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Abstract. The paper deals with the neural identification of the compressive strength of concrete on the basis of non-
destructively determined parameters. Basic information on artificial neural networks and the types of artificial neural
networks most suitable for the analysis of experimental results are given. A set of experimental data for the training and
testing of neural networks is described. The data set covers a concrete compressive strength ranging from 24 to 105
MPa. The methodology of the neural identification of compressive strength is presented. Results of such identification
are reported. The results show that artificial neural networks are highly suitable for assessing the compressive strength
of concrete. The neural identification of the compressive strength of concrete has been verified in situ.
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1. Introduction

Artificial neural networks are more and more often
applied to solve various civil engineering problems [1—
4]. They are a tool suitable for the association of many
parameters, through which certain material or strength
features, such as the strength of concrete, are identified.

Compressive strength is a basic mechanical charac-
teristic of concrete, which is commonly tested in labora-
tories, assumed when concrete structures are dimensioned
and checked during the erection or service of structures
made from this material [5].

Compressive strength can be assessed by non-de-
structive techniques which are usually based on the em-
pirical relationship between a single parameter (deter-
mined by the given non-destructive technique) and the
compressive strength [6—10]. This kind of assessment,
referred to as a single correlation in the literature on the
subject, is most universally used. But, as it has been re-
peatedly pointed out, such an assessment would be more
accurate and thus more reliable if it were based on sev-
eral parameters determined by different non-destructive
techniques [11]. This has been attempted but because of
the poor accuracy of such assessments (eg multiple cor-
relation or graphic techniques [11]), due to the lack of a
proper computing tool, they proved inadequate in build-
ing practice.

The above warranted a search for a modern tech-
nique of assessing the strength of concrete. The use of
neural networks for this purpose seemed promising [4,
12—15]. To explore this possibility a proper data set for

training and testing the neural networks was created from
the results of destructive and non-destructive laboratory
tests carried out on several concretes representing a wide
range of strength. Artificial neural networks suitable for
the analysis of experimental results were selected on the
basis of the literature on the subject. The networks were
trained and tested. A neural strength identification meth-
odology has been developed and tested in situ.

It should be noted that, as literature reports indi-
cate, attempts are made to design the strength of con-
crete on the basis of its composition. For this purpose a
set of data obtained from numerous laboratories is being
created for training and testing the artificial neural net-
works [16].

2. Experimental investigations

An artificial neural network can be represented as a
simplified model of the nervous system consisting of a
large number of information processing clements [17].
The elements are called artificial neurons. In order to
understand the processes which take place in the artifi-
cial neural network one must know how the artificial
neuron — the basic structural element of such a network —
functions. The prototype of the artificial neuron is the
biological neuron. In its cybernetic counterpart the
neuron’s body is referred to as a processor [17-19]. From
the nerve cell originate thin, branching dendrites, consti-
tuting its “inputs”, and a long, thicker axon. In the arti-
ficial neuron this corresponds to input and output sig-
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nals. The junction between two nerve cells is called a
synapse. Through the latter signals are transmitted to
other nerve cells. Information is transferred in the form
of electric impulses called potentials. The structure of
the nerve cell and that of its cybernetic counterpart are
shown in Fig 1 [17].
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Fig 1. General structure of nerve cell (a) and its cyber-
netic counterpart (b) [17]

Artificial neurons connected together form a net-
work. The structure of artificial neural networks is, as a
rule, layered. Three functional groups can be distin-
guished in the artificial neural network, ie the inputs re-
ceiving signals from the network’s outside and introduc-
ing them into its inside, the neurons which process in-
formation and the neurons which generate results.

A model of the artificial neuron is shown in Fig 2.
The model includes N inputs, one output, a summation
block and an activation block.

X1 activation
X2

y=F(v)
X
XN

Fig 2. Model of artificial neuron [17]

The following variables and parameters were used
to describe the model shown in the figure above:
— an input vector

X, = (X, Xy e Xy) (1)
— a weight vector
w, = (W), Wy, o, W) 2)
— a bias
b=-0=w, 3)

— a network potential
N N
v=u+b=Zijj —6=Z WX )
=1 j=0
— an activation function

F(). )
A network architecture with inputs, information pro-
cessing neurons and output neurons is shown in Fig 3.

input

information processing
neurons

output neurons

Fig 3. Network architecture

Depending on the way in which the neurons are
connected, three basic types of artificial neural networks
are distinguished: unidirectional networks, recursive net-
works and cellular networks [4]. Basic types of artificial
neural networks is shown in Fig 4.

UNIDIRECTIONAL
NETWORKS I

ONE-LAYER NETWORK

MULTILAYER NETWORK

RADIAL NETWORK

RECURSIVE NETWORKS

HOPFIELD NETWORK

HAMMINGA NETWORK

BAM NETWORK

CELLULAR NETWORKS I

Fig 4. Basic types of artificial neural networks [20]

3. Data set and selected neural networks

The data set for training and testing neural networks
was created from results obtained from laboratory tests
for seven types of concrete (designated by letters from
A to G).

The specifications of the concretes are shown in
Table 1. It follows from the table that the compressive
strengths of the concretes ranged from 24 to 105 MPa.
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Table 1. Specifications of concretes A-G [20]

Designation Composition of mixes [kg/m’] Type of aggregate W/C |Compressive
of concrete | cement| water | aggregate super- | silica Max strength
(type) plasticiser | fumes grain Jem [MPa]
1 2 3 4 5 6 7 8 9
A 375 150 1931 0 0 |rounded 0,400 24
(35) 20 mm
B 450 150 2092 0 0  |rounded 0,333 32
(35) 20 mm
C 400 160 1920 0 0  |crushed granite 0,400 43
35) 16 mm
D 400 160 2048 0 0 | crushed basalt 0,400 45
(40) 16 mm
E 450 180 2029 0 0  |crushed basalt 0,400 71
(42,5) 16 mm
F 450 146 2084 9,00 0 |crushed basalt 0,324 85
(42,5) 16 mm
G 450 140 2069 13,50 31,50 | crushed basalt 0,291 105
(42,5) 16 mm

The data consists of seven sets of parameters deter-
mined for 150%150x150 mm concrete specimens A-G
after 3, 7, 14, 21, 28 and 90 days of curing by non-
destructive laboratory tests. The following non-destruc-
tive methods and parameters determined by them were
used in the investigations: the ultrasonic method — longi-
tudinal wave velocity V;, sclerometric methods — reflec-
tion number L for the Schmidt sclerometer of type N
and impression D for the HPS sclerometer and the pull-
out method — force N pulling out a steel anchor previ-
ously embedded in concrete. In case of concrete mix A,
B, C and D were: V,, L and T, and also age of concrete
t,, bulk densities g , and strengths /. determined by de-
structive methods. This results in a network architecture
(5-10-1). The number of hidden layers was 10. In case
of concretes E, F and G, they were: V;, L, D and N and
also ¢, g, and f.. This results in a network architecture
(6-12-1). The number of hidden layers was 12. Some
parts of created data base for concrete A and G are shown
in Table 2 [20].

On the basis of a review of the literature on the
subject [17, 19, 21] the following unidirectional, multi-
layer error-backpropagation networks were selected for
the task:

— the network with momentum and the descent gradi-
ent algorithm (WPB-GDM),

— the network with the descent gradient algorithm and
an adaptive step (WPB-GDX),

— the network with the conjugate gradient algorithm

(WPB-CGB),

— the Levenberg-Marquardt network (LM),
— the unidirectional radial network (RFB).

The elements of network structure for concretes
A - G are shown in Table 3. It should be noted that
each of the above networks was subjected to training
and testing for each of the concretes (A-G).

4. Methodology of concrete strength neural identifi-
cation

A methodology for concrete strength neural identi-
fication was developed. It is shown schematically in Fig 5.
Three blocks can be distinguished in the scheme.

Experimental results, forming a set of data on con-
cretes A-G, used for training and testing the neural net-
work are an integral part of block 1. The data set in-
cludes the four parameters determined by the non-de-
structive techniques [6-10, 22, 23], concrete age ¢,, con-
crete bulk density g and destructively determined
strength /. of the investigated concretes.

The experimental results as a set of patterns were
saved in a computer file which was then used as the
input data for the network in block 2. The data were
divided into data for training (80 % of the total data)
and testing the neural network. They were normalised
by applying the procedure of the MATLAB — Neural
Networks Toolbox simulator so that the mean value of
the results equalled zero and the standard deviation
equalled 1 [24]. The training patterns were randomly
input into the network to train it. In this way the neural
network learnt to identify the compressive strength of a
given concrete. If the neural network correctly mapped
the training data and correctly identified the testing data,
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Table 2. Some parts of created database for concrete A and G [20]

Input data Output
Designations Number of [ Age of Bulk v, L T, D N 7
of concretes |specimens | concrete 1 | densities y, | [km/s] | [-] [kG/mmz] [mm] | [KN] | [MPa]
[day] | [kg/m’]
1 2 3 4 5 6 7 8 9 10
A 2,350 3,791 | 18,0 20,0 - - 3,5
6 3 . : : : :
] ; 2380 | 4251 | 28,0 | 287 - 1 146
2380 | 4,507 | 30,0 | 297 } 1 205
6 14 : : : : :
2350 | 4494 | 340 | 338 - - 230
2380 | 4,544 | 320 | 356 - - | 237
2330 | 4519 | 390 | 39,1 ; = 244
2,490 | 411 | 380 '- 497 | 494 | 603
G 10 3 : : : : : :
2519 | 4,18 | 403 ; 486 | 620 | 686
2,539 | 427 | 433 ; 480 | 652 | 733
10 14 ; : ; ; ; ;
2,565 | 434 | 46,0 - 455 | 80,1 | 90,7
10 28 ; ; ; ; ; ;
2,591 | 438 | 510 ; 450 | 93,4 | 101,9
10 90 : : . : . :
V, - longitudinal it was considered trained. Then the input data were
BLOCK 1 o 1t was consi i
locit :
L- re;rle;:t?::: number The obtained results were analysed in block 3 whose
Set of data about Ts- hardness output was identified concrete compressive strength f. .
concretes A - G D - impression op

N - pulling out force

t, - age of concrete

Yo - bulk density

f. - compressive strength
of concrete

5. Results of neural network training and testing

All of five neural networks listed in point 3 were
trained and tested to find out the best one for the task.

BLOCK 2 .

The Levenberg-Marquardt network (LM) was ultimately

chosen [20, 25, 26]. The structure of the network is

|
Training and : LY
i shown in Fig 6.

MNeural network ‘ testing of Output data

input data I ' neural network processing
-

The choice of the Levenberg-Marquardt (LM) neu-
ral network for testing proved to be right, as evidenced
‘ mainly by the calculated low training and testing RMSEs

| for the network but also by the low values of relative
Analysis of obtained results. 3 testing error Maxewp and relative error standard devia-

BLOCK 3

Identified concrete tion Ste as well as the high values of correlation coeffi-
compressive strength fe, cient R (particularly for testing) [20, 27]. The obtained
results are shown in Figs 7-10.

The root-mean-square error (RMSE) was calculated
Fig 5. Illustration of concrete compressive strength iden- from the following relation:
tification by means of neural networks on the basis of
non-destructive tests [20]
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Table 3. The elements of network structure for concretes A-G [20]

1, 23-32

27

. . The elements of network structure
Designations | Short name of
of concretes | neural network| input | hidden |neurons in hidden | output | number of momentum
data layer layer epochs

1 2 3 4 5 6 7 8

A WPB-GDM 5 1 10 1 5000 0,10
WPB-GDX 5 1 12 1 1000 0,90
LM 5 1 10 1 20 -
WPB-CGB 5 1 8 1 200 -
RFB 5 1 138 1 138 -

B WPB-GDM 5 1 8 1 5000 0,50
WPB-GDX 5 1 12 1 1000 0,90
LM 5 1 8 1 20 -
WPB-CGB 5 1 8 1 200 -
RFB 5 1 143 1 143 -

C WPB-GDM 5 1 8 1 5000 0,90
WPB-GDX 5 1 12 1 1000 0,90
LM 5 1 10 1 20 -
WPB-CGB 5 1 8 1 200 -
RFB 5 1 141 1 141 -

D WPB-GDM 5 1 10 1 5000 0,90
WPB-GDX 5 1 12 1 1000 0,90
LM 5 1 12 1 20 -
WPB-CGB 5 1 10 1 200 -
RFB 5 1 139 1 139 -

E WPB-GDM 6 1 12 1 5000 0,90
WPB-GDX 6 1 14 1 1000 0,90
LM 6 1 12 1 20 -
WPB-CGB 6 1 10 1 200 -
RFB 6 1 191 1 191 -

F WPB-GDM 6 1 12 1 5000 0,50
WPB-GDX 6 1 10 1 1000 0,70
LM 6 1 12 1 20 -
WPB-CGB 6 1 14 1 200 -
RFB 6 1 185 1 185 -

G WPB-GDM 6 1 12 1 5000 0,60
WPB-GDX 6 1 12 1 1000 0,80
LM 6 1 10 1 20 -
WPB-CGB 6 1 12 1 200 -
RFB 6 1 187 1 187 -

RMSE(P)=W/% §1(4 -%)?, (6)
p:

where y, — the computed network output vector, z; — the
target output vector, P — the number of samples in the
database.

The relationship between destructively determined
compressive strength f, and compressive strength » iden-
tified by the LM neural network for concretes A and G
is shown in Fig 11, where the unshaded circles and the
shaded lozenges represent respectively training and test-
ing. The results show that the LM network correctly maps
the training data and correctly identifies the testing data.
This is evidenced by the fact that the circles and the
lozenges lie close to the centre line corresponding to the
ideal mapping as well as by the very high correlation
coefficient (R) values.

The graphs of LM network training and testing
RMSEs as a function of the number of epochs for con-

HIDDEN LAYER

INPUT
DATA

QUTPUT

Fig 6. Feed-forward neural network with a single hidden

layer: 6-10-1
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cretes A and G are shown in Fig 12. It is evident that
the RMSE decreases rapidly with the growing number of
epochs and stabilises at a level of about 0,05 for each of
the concretes.

The difference between the LM network training and
testing errors (DRMSE) as a function of the number of
epochs for concretes A-G is shown in Fig 13. It is evi-
dent that difference DRMSE decreases as the number of
epochs increases. When the latter reaches 20, the differ-
ence is in a range of 0,0001-0,001.

6. Results of practical verification

The compressive strengths of ordinary concrete in
two actual reinforced-concrete multistorey building struc-

1,00 1
0,95
o ---#-- Concrete A
o 0,90 1 —&— Concrete B
---A--- Concrete C
—»— Concrete D
—*— Concrete E
0,85 1 —e— Concrete F
—+— Concrete G
0,80 . T T 4 )
WPB- WPB- LM WPB- RFB
GDM GDX CGB

Neural network

Fig 7. Values of testing correlation coefficient R for
selected neural networks for concretes A-G

0,9
08 - ---#--- Concrete A
’ —a— Concrete B
07 - ---A--- Concrete C
—¢— Concrete D
— 0,6 1 —x— Concrete E
% —e—Concrete F
n§: 0,5 1 —+—Concrete G
0,4 -
0,3 -
0,2 -
0,1 -
0 T T T T )

WPB- WPB- LM WPB- RFB
GDM GDX CGB
Neural network

Fig 8. Values of testing root mean square error RMSE
for selected neural networks for concretes A-G

tures (a residential building and an office building), non
destructively assessed by means of neural networks were
practically verified using laboratory data. In case of two
buildings it became necessary to check the compressive
strength of the concrete incorporated in the ground-floor
structural elements when the concrete was nearly 28 days
old.

In the residential building the structural elements
were columns of 25 X 35 cm in cross-section and 20 cm
thick floor slabs made of concrete B20 based on rounded
aggregate (with the maximum grading of 20 mm) at
W/C =0,4. In the office building these were columns
30 x 45 cm in cross-section and walls made of concrete
B35 based on rounded aggregate (with the maximum
grading of 20 mm) at W/C = 0,36. In both buildings the

18 1
---#-- Concrete A
16 1
—a— Concrete B b4
44| 4 Concrete C 3
—x— Concrete D B
12 4 —*—Concrete E v
—=e— Concrete F :
—10 1 —+—Concrete G ’
w
B 8 A
6 .
4 -
) ]
0 T T T T ]
WPB- WPB- LM WPB- RFB
GDM  GDX CGB

Neural network

Fig 9. Values of relative error standard deviation Ste for
selected neural networks for concretes A-G

60 1
---#--- Concrete A
50 - —a&— Concrete B
---A--- Concrete C
—»— Concrete D
40 A
9 —x— Concrete E
‘E —e— Concrete F
g 30 1 —+— Concrete G
3
=
20 A
10 A
0 : T - : )
WPB- WPB- LM WPB- RFB

GDM  GDX CGB
Neural network

Fig 10. Values of relative testing error Maxewp for
selected neural networks for concretes A-G
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Fig 11. Destructively determined compressive strength f, versus compressive strength f, » identified by LM neural network for

training set and testing set for: a) concrete A, b) concrete G
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Fig 12. LM network training and testing RMSEs versus number of epochs for: a) concrete A, b) concrete G

concrete was made from grade 35 Portland cement with-
out additives.

In each of the building structures the tests were car-
ried out at twelve measuring places. Then in those places
f 100 mm cores were taken to destructively determine
the compressive strength of the concrete. During the tests
non-destructive methods were used and hypothetical
curves for the assessment of this strength, separately for
the ultrasonic method and the sclerometric methods, were
selected. The equations of the curves are given in [28].
The specimens were also used to determine the concrete
bulk density .

The LM network trained on the data set for con-
crete A and concrete B was selected for the identifica-
tion of the compressive strength in buildings 1 and 2,
respectively. The in-built concretes and concretes A and
B had similar composition and compressive strength.

The methodology of neural strength identification
is shown in Fig 14. Segment 1 includes parameters non-
destructively determined in laboratory for concretes A-
G, concrete ages and bulk densities as well as the trained
LM network. Segment 3 comprises the experimental re-
sults obtained for buildings 1 and 2.
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Fig 13. Difference between LM network training and
testing errors (ARMSE) versus number of epochs for
concretes A-G
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Fig 14. Methodology of neural strength identification in
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structural concrete
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The network simulation process proceeds within seg-
ment 2. Two pairs of input data simultancously enter a
selected neural network (in that case LM). One pair is
made up of database parameters (from segment 1) for a
concrete of similar composition and strength as the con-
crete in the investigated building structure. The other pair
contains experimental data (from segment 3) for the con-
crete incorporated in the building structure. After net-
work simulation the network output data are processed
and analysed in segment 4 at the output of which identi-
fied structural concrete compressive strengths f, p are
obtained.

Typical results of the non-destructive tests performed
in the places designated for core taking are shown in
Table 4.

Table 4. Typical results of non-destructive tests carried out on
structural elements of building 1 and 2 and bulk densities of
concrete

Number Number Average values of measured parameters
of of
gt measur.
building place vV, L T, A Y,
fkes] | [ | Gmmd) | | (kgm’]
1 2 3 4 5 6 7
1 1 4,33 30,0 31,3 28 2,292
! 2 4,41 31,5 34,0 28 2,253
! 3 4,37 30,2 31,9 28 2,144
| . . . . .
|
| . . . . . .
3 10 | 433 | 295| 305 |28 2188
; 11 4,34 29,0 273 28 | 2,113
| 12 4,34 30,0 30,4 28 2,281
|
! 2 1 4528 | 38,0 45,2 28 | 2,180
| 2 4535 | 394 458 28 | 2,200
i 3 4,543 | 39,2 46,1 28 2,220
| . I ' ' o
! . . . .
! 10 4,563 | 39,2 44,8 28 2,220
! 11 4,614 | 36,8 45,6 28 2,240
| 12 4,522 | 394 45,0 28 2,240
|
|
350
M Building 1
30,0 A OBuilding 2
25,0 A
E 20,0 1
=
= 15,0 A
s
10,0 4
50 4
0,0 - —

(a) (b) (c) (d)

Fig 15. Average compressive strengths f ~of concrete in-
corporated in structural elements of buildings 1 and 2
determined by: neural identification (a), destructive test
(b), ultrasonic method (c) and sclerometric method using
Schmidt sclerometer (d)
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Fig 16. Mean relative errors RE for compressive strength
of concrete incorporated in structural elements of build-
ings 1 and 2 determined by: neural identification (a), ul-
trasonic method (b) and sclerometric method using Schmidt
sclerometer (¢) in comparison with destructively deter-
mined strength

The average compressive strengths of the concrete
determined non-destructively by the LM neural network
and through destructive tests carried out on the core speci-
mens are shown in Fig 15. Compressive strengths ob-
tained by the hypothetical curves given in [20, 28] are
also shown for comparison.

The mean relative errors (RE) calculated for the
compressive strength of the concrete incorporated in the
structural elements of the two buildings are shown in
Fig 16. The lowest RE values: 3,70 % for building 1
and 4,84 % for building 2 were obtained for neural iden-
tification.

7. Conclusions

1. The results presented here demonstrate that the
assessment of the compressive strength of concrete by
artificial neural networks, particularly by the Levenberg-
Marquardt network, on the basis of parameters determined
by several non-destructive techniques is a viable method.
This is evidenced mainly by the calculated low training
and testing RMSEs for the LM network but also by the
differences between the errors (DRMSE) as a function
of the number of epochs, the low values of relative test-
ing error Maxewp, the low values of relative error stan-
dard deviation Ste and the high values of correlation
coefficient R (particularly for testing).

2. The average compressive strengths of the con-
crete incorporated in the structural elements of the two
buildings, determined by artificial neural networks and
by destructive tests during practical in situ verification,
are very similar. It is highly significant that the calcu-
lated average relative errors (RE) are definitely the low-
est for the strength determined by the artificial neural
network.

3. In the authors’ opinion, having a set of data ac-
quired by means of at least three non-destructive tech-
niques for a group of concretes with different composi-

tion and artificial neural networks trained on the data,
one can reliably neurally identify the compressive strength
of similar concretes incorporated in building structures
without the need to determine correlations or fit hypo-
thetical scaling curves.
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DIRBTINIU NEURONINIU TINKLU NAUDOJIMAS GNIUZDOMO BETONO STIPRIUI NUSTATYTI
REMIANTIS NEARDOMUJU BANDYMU DUOMENIMIS

J. Hola, K. Schabowicz

Santrauka

Rasoma apie gniuzdomo betono stiprio nustatyma naudojant neuroninius tinklus ir remiantis neardomyjy bandymuy
duomenimis. Nurodomi dirbtiniai neuroniniai tinklai bei ju tipai, kurie labiausiai tinka eksperimentiniy duomeny analizei.
Aprasoma neuroniniy tinkly mokymui bei testavimui taikyta eksperimentiniy duomeny imtis. Sioje imtyje gniuzdomo
betono stipris kito nuo 24 iki 105 MPa. Pateikiama gniuzdomo betono stiprio nustatymo, naudojant neuroninius tinklus,
metodika bei skaiCiavimo rezultatai. Analizés rezultatai rodo, kad dirbtiniai neuroniniai tinklai gerai tinka gniuzdomo
betono stipriui nustatyti. Tuo jsitikinta atlikus natfirinius tyrimus.

RaktaZodZiai: betonas, gniuzdomo betono stipris, neardomieji bandymai, dirbtiniai neuroniniai tinklai.
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