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Abstract. The effect of higher modes of vibration on the total non-linear dynamic response of a structure is a very
important and unsolved problem. To simplify the process the static non-linear pushover analysis was proposed associ-
ated with the capacity spectrum method, utilising a load pattern proportional to the shape of the fundamental mode of
vibration of the structure. The results of the pushover analysis, with this load pattern, are very accurate for structures
that respond primarily in the fundamental mode. But when the higher modes of vibration become important for the total
response of the structure, this load pattern loses its accuracy. To minimise this problem a new multimode load pattern
is proposed based on the relative participation of each mode of vibration in the elastic response of a structure subjected
to an earthquake ground motion. This load pattern is applied to the analyses of symmetric frames as well as to stiffness
asymmetric and mass asymmetric irregular building frames, under seismic actions of distinct orientations, permitting to

draw significant conclusions.

Keywords: pushover analysis, multimode load pattern, non-linear dynamic analysis, asymmetric irregular structures.

1. Introduction

Inelastic time-history analysis is a powerful tool for
the study of structural seismic response. A set of care-
fully selected ground motion records can give an accu-
rate evaluation of the anticipated seismic performance
of structures. Despite the fact that the accuracy and effi-
ciency of the computational tools have increased sub-
stantially, there are still some reservations about the dy-
namic non-linear analysis, which are mainly related to
its complexity for practical design applications. Since the
non-linear dynamic analysis of building structures is not
feasible for most practical applications, many research-
ers are trying to develop more rational analysis methods
that would achieve a satisfactory balance between re-
quired reliability and applicability for everyday design
use.

Many of these attempts suggest obtaining the main
characteristics of the seismic behaviour with a non-lin-
ear static analysis under monotonically increasing loads
(pushover analysis). The non-linear static pushover analy-
sis is a simple option for estimating the strength capac-
ity in the post-elastic range. This procedure involves
applying a predefined lateral load pattern that is distrib-
uted along the building height.

The lateral forces are then monotonically increased
in constant proportion with a displacement control in the

top of the building, until a certain level of deformation
is reached. The method allows tracing the sequence of
yielding and failure of structural members, as well as
the progress of the overall capacity curve of the struc-
ture.

The ATC-40 [1] and FEMA-273/274 [2] documents
contain this simplified non-linear analysis procedure
(pushover analysis) to determine the displacement demand
imposed on the building expected to deform inelastically.
The non-linear static procedure in these documents is
based on the capacity spectrum method, and assumes that
the lateral force distribution for the pushover analysis
and the conversion of the results to the capacity diagram
are based only on the fundamental vibration mode of the
elastic structure. So, the pushover analysis is adequate
for structures that vibrate predominantly in the funda-
mental mode. If higher modes are important, the push-
over analysis can underestimate some response quanti-
ties.

The scope of this research is to evaluate the effect
of the above-mentioned approximation in three dimen-
sional asymmetric frame structures, for which the higher
modes are important in the dynamic response of the struc-
tures.

For this type of structures a different lateral force
distribution is proposed for the pushover analysis, based
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on a multimode combination of the vibration modes ob-
tained from a linear elastic analysis of the structure. The
performance of the proposed multimode load pattern is
evaluated by comparing the results of the pushover analy-
ses, with either the conventional lateral load proportional
to the shape of the fundamental mode of vibration or the
multimode load pattern, and the results obtained from
the non-linear dynamic analysis of structures subjected
to earthquake excitations in different directions.

2. Non-linear dynamic analysis

The dynamic analysis of non-linear systems is per-
formed using direct numerical integration methods be-
cause analytical solution of the equations of motion of
the system is usually not possible if the excitation — ap-
plied force p(f) or ground acceleration i(f) — varies ar-
bitrarily with time or if the system is non-linear. So, such
problems must be solved by numerical time-stepping
methods for integration of the differential equations of
motion. The time stepping procedures can be divided into
two major groups: (1) the explicit methods and (2) the
implicit methods.

2.1. Implicit versus explicit procedures

In the explicit methods the new state vector is ob-
tained directly from the results of previous time instants.
In the implicit methods a set of equations needs to be
solved for the new state vector at instant ¢_,,.

The most popular explicit method is the central dif-
ference time integration procedure. This procedure is
formulated from the central difference approximation for

velocities and accelerations:

U _Un—Uiag (1)
2At

G = ui+1_2'~'i2+ U )
(At)

After considering the dynamic equilibrium equation
this leads to a recursive algorithm.

For stability reasons explicit time integration proce-
dures are restricted to very small time steps, which for
many realistic analyses lead to a very large number of
steps. The size of these time steps is typically so small
that the aspects of accuracy are practically irrelevant;
moreover, each of these steps is almost trivial when the
mass matrix is diagonal. Explicit schemes are particu-
larly suitable for structural dynamic problems where the
participation of higher frequencies in the overall response
is important, ie when structures are subjected to blast or
shock loading giving rise to a wave propagation prob-
lem.

As explicit schemes rely essentially on extrapola-
tions from an equilibrium state, it is hardly surprising
that the size of the time step allowed must be restricted

to be less than some critical value. The simplicity of the
method also allows for the treatment of non-linear prob-
lems. No iterations are then required, as the solution at
the new time instant again represents an extrapolation
from the equilibrium conditions at the previous time in-
stant. The inherent extrapolation nature of an explicit
method may lead to an unacceptable accumulation of
errors in the overall energy balance, especially for non-
linear problems.

Implicit procedures are very often made to be un-
conditionally stable, ie the solution can be obtained for
the time step of any size, so that the accuracy arguments
may pose an upper limit for the time step to be used.
The accuracy arguments are associated with the physics
of the problem considered, ie with the frequency of ex-
citation and with the fundamental period of vibration.
Each of the steps here is significantly more costly than
in the case of an explicit scheme, as the algorithm re-
quires a solution of a set of equations formulated at ev-
ery time instant. For linear problems, and if the time
step is kept constant, the factorisation of the effective
stiffness matrix could be done only once; the recursive
scheme implies effectively the solution for recursive ef-
fective right-hand side vectors of the equation of mo-
tion. In non-linear problems, ie involving plasticity, ev-
ery time step is associated with a new effective stiffness
matrix; iterations are required to ensure convergence for
both dynamic equilibrium as well as for constitutive re-
lations [3-6].

Unlike explicit methods, which for maximum effi-
ciency rely on a relatively poor mass representation by
adopting diagonal mass matrices and special starting al-
gorithms, implicit methods do not suffer from any of these
restrictions.

In the non-linear dynamic analysis performed in this
research the implicit Newmark procedure was utilised [3]
mainly because in the software used (ADINA) [7] the
Newmark algorithm is made to be unconditionally stable.

2.2. Implicit Newmark time integration procedure

In 1959, N. M. Newmark developed a family of time-
stepping implicit methods based on the equations [3, 8]:

Uipg = U + [(A—y) At]G; + (YAL) Giyg, (3)

Uy = U + (A G +[05-B) (a2 ]ei +
Bat?]i.

The parameters 3 and y define the variation of ac-
celeration over a time step and determine the stability
and accuracy characteristics of the method. A typical
selection for these parameters that is satisfactory from
all points of view, including that of accuracy, is: y=0,5;
0,1(6) < B < 0,25. These two equations, combined with
the equilibrium equation (5) at the end of the time step,
provide the basis for computing Ui, U, and Uj 1 at
time i+1 from the known Uj, U;, and U at time i

(4)
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There are two very well-known special cases of the
Newmark method, summarised on Table: average accel-
eration and linear acceleration methods [3, 8].

Average acceleration and linear acceleration methods
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3. Pushover analysis

Among engineers concerned with the development
of seismic design procedures there is a general consen-
sus that presently employed elastic design and analysis
methods cannot capture many important phenomena that
control seismic performance of structures in severe earth-
quakes. But the inelastic time-history analysis, although
a very powerful technique, is still computationally ex-
pensive and not feasible for most practical applications.

The search for a more rational and transparent de-
sign process has been pursued for some time and will
remain to be an issue of much debate and controversy
for years to come. Design will always be a compromise
between simplicity and reality; with the recognition that
reality is very complex and uncertain in imposed demands
and available capacities, and simplicity is a necessity
driven by cost and the limited ability to implement com-
plexity with commonly available knowledge and tools.
The pushover analysis is by no means a final answer to
the design/analysis problems, but it is a significant step
forward by giving consideration to those inelastic re-
sponse characteristics that will distinguish between good
and bad performance in severe earthquakes.

The static pushover analysis is a partial and rela-
tively simple intermediate solution to the complex prob-
lem of predicting force and deformation demands im-
posed on structures and their elements by severe ground
motion.

The important terms are static and analysis. Static
implies that a static method is being employed to repre-
sent a dynamic phenomenon; a representation that may
be adequate in many cases but is doomed to failure some-
times. Analysis implies that a system solution has been
created already and the pushover is employed to evalu-
ate the solution and modify it as needed.

5

The pushover is part of an evaluation process and
provides estimates of demands imposed on structures and
elements. Evaluation implies that imposed demands have
to be compared to available capacities in order to assess
acceptability of the design. It s fair to say that at this
time deformation capacities cannot be estimated with
great confidence, not for new elements and less so for
elements of existing structures. Recognising this limita-
tion, the task is to perform an evaluation process that is
relatively simple but captures the essential features that
significantly affect the performance goal. It is in this
context that research like the one carried is important, to
improve the reliability and the quality of the method.

A simple example of a pushover analysis is illus-
trated in Fig 1. The two-dimensional frame shown could
represent the lateral load resisting system for a steel pe-
rimeter frame structure.

E i | ]
A N O N S T

—
i
|
1
]

base shear

roof displ.

Fig 1. Illustration of a pushover analysis

The process is to represent the structure with a two
or three-dimensional analytical model that accounts for
all important linear and non-linear response characteris-
tics, apply lateral loads in predetermined patterns that
represent approximately the relative inertia forces gener-
ated at locations of substantial masses, and “push” the
structure under these load patterns to specific target dis-
placement levels. The internal forces and deformations
computed at the target displacement levels are estimates
of the strength and deformation demands, which need to
be compared to available capacities.

The static pushover procedure has been presented
and developed over the past twenty years by various re-
searchers. The method is also described and recom-
mended as a tool for design and assessment purposes by
the National Earthquake Hazard Reduction Program
(NEHRP, FEMA-273) guidelines [2] for the seismic re-
habilitation of existing buildings and represents a main
component of the Spectrum Capacity Analysis method
(ATC-40) [1]. The Structural Engineers Association of
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California also accepted this technique (SEAOC, Vision
2000) [9] among other analysis procedures with various
levels of complexity. This analysis procedure is selected
for its applicability to performance-based seismic design
approaches and can be used at different design levels to
verify the performance targets. It is clear from recent
discussions that this approach is likely to be recom-
mended in future codes.

4. The capacity spectrum method

The non-linear static pushover analysis is a com-
prehensive method of evaluating earthquake response of
structures explicitly considering non-linear behaviour of
structure elements. The capacity spectrum method is one
approach for implementing pushover analysis that com-
pares structure capacity with ground shaking demand to
determine peak response during an earthquake.

The capacity spectrum method estimates peak re-
sponse by expressing both structure capacity and ground
shaking demand in terms of spectral acceleration and
displacement (hence the name capacity spectrum).

4.1. Capacity and demand curves

The capacity spectrum method of pushover analysis
is essentially the same as any other method of pushover
analysis, except for the determination of peak global re-

sponse.

The capacity spectrum method assumes peak re-
sponse of the non-linear structure to be equal to the modal
displacement of an equivalent elastic system with an ef-

fective period, TC//,',

based on secant stiffness, as shown
in Fig 2.

Teff Capacity Spectrum

Demand Spectrum

Spectral Acceleration

Spectral Displacement

Fig 2. Capacity and demand spectra curves

The assumption of an equivalent linear system based
on secant stiffness properties is used by other non-linear
analysis procedures.

For example, this concept is the basis of procedures
developed by Division 95 of the Los Angeles City Build-
ing Code [10] for evaluation of concrete frame buildings
with masonry infill.

4.1.1. The capacity curve

The first step in the construction of capacity and
demand spectra curves (shown in Fig 2) is the conver-
sion of the pushover curve (eg, base shear vs roof dis-
placement) to an equivalent capacity curve (eg, spectral
acceleration vs spectral displacement).

Conversion of pushover to capacity begins with
linearisation (using secant stiffness properties) of the non-
linear structure producing a pseudo-dynamic “pushover
mode”. The shape of pushover mode is, in general, an
amplitude dependent since secant stiffness changes on
amplitude. Ideally, the pushover curve should be
linearised at the point of peak response (fully capturing
non-linear effects). Fortunately, pseudo-dynamic proper-
ties of the pushover mode are typically stable and tend
to be about the same at all amplitudes.

Fig 3 illustrates the conversion of a pushover curve
to a capacity spectrum curve.

Capacity Spectrum Curve

Pushover Curve (normalised
by building weight)

Spectral Acceleration

Spectral Displacement
Fig 3. Pushover conversion to capacity

The formulas for conversion of a pushover curve to
a capacity spectrum are identical to linear modal dynamic
analysis equations, which would be used to convert base
shear to modal force and to convert roof displacement
to modal displacement. The only difference is the sub-
stitution of the pushover mode shape (eg, at the point of
peak response) for a mode shape obtained from dynamic
analysis. The equations for pushover conversion to ca-
pacity are given bellow:

_VIW

A ) (6)
1241

D= 8roof , (7)
L)

with

(®)
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where A — spectral acceleration at D; D — spectral dis-
placement; V' — pushover base shear at 8mof ; 8mf -
pushover curve displacement; o, — fraction of mass in
pushover mode; o, — ratio roof/pushover mode displace-
ment; @, — pushover mode shape, at location i; <I>mf -
pushover mode shape, at roof; w, — tributary weight at
location i; W — total weight of the structure; /N — number
of discrete weight/pushover mode shape locations.

In the above equations, both @, and a, are equal to
1,0 when the pushover mode acts like a single degree of
freedom system. In this case, the capacity spectrum curve
is identical to the pushover curve.

4.1.2. The demand curve

The second step in the construction of capacity and
demand spectra curves (shown in Fig 2) is the calcula-
tion of demand spectra from 5 % damped design spec-
tra. This calculation is based on a damping reduction
factor that is a function of the effective damping associ-
ated with the capacity curve. In the capacity spectrum
method, effective damping is defined by equivalent vis-
cous damping of the pushover mode (based on secant
stiffness). Effective damping represents all energy-dissi-
pation mechanisms of the structure, considering both the
amplitude and duration (number of cycles) of earthquake
response.

In general, effective damping is amplitude depen-
dent. Before reaching yield, effective damping is typi-
cally assumed to be 5 % of critical, although this num-
ber could be greater depending on material type.
Newmark and Hall [11] suggest other values of damping
of structures at yield (or just bellow yield).

After reaching yield, effective damping tends to in-
crease rapidly as the hysteretic behaviour of the elements
dissipates energy during cyclic response. Of course, a
substantial number of elements must reach yield, before
there is a significant effect on the global response of the
structure. Damping will tend to increase with the ampli-
tude of the response (ie, hysteresis loop increases with
amplitude), but may not be able to sustain this level of
damping during repeated cycles of earthquake response
(ie, hysteresis loop squeezes or otherwise degrades area).

Fig 4 illustrates effective stiffness and effective
damping of the global structural system. In this figure,
the above-mentioned properties are shown for the same
capacity curve, but at different levels of response.

The first response level indicates slightly non-linear
behaviour of the global structure, effective stiffness is
about two-thirds of initial stiffness and effective damp-
ing is about 10 to 20 % of critical.

The second response level indicates a more signifi-
cant level of non-linear behaviour, effective stiffness is
about one-half to one-third of the initial stiffness and
damping is about 20 to 40 % of critical. These values of
damping assume no degradation of the hysteresis loop,
ie, they correspond to a full loop area.

/ Keff (x W/g)

Capacity

Spectral
Acceleration

Loop Areal/ ..

u\-—y 8y

Spectral Displacement

Moderate damping

[’)(_??- =10%-20%
Kcl’l’(x Wf’g)
_El Kij{ Capacity
=
EE
22 V-
w3 o
< A/ D, A
V3
Loop Area /o

Spectral Displacement

High damping
[ﬁ{_,{,ﬁ- =20%—-40%

Fig 4. Example effective stiffness and damping

The equations for calculating effective stiffness and
effective damping are given below:

A(W
K = — — | (10)
“ D(QJ
Bt = | T 1005, (11)
21| Kgg D

where Keff— effective secant stiffness at displacement D;
ﬁeff — eftective viscous damping, fraction of critical, at
displacement D; 4 — spectral acceleration at displace-
ment D; D — spectral displacement; W — total building
weight; g — gravity constant; Area — area enclosed by
non-degraded hysteresis loop for one full cycle of re-
sponse at displacement range £D; k — degradation factor
used to reduce non-degraded area of hysteresis loop.
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The equation for calculating effective damping, Beﬁ"
is based on the viscous representation of hysteretic damp-
ing, plus two modifications introduced by ATC-40 [1].
First, a nominal amount of viscous damping of 5 % of
critical is assumed to exist in addition to hysteretic damp-
ing. Thus, the damping equation always yields at a damp-
ing value of at least 5 % of critical.

Second, a degradation factor k£ is included in the
damping equation to reduce the full (non-degraded) area
of the hysteresis loop, when the duration of the earth-
quake is expected to affect the structure’s ability to dis-
sipate energy.

In case of no degradation, £=1,0. In the case of
complete degradation, £ =0,0 and Be_[f =0,05.

The amount of reduction of 5 %-damped spectra
associated with effective damping (above 5 % of criti-
cal) is based on the median spectral amplification fac-
tors given by Newmark and Hall [11].

The damping reduction factors are a function of the
period domain of response spectra. Short-period damp-
ing reduction factors, B, are as much as 50 % greater
(at very high damping levels) than long-period damping
reduction factors, B,. In effective damping amplitude in-
dependent (which is not generally true), the 5 % damped
spectrum would be reduced by the damping factors, as
shown in Fig 5.

5 % Damped
~ . Design Spectrum

Spectral Acceleration

Demand
Spectrum

Spectral Displacement

Fig 5. Demand spectrum construction

In general, effective period and effective damping
are amplitude dependent. Up to yield, the effective pe-
riod, T, is the same as the initial period, T}, and the
effective damping, Beﬁ, is equal to 5 % of critical. After
yield, effective period duration and effective damping
typically increase as inelastic displacement of the struc-
ture increases.

In all cases, a unique value of effective damping
can be calculated for each (spectral) displacement of the
capacity curve. Damping reduction factors based on these
values of effective damping may, in turn, be used to
calculate a single “demand spectrum” curve from the 5 %
damped design spectrum of interest. This process is used
to develop demand spectra that are then intersected with
capacity spectra to determine the peak response of the
system.

5. The proposed multimode load pattern

The multimode load pattern used in this research
has already been proposed by the authors in other publi-
cations [12—14].

When a structure is subjected to an earthquake its
linear elastic response will be a result of the combina-
tion of the modes of vibration with different participa-
tion factors:

n n
2=37=29G,
i i

(12)

where @ are the modes of vibration of the structure
and @; are the participation factors (time dependent).

The idea behind the combination of the modes for
the pushover analysis is that the participation of each
mode should be related with its influence on the
behaviour of the structure at a predefined instant related
with a specific response characteristic of the structure;
this means that the load pattern will be a combination of
the vibration mode shapes each one affected by a par-
ticipation factor.

The first step in the procedure is to obtain the modes
of vibration of the structure. The modes of vibration and
the associated periods result from the eigenvalue analy-
sis of the system, through the following equation:

(K-=AM)=0, (13)

where K is the stiffness matrix; A is the eigenvalue or
natural frequency; M is the mass matrix; and ¢ is the
eigenvector or vibration mode. Then the structural model
is subjected to the seismic action associated with a real
or a synthetic earthquake signal and the linear elastic
response of the system is evaluated. This procedure is
computationally easy and the software used in this re-
search for these analyses was the SAP-2000 [15]. This
package provides the individual response of the struc-
ture (displacement, base shear, energy) due to each mode
of vibration, ie, it is possible to get the contribution of
each mode for the global behaviour of the structure.

The global dynamic response of a structure, R_,
subjected to a ground motion excitation can be divided
into modal contributions, R, using the equation

Ry =2R. (14)

From these two parameters it is possible to define a
participation factor «;, that will represent the contribu-
tion of each mode to the global response of the system
using:

=D (15)
Ry

The dynamic behaviour of the majority of the struc-
tures is only affected by a small number of modes of
vibration. For each dynamic analysis it is always neces-
sary to define the number of modes that will be consid-

ered in the analysis n, . .
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The new proposed load pattern (LP) will be
proportional to the shape of the considered modes of
vibration, each affected by the participation factor. The
procedure to obtain the load pattern is defined in the
following equation:

Nmodes
LP=0y @1+ 0o +...4+0p o\ Op = Y o ¢; (16)
i=1

6. Case studies

The performance of the multi-modal load pattern
proposed has been tested in several analyses. For that,
the results of the pushover analysis performed with the
multimode load pattern and with the load pattern based
on the shape of the fundamental mode of vibration were
compared with the results of the non-linear dynamic
analysis. To guarantee a good performance, the new pro-
posed multimode load pattern was tested in three differ-
ent types of structures each with unique characteristics
that represent different types of structural behaviour. All
the structures analysed were of the three dimensional
models [16]: (1) the symmetric structure; (2) the stiff-
ness asymmetric structure; (3) the mass asymmetric struc-
ture.

For each structure, non-linear dynamic analysis with
increasing seismic action (£/ Centro ground motion) was
performed, ie, the structure was subjected to the same
earthquake ground motion but with increasing magnitude
level. In this way it was possible to achieve an ideal
pushover envelope to be compared with the results of
the static pushover analysis. The software utilised to
perform the non-linear dynamic analysis was ADINA.

6.1. The non-linear dynamic analysis model

To perform the non-linear dynamic analysis of the
structures the plastic-bilinear material model contained
in ADINA software was chosen [7]. This material model
is associated with the non-linear elasto-plastic beam ele-
ment. During the analysis the beam element matrices are
formulated using the Hermitian displacement functions.
The elasto-plastic stress-strain relations are based on the
classic flow theory with the von Mises yield condition.

The von Mises yield condition utilised for the stress-
strain relation is illustrated in Fig 6 and can be obtained
from the following equation:

1 1
fy=> ()05 =0, (17)
where s' — deviatoric stress tensor; Gy — updated yield
stress at time ¢ .

For the non-linear beam elements used the element
matrices were calculated applying numeric integration.
The locations and the labelling of the integration points
are shown in Fig 7.

T3

A

Elastic region

a) Principal stress space

b) Deviatoric stress space

Fig 6. The von Mises yield surface

Integration points
equally spaced

w

™~
.3 1 2 4 .
—{4—— —@—@—-@-@—-—(-)—»r
r=-—1 =0 r=1

a) Integration point locations in r-direction

Integration

points
equally
spaced t ‘
Height —®$®—+
Width

Rectangular section

b) Integration point locations in s-direction

Fig 7. Location of the integration points

6.2. The non-linear static pushover model

The material model used in the static non-linear
pushover analysis is based on the procedures proposed
by the ATC-40 [1] and FEMA-273/274 [2] documents,
defining force-deformation criteria for the hinges used
in the pushover analysis. Fig 8 describes the typical force-
deformation relation proposed by those documents.

Force

LS

A Deformation

Fig 8. Force-deformation for pushover analysis
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Five points labelled 4, B, C, D and E are used to
define the force deflection behaviour of the hinge and
three points labelled /0, LS and CP are used to define
the acceptance criteria for the hinge (/O, LS, and CP
stand for Immediate Occupancy, Life Safety and Collapse
Prevention respectively).

The hinges selected for the static non-linear push-
over were the P-M2-M3 proposed by the above-men-
tioned documents. This type of hinges accounts for the
interaction between the axial force and the bending mo-
ment on the behaviour of the structure. The interaction
surface is defined by the user, and for the structural analy-
ses of the three-dimensional models before-mentioned it
was chosen the one presented in Fig 9. This interaction
surface, proposed and used by several researchers in pre-
vious studies, is given by the interaction equation

p2 +m?+35 p2m2 =1,

(18)
where Py is the squash load and My — the plastic mo-
ment.

0,8 1

0.6 1

(P/Py)

p=

04 1

0,2 4

0

0 02 04 06 08 1
m = (M/My)

Fig 9. Interaction surface

6.3. The results for distinct building frames

To test and verify the reliability and performance
of the multimodal load pattern several analyses were
performed in three three-dimensional structural models
[16]: the symmetric structure (Fig 10), the stiffness asym-
metric structure (Fig 11) and the mass asymmetric struc-
ture (Fig 12). Some results of the comparative analyses,
of symmetric and asymmetric three dimensional building
frames, are presented in accordance with [12—14].

Fig 10. Symmetric structure Fig 11. Stiffness asymmetric

structure

Fig 12. Mass asymmetric structure

Since the structures considered in this study were
three-dimensional models, each one was analysed con-
sidering the seismic ground motion acting in different
directions. In the following sections some results of those
analyses are presented.

6.3.1. The symmetric structure

This structure responds primarily in its fundamental
mode of vibration, so the multimodal load pattern coin-
cides with the conventional load pattern based on the
shape of the fundamental mode of vibration (Fig 13).

5000

*

hd ¢ Non-linear
dynamic
analysis

Pushover
analysis

Base shear

0 0,05 0,1 0,15 0,2
Top displacement

Fig 13. Results on the symmetric structure

6.3.2. The stiffness asymmetric structure

In this structure the higher modes of vibration are
important for the global response of the system, particu-
larly the torsional ones due to the stiffness asymmetry. So
the structure was analysed for various directions of the
ground motion in order to obtain a response dominated by
the different modes of vibration (Figs 14, 15). The angles
studied were: —45°, 0° and 45°. With these three analy-
ses the influence in the structural response of the various
modes of vibration is taken into account for the com-
parison between pushover analysis with the multimodal
load pattern and the non-linear dynamic analysis.
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Fig 14. Stiffness asymmetric structure (—45°)
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Fig 15. Stiffness asymmetric structure (0°)

6.3.3. The mass asymmetric structure

This structural model is a more complex of the three
analysed. Once again the higher modes of vibration are
important for the global response of the system. During
the research it became clear that the dynamic behaviour
of this structure and the influence of each mode was
strictly related to the direction of the earthquake ground
motion, ie, the influence of the modes was directly pro-
portional to the angle of the earthquake.

The earthquake ground motion was applied in three
different directions (0°, 20°, 45°) and some results are
outlined in Figs 16, 17.
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Fig 16. Mass asymmetric structure (20°)
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Fig 17. Mass asymmetric structure (0°)

7. Conclusions

The performance of the pushover analysis in struc-
tures where higher modes of vibration are important for
the total response of the system was investigated in this
research. For that a multimodal load pattern based on
the elastic response of the structure when subjected to a
ground motion is proposed to account for the effect of
the higher modes of vibration.

To conclude about the performance of the proposed
load pattern, several analyses in three different structural
models were carried out. The results of the pushover
analysis of those structures with the proposed multimodal
load pattern and with the conventional load pattern pro-
portional to the shape of the fundamental mode of vibra-
tion of the system were compared with the non-linear
dynamic analysis of the structures subjected to a ground
motion with increasing severity, so that an ideal enve-
lope for the pushover analysis was obtained. These are
the conclusions drawn from those analyses:

* Pushover analysis is much easier and faster to imple-
ment than the non-linear dynamic one;

* When the dynamic behaviour of a structure is domi-
nated by the fundamental mode of vibration, the
result of the pushover analysis with the conventional
load pattern proportional to the shape of the funda-
mental mode of vibration is very accurate. This can
be observed in the results of the symmetric struc-
ture and of the mass asymmetric structure;

» For structures where the torsional modes of vibra-
tion are important for the global response of the
structure the results with the proposed multimodal
load pattern are much more accurate than the ones
with the load pattern proportional to the shape of
the fundamental mode of vibration. This statement
is justified by the results of the stiffness asymmet-
ric structure;

* In three-dimensional mass asymmetric structures with
a dynamic response dominated by more than one
mode of vibration, the performance of the pushover
analysis with the proposed multimodal load pattern
is very reliable and accurate. The pushover analysis
with the load pattern proportional to the fundamen-
tal mode of vibration tends to overestimate the re-
sponse of the system. This is observed in the re-
sults of the asymmetric mass structure;

» The performance level of the conventional pushover
load pattern proportional to the shape of the funda-
mental mode of vibration decreases when higher
modes of vibration became relevant to the total re-
sponse of the system. In those situations the pro-
posed multimodal load pattern becomes a useful
tool;

» It will be necessary to perform some experimental
studies to validate these computational results;

* From the evaluation of the results obtained in this
research it is possible to conclude that the proposed
multimodal load pattern improves the accuracy and
reliability of the pushover analysis.
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SUPAPRASTINTA ASIMETRINIU ERDVINIU STATYBINIU REMU DINAMINE ANALIZE

R. C. Barros, R. Almeida

Santrauka

Aukstesniy svyravimo formy efekto jvertinimas, nagrinéjant bendra konstrukcijos elgsena, yra labai svarbi dar neiSspresta
problema. Uzdaviniui supaprastinti pasiiilytas nesudétingas statinés netiesinés dinaminés analizés algoritmas, susietas su
laikomosios galios spektriniu metodu, kai apkrovos modelis proporcingas bazinéms konstrukcijos svyravimo formoms.
Supaprastintos dinaminés analizés rezultatai, gauti naudojant §i apkrovos modeli, yra labai tiksliis konstrukcijos atsakui
pagal pirming bazing forma. Taciau tais atvejais, kai tampa svarbi aukstesniy svyravimo formy jtaka bendram atsakui,
Sio apkrovos modelio taikymas yra netikslus. Uzdaviniui minimizuoti sitilomas naujas daugiamodalinés apkrovos modelis,
ivertinantis kiekvienos svyravimo formos santykinj poveikj tampriam atsakui konstrukcijos, kuria veikia zemés drebéjimo
sukelti pagrindo poslinkiai. Sis apkrovos modelis pritaikytas statybiniy simetriniy rému, kuriuose veikia skirtingu krypéiy
seisminiai poveikiai, analizei, {vertinant ir tuos atvejus, kai standumai ir masés yra asimetrinio pobiidzio. Atlikti analizés
rezultatai apibendrinti svarbiomis iSvadomis.

RaktaZodzZiai: supaprastinta dinaminé analizé, daugiamodalinés apkrovos modelis, netiesiné dinaminé analizé, asimetriSkos
ir nereguliarios konstrukcijos.
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