ZKZ] S
(®)
+ .[kc(—sd,X 2 420) +Eym+ 2Ky + yKZ)dA
A

+ [ da,
A

where A is a function (depending on area A) which

can be identified as the stress distribution and k(é) as a

slack function for the residuum between the elastic
stresses and the limit stresses

+ 7‘%) =0y — Ggi) with k%r) >0. ©)

By variation of the Lagrange function L (8) with respect
to the unknowns, we get the Kuhn-Tucker conditions:

material law

oy="f (Sx,el) , (10a)
plasticity conditions
o§) <o, <ol (10b)

equilibrium conditions

Ny = [o,dA (10¢)
A
My = [zo,dA
A
M, = [yo,dA,
A
deformation law
sdyx+k(+)—7»(_)=£X,m+z|<y+y1<2, (10d)
complementary conditions
(o4 -0$))a®) =0, (10e)
non-negativity conditions
2 >0. (109)

This system of equations and inequalities describes the
section problem completely. By introducing a resistance
multiplier r in the plasticity and complementary condi-
tions, an optimum design problem can be formulated. In
the case of minimum design, the objective function can
be formulated as

r—min. (11)
Only the plasticity (10b) and complementary (10e) con-
ditions change to

oy—r-oi)<0 (12)

(o —r-o&)a® =0. (13)

3. Formulation of optimisation problems

The extremum problem (10-13) is transformed by
discretisation into an optimisation problem. Thereby the
section integrations are transferred into summations by
using fibre or layer models depending on the kind of
loading. While for uniaxial loading layer models are suf-
ficient, fibre models become necessary for biaxial load-
ing. In case of sufficiently fine subdivision, the internal
moments of inertia can be neglected and resulting axial
forces are regarded.

The modelling is based on the following assump-
tions: for the section deformation the Bernoulli hypoth-
esis is valid, between concrete and reinforcement a per-
fect bond is assumed.

By discretisation the equilibrium conditions (10c)
are transferred into matrix notation

AgN-fg=0, (14)

where A is the coefficient matrix of equilibrium and
vector N contains the element forces. Vector f; contains
the section loading (5c). The material behaviour of con-
crete (Fig 1a) under pressure is described by a 4™ order
polynomial [6]

4
6c=fq kzak5|>(< . (15)
=1
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The form of the polynomial corresponds to the parabola-
rectangle diagram in [7]. The element force for a con-
crete fibre 1 is

4
N = Flex)=A fcdkzaksi. (16)
=1

The concrete tensile strength, therefore, is not activated.

o o4
fcd 1Cyd
1,0 o : : 1,01 :
_ & [%0] &, [%0)]
2 35 Pl e 250
............. -1,0

Fig 1. Material law of a) concrete, b) steel

The material behaviour of steel Fig 1b) in tension
and compression is assumed to be bilinear. The linear
part is calculated by

Nsi :F(Ex):AsiEsgw (17)

The element forces are limited by the plasticity condi-
tions (12) written in matrix notation as

ApN=r-Ng<0, (18)

where A, is the coefficient matrix and vector N, con-
tains admissible element forces. The deformation law
(10d) that is formulated on the basis of the Bernoulli
hypothesis is given in discrete form

Afu-e-Afr=0, (19)

where vector € contains elastic strains and vector A plas-
tic strains. Plastic strains can appear if the plasticity con-
ditions are fulfilled as equations. Therefore the comple-
mentary conditions (10e) get the form

AT(ApN—r-Ng)=0. (20)

According to the associative flow rule, the direction of
plastic strains corresponds to the elastic ones. Therefore
the plastic strains have to fulfil the non-negativity condi-
tions

A2>0. (21)

3.1. Deformation constraints

For further discussion of deformation constraints
without restriction of any kind, a rectangular doubly-re-
inforced concrete section is considered (Fig 2).

For section design at ultimate limit state, stress re-
strictions as well as deformation restrictions must be
considered. The limit values of stresses and deformations
are given by design codes, eg the German code for rein-
forced concrete DIN 1045-1. A definition for the limit
values depending on loading is defined (Fig 3).

—
—
Il

Fig 3. Limit states of deformation according to DIN 1045-1

The formulation of deformation restrictions in the
optimisation problem can be accomplished by implement-
ing a set of inequalities for each fibre. This procedure
has the disadvantage that several load combinations have
to be considered for the examination of multiple load-
ing.

Alternatively, the deformation restrictions can be
expressed by the plane parameters curvature ¥ and axial
strain € . By inserting the limit strains into the expres-
sions, a convex space is created that contains each pos-
sible combination of plane parameters and/or section
deformation (Fig 4).

The deformation restrictions can be integrated as
inequalities into the optimisation problem. The equations
for the borders of the deformation space are given in
Fig 5. Every possible position of the compression zone
can therefore be considered. The deformation conditions
can be written in matrix notation

Apu-ug<0, (22)

where the matrix Aj, contains the unit vectors of each
restriction and u, the distance to the origin. The com-
plete optimisation problem for section design is given in
Table 1.

In this problem, the unknowns are the design pa-
rameter r, the vector of element forces N, and € corre-
sponds to elastic strains, A is the vector of plastic strains
and u the vector of the deformation plane parameters.
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4. Strategies for consideration of multiple loads

€4

M B-2.2
22 7'3'5 In this chapter, two strategies for arranging the re-
/o f-3_5 inforcement in reinforced cross-sections are presented.

! -
! -

*\/I____ +2,17

Both strategies are possible with the optimisation prob-
lem presented in Table 1.

There are many approaches for considering multiple
loads in the design process. Usually, the loading is split
up into load cases, which are independent in occurrence
and in sequence.

The common strategies for the design of reinforce-
ment by considering multiple load cases can be divided
into two groups:

1) Step-by-step analysis of the load cases
2) Simultaneous consideration of all load cases

Within strategy 1, all load cases will be treated sepa-
rately. This means that the design problem (Table 1) will
be solved for every individual load case. The result is
an optimal distribution of reinforcement within each load
case. The consideration of all cases results in an enve-
lope reinforcement (Fig 6).

geometry, material,
n load cases

l<

cross-section design
objective function: Z r — min

Agior = Zmax (Ay)

Fig 5. Ultimate deformation conditions for doubly-
reinforced rectangular cross-section Fig 6. Design strategy 1 — step-by-step calculation

Table 1. Optimum design problem for determining the reinforcement

N € A u r

OF 17 > | MIN
EC Ag —f = 0
PC Ap —Nos | =Ny | < 0
ML -1 | F(g) = 0
DL -1 | -Ap | A = 0
cc AT (| Ap —Nos | -Ng [ )= o
DC Ap —Ug < 0
NNC -1 < 0
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Therefore, the design parameter r is introduced into
the objective function (11) as a sum over all reinforce-
ment elements j

Y.r—min. (23)
i

A modification of strategy 1 is possible through the
introduction of additional constraints. Therefore every
reinforcement ratio can be given. The case of symmetri-
cal reinforcement can be formulated with help of con-
straint

Aa=As. 24)
It can also be useful in determining the interaction dia-
grams, which are used in design manuals.

With strategy 2, the loop over all load cases is re-
placed by a parallel calculation. Therefore, it is neces-
sary to solve the n cross-section problems at the same
time. The link between the problems is the design pa-
rameter r, which specifies the amount of reinforcement.
The vector r will be part of the objective function as a
sum over all reinforcement elements and over all paral-
lel computed sections

Yy r—min. (25)
nj

The complexity of the consideration of multiple
loads is shifted by the parallel calculation into the de-
sign problem. The flow chart is simplified (Fig 7); how-
ever, the number of unknown quantities grows by factor
n with the number of load cases. Therefore, it is reason-
able to pre-select relevant load cases.

In Table 4, an example scheme for an optimum
design problem considering 2 load cases is presented.

5. Numerical example

As a numerical example, a rectangular cross-section
with the geometry shown in Fig 8 is investigated.

geometry, material,
n load cases

'

cross-section design
objective function: z z r — min

=

As,tot =X Asj

Fig 7. Design strategy 2 — parallel calculation

—k
r f—1 F

-
4
50

; 30 ;

Fig 8. Sample cross-section
The following discretisation and material parameters are
used:
Steel

BSt 500 S
f,q = 4348 kKN/cm?

Concrete

C 30/37
f4 = —1,7 kN/cm?

a, = —1,024323 E, = 20000 kN/cm?
a, = —0,272046
a, = 0,012152 20 concrete layers

a, = 0,0085473 2 steel layers

The multiple loading, consisting of 5 load cases (LC), is
given in Table 2.

Table 2. Load cases

LC1 | LC2 | LC3 | LC4 | LC5
N | [kN] 0 | -1000 | =300 | —600 | —2000
M | [kNm] | 260 | 300 | 320 | —215 | —300

For this load configuration, the section reinforce-
ment will be designed. Likewise, the conventional pro-
cedure according to strategy 1 with symmetrical and
asymmetrical reinforcement is evaluated.

In Table 3 the amount of reinforcement using either
strategy 1 or 2 is given. The maximum reinforcement of
every load case is chosen by using a step-by-step method
(strategy 1). The total sum of the determined envelope
reinforcement serves as comparison value.

The example shows that the step-by-step calcula-
tion with the symmetrical arrangement results in a 10 %
larger reinforcement than the asymmetrical arrangement.

A decrease of approx 28 % can be obtained by us-
ing the optimum design (strategy 2). In this case, the
reinforcement yields in both tension and compression
zone.

The interaction diagram in Fig 9 shows that the
optimal design method supplies the best adapted interac-
tion curve for the given load cases.

It is clear that such a large reduction is only pos-
sible if, in the optimal case, an asymmetrical arrange-
ment is present.
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Table 3. Reinforcement area for different design strategies

LC1|LC2|LC3 |LC4| LC5 | Ay %
Ag[em?] | 14,61 | 8,67 | 14,76 | 5,82 | 13,89
Suategy 1 2952 | 100
i Ao[em?] | 14,61 | 8,67 | 14,76 | 5,82 | 13,89
Strat | Agi [em?] | 15,68 | 10,10 | 19,11 0 16,68
as rrnanfeg}}rlical 27,02 92
4 Aglem?]| 0 | 670 | 0o [791] o0
Ay [em?] 16,21
S;ra:fﬁlz 2135 | 72
P Ag [cm?] 5,14
Table 4. Optimum design problem for 2 load cases
NP € & M %3 u, w ry ry
OF 1" 1" > | MIN
EC AG -fg’l = 0
EC AG 'fo’z = 0
ML -1 F(e) = 0
ML -1 F(e) = 0
PC AP _NO,S 'No < 0
PC AP -NO,S -NO < 0
DL -1 -Ap AgT = 0
DL 1 -Ap AT = 0
CC | AT(| Ap -Nos Ny | = 0
cc | A% Ap Nos | -No | )= 0
DC AD =Uy < 0
DC Ap | < 0
NNC -1 < 0
NNC -1 < 0
If the load situation corresponds to a symmetrical
arrangement, then a smaller reduction can be expected.
asymmetrical —__.~ In a special case, when the envelope load situation cor-
il N symmetrical responds to a symmetrical interaction curve, no reduc-
opHim tion of reinforcement can be expected. In this case, both
/.’ strategies supply the same result.
« N
X N\
(\\. N /\ Abbreviations
b - :
A . M OF ... objective function
~N ~. R4 Yo crer . ..
> 7 > EC ... equilibrium condition
-500-400 -300 -NQ -10600 300 400 500 .
N . [kNm] ML ... material law
080 PC ... plasticity condition
DL ... deformation law
2000 CC ... complementary condition
DC ... deformation condition
Fig 9. Interaction diagram due to different design strategies NNC ... non-negativity condition
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6. Conclusions

The strategies presented in previous chapters were
used to determine the minimum reinforcement of cross-
sections due to multiple loads. By using generally for-
mulated deformation conditions, the parallel calculation
of all load cases is possible without the assumption of a
failure deformation state.

The numerical example shows that a reduction of
reinforcement is possible in comparison with common
strategies. Best results can be expected by using asym-
metrical reinforcement.
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OPTIMALUS GELZBETONINIU ELEMENTU ARMATUROS PROJEKTAVIMAS [VERTINANT

DEFORMACIJUY SUVARZYMA
E. Raue, S. Hahn

Santrauka

Pateiktas gelZbetoniniy elementy optimalus armatiiros projektavimo algoritmas jvertinant bendra keliy apkrovimo varianty
poveiki. Si problema i$spresta taikant netiesinio matematinio programavimo metodus. Pirmojoje dalyje taikant ekstremumo
principus parenkamas skai¢iavimo modelis. Antrojoje dalyje lyginami du skaiCiavimo algoritmai: laipsniSkas (angl. step-
by-step) ir paralelinis. Pabaigoje pateikiamas skaitinis pavyzdys. Analizé rodo pasitlytojo algoritmo efektyvuma, palyginti
su tradiciniais projektavimo metodais. Taikant pasitilyta metodika reikia maziau armatiiros nei taikant tradicinius metodus.

RaktaZodZiai: optimalus projektavimas, skerspjiivis, gelzbetonis, daugialypis apkrovimas, matematinis programavimas.
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