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Abstract. A new finite element for modelling laminated bending plates was defined based on the effective triangular
finite element of the discrete Kirchhoft’s theory. The plates can be made of layers arranged in any order and consisting of
different but orthotropic materials. The suggested finite element has 6 degrees of freedom in every node, i e 3 linear
displacements and 3 rotations about the axis of coordinates. A mathematical model of the element describes stress and
strain effects both in the plane of the element or perpendicular to it, except for shear. The suggested element can be used
for calculating laminated plates or beams, not subjected to heavy shear stresses. Some numerical case studies are
provided, while the results obtained are compared with the well-known analytical and numerical solutions.
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1. Introduction

Modern production technologies are used for manu-
facturing various composite materials. Composites, due
to their outstanding mechanical properties, relatively low
weight and a possibility to predetermine their characteris-
tics, are widely used not only in high-tech areas, but in
civil engineering as well. According to their structural
and design characteristics, composite materials can be
subdivided into reinforced materials shaped in various
metal or non-metal moulds and laminated or layered
structures obtained by combining layers of various mate-
rials. Therefore, the development of structures made of
composite materials largely depends on the ability to
model them.

It is hardly possible to review modelling problems
associated with all available composite materials, there-
fore, the present paper addresses only the problems of
modelling laminated bending plates. Though laminated
structures are widely used, the theories of non-linear de-
formation and failure of modern layered composites as
well as methods of mathematical modelling have not
been fully developed and presented in detail yet. Because
of anisotropic nature of laminated structures, all tension-
compression and bending effects as well as the interac-
tion of bending-membrane and membrane-shear effects
should be considered [1-4]. Therefore, only a few as-
sumptions simplifying the stress-strain state for the prob-
lems associated with the analysis of thin-wall bending
plates can be applied.

A wide variety of finite elements are available for
the analysis of structures made of commonly used mate-
rials. However, the problems associated with laminated

twin-wall bending plates require a special kind of layered
finite elements. Precise finite elements [5-9] are often
hardly realisable in application programs due to the com-
plexity of a mathematical model. Therefore, the need for
sufficiently accurate, efficient and applicable finite ele-
ments to be used in laminated bending plates, which do
not require any cross-section symmetry, still remains.

In the present paper, new types of matrix expres-
sions allowing for evaluation of all above-mentioned
membrane and bending effects are offered for the lami-
nated anisotropic triangular finite element DKT_CST
[10]. This finite element can be used for modelling ani-
sotropic laminated bending plates consisting of layers of
orthotropic material arranged in any order, as well as the
particular zones of similar plates or beams, when shear
deformations are insignificant.

2. Mathematical modelling of problems

A finite element may be considered to be completely
defined, when it is applied to solve linear and non-linear
static problems as well as modal analysis [11] and its
accuracy is determined, because all characteristic struc-
tural matrices of the element should be generated for
these problems. Below mathematical models of the con-
sidered problems are provided.

The following equation applies to a linear system of
finite elements:

Ko =F. ()
where [K 0] is a linear stiffness matrix; 8 — a displace-

ment vector; F — a vector of loads applied to the system.
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Due to membrane stresses, actual plate displace-
ments are much smaller than those determined by the
theory of linearity. A discrete problem model may be
expressed by a system of non-linear algebraic equations:

[k@)s-F=0, @)

where the stiffness matrix depends on displacements. The
iterative Newton-Raphson method [12, 13] was used for
solving a system of non-linear equations. According to
this approach, a rough solution 8, , where a connection

error of external and internal forces y, # 0, was refined
by solving a system of linear equations at every iteration:

Ad n+l = _[KT ];1 YV, (3)

&7 ]=[Ko ]+ [Ko [+ [k, ], “)
where [K T] is a tangent stiffness matrix; [K c5] — a ma-
trix of initial stresses; [K L] — a matrix of large displace-
ments. A connection error , is calculated by the

stresses G, :

—1r
v(3)= j[B] 6dV -F =0, 5)
v
where lEJ is a non-linear matrix relating deformations to

displacements. A particular case of a geometrically non-
linear problem is the problem of initial stability [11],
when matrix [K L] =0.

The dynamic problem is expressed by the equation:
Ko +lc] Lo+ ssk=0.  (©
ot ot

where [C] and [M ] are damping and mass matrices. A

particular dynamic problem is an eigenvalue problem [11,
14], when matrix [C] =0 and F=0. This problem is
expressed by the equation (6) of the form:

(KB =AM, (7)

where A denotes natural frequencies.

3. Definition of the finite element

The stress-strain relation for laminated plates [15,
16] is expressed in the following way:

N=|p” |e"+|p"" |k .
)
M =|D7" |e%+|D" |k,

where Nand M are membrane and bending stresses; e’

denotes midsurface membrane strains; k — curve vector;
[D v J, [D plb J lDbJ — accumulative constitutive matrices

obtained by combining constitutive matrices of layers
[17-19]:

n

[Dpl]: Z [Dk](Zk - Zk—l)’

k=1

[pre )= %Z D)2 -22). ©)
k=1

[Db]%i[Dk Jei-23).
k=1

where £ is the layer’s number; [Dk] — the k-th layer con-

stitutive matrix obtained by transforming the k-th layer
elasticity characteristics into a global system of the coor-
dinates; z; and z,_, — the coordinates of the k-th layer.

The finite element is defined as a combination of
bending (DKT) and membrane (CST) finite elements
[10]. The DKT element [20] has 3 nodes and 3 degrees of
freedom, ie a bending flexure and 2 rotations per node,
the interpolation functions of the element should meet

only C° continuity requirements, because only the first
derivatives of the main variables — slopes to the middle
surface — appear in the energy functional. The CST ele-
ment has three nodes, the 1-st order interpolation function
and two degrees of freedom — displacements per node.

Structural element matrices are generated based on
the matrices of the membrane (pl) and bending (b) ele-
ments by combining them as required by the arrangement
of the element degrees of freedom to produce a global
element matrix.

The vector of degrees of freedom of any node of the
element is expressed as:

0,0, (10)
0,,0, —

ai ={Mi,vi,0)i,e

Xi»

where u;,v;,®; are node displacements; 0,0,

node rotations about the axis of the coordinates.
The stiffness matrix of the element is as follows:

pl plb
eHdf gl
where [Ké’l], [Ké’] and [Ké’”’] are membrane, bending

and coupling stiffness matrices.
[k = alsp] o [sy'] (12
where A is the area of the element; lB(‘)” IJ — a linear

membrane geometric matrix [10]. The elements of matrix

[K b l] are calculated in the following way:
diibb; +dficc; +

[
b 1|dfbe b))
O 4Adfbic, +dfbb, +

pl pl
dybic; +dj3bb; +
pl pl
d23cicj + d33bjcl-
pl pl ’
dzzcic_,' + d33bibj +

pl pl pl( )
dycic;+dyzbe; dy\bic;+bjc;

i=1,2,3 j=1,2,3, (13)
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where difl denotes the elements of the accumulative

membrane constitutive matrix [D”ZJ; b; and c; are

geometric coefficients. A global matrix is obtained from
9 sections of this type.

[kt )= et ] o Tt v (14

where [Bg J is a linear bending geometric matrix [10].
After the rearrangement [18], any element of matrix
K(])’ J is expressed in the following way:

3
01] Z Z Z Z[dllx X] ]Jblllb]]]+
ii=1 jj=liii=1 jjj=1

d22Yz it j, jjCiii€ jjj +

dlZ(Xz lle ]]blllcj_]] + X] ijl llbjjjclll)

[X iX j, jibjjiciii + X j, jiYi,iiliiib jj +]+

X XJ J]b”lCJJ] +Xl ”YJ ]]b”le]]

(Xl llYJ jj lll J]j +Yl llY] jjblllc]jj J+

Xj ]_]Yl llclllcjjj +Yl llY] jjbjjjciii

[Xl llX] ]] lll ]j] +Xj ‘]]le llblllcj]] J «

Xz zzY j_]bjjjclll +Yl qu jjblllbjj_]
ON... ON
J‘ iiz l
oL; aL

(11

i=1,2,...,9, j=1,2,....9, (15)

where dl-l]’» denotes the elements of accumulative bending

constitutive matrix lDbJ; N; denotes the interpolation
and Y, .

functions; X, ;. are coefficients of the interpola-

tion functions; b;; and c;; stand for geometric coeffi-
. N, N,
The values of the integrals jﬁidA,

A i B

cients.

ijjz ON Jjz
INiizijszklelsz’ J—dA’ Iszkakz —dA
A a Ly OL j;
are calculated by the software package Mathematica and
stored in the data files. To retrieve them, indices

. 1
iiz = %3 +ii and jjz = JT 3+ jj, calculated accord-

ing to integer calculation, are used. Then, the elements of
the stiffness matrices are numerically synthesised. This
method of matrix generation is more advantageous than
numerical integration because it is time-saving and allows
us to avoid the errors associated with numerical integra-
tion.

Flexural strains cause plane deformations, and vice
versa (8). This effect is determined by a coupling stiff-

Ib
ness matrix [K s ]

kg l= leg o Tsshv. ao)
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When the above rearrangement is made, the ele-

ments of matrix [K 7 lb] can be expressed as follows:

plb [ plb
KOij - Z 2ldiy b X] JJbJJJ +
JJ =1jjj=1

plb
d blYJ J JU

plb
dPP(e;X j by +biX

plb,.
+d33TeY; e+ a7

+be)

. 3iC i iy i}

df;b(cX +cY;: b

i) Ji JJJ

] jjz A,
i€ Jii jaL“

i
i=1,3,5, j=12,...,9,

ob [ plb.
Ko (i+1); T Az Z 2ldiy X j b+

Ji=Lji=1
plb
df'BX j b+ B e e+
plb
af (b X i + b, ]]bjjj)
ON
plb ] JIZ
ap(x X i€ + iy, b + 0¥ jj JJJ jaL--- dA,
i
i=1,3,5 j=12,...,9, (18)

where dlflb denotes the elements of the accumulative

coupling constitutive matrix lD rlb J
The matrix of the initial stresses of the element is as

follows:
[Ka]{g [Kobﬂ, 19)

[k2]- fiaT e 20

where matrix [G] depends only on the coordinates [14];
[T] is a matrix of the membrane stresses.

When the rearrangement is made [18], a single ele-
ment of matrix lK gJ can be expressed as:

[ o-z]] Z Z Xi llX] ]]Tx+anY] ]]Ty+

ii=1 jj=1 21)
(X, i¥jjj tYiiX j, ]]) xv] NiizN jj-dA
i=1,2,..9, j=1,2,..9,
where T, . T,, T, are the membrane stresses.

The stlffness matrix of large displacements of the
element is as follows:

0 K"
Nz [[152] e

where |_K f] and [K 7 lb] are non-linear matrices of bend-

[KL]:

ing and coupling stiffness.
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[et]- e lore ot o L]
[B{ ]T [D pl IB{ Hdv.

SIS AR AR (24)
After the rearrangement [18], the expressions for in-

(23)

dividual elements of matrices KfB and KZC are as

follows:

ZZ Z Z Z(ﬁkx

b
Kipij=
]
2Ak =lii=1 jj=1kk=1 jjj=1

XiiXpud i +Y;i¥eued ) +
L (Yz thkkk+XlzzYkkk)dplb
inkakdlz + ankkkd22 +
(leszkk"_Xlqukk)dplb
X,”kakd13 + ”,Ykkkd23 +

(Yz ukak +Xz zzYkkk)d33

3P0t

wicit @

(x

Yt I (VoM e i
3 T LR A[ iiz N kkz ),

oL jj;
i=1,2,...,9, j=1,2,...,9.

9 9 3
Key=3EY S S Slblalx

k=1=1ii=1 jj=1kk=11l=1

1=
qu ]]]d11+Xlll ]]]d13+
X X1 +
Y iXjjid3+Y, id33

i jjj iii JJJ

drzy +
iii JJJ JJJ 23
Yk,kle,ll( +

Xl ii ]]]d32 +Xl nX]]]d33

Xz il ]]]d12+ i,ii

X "XJH
Xk,kle,ll It X
23

d13+

d22+ i,ii (26)

X jjjdor +

d31 +Y; i, j/jd32 +

d33 +
id33

lll j]]
X;iX

lll Jj]

JoJ il J]]

J.NuzN NkaNllZdA)’

Jjz

i=1,2,..,9, j=1,2,...,9.

k= ey T Tt v

where |_BfJ is a non-linear geometric bending matrix
[11].
After the rearrangement [18], the following expres-

27)

sions are obtained for the elements of matrix (K f”’ ]:
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Ib
pl]_ ZZ Z[sk X]]]kak><
2A (2=t kk=

1
(bldlpl +edf) )+ Yj ik, kk(bldlz +cdf; )

(28)
(YJ X kkie X ik Xbldw tedy ))
j N ;i N dA,
K2 ), ‘ﬁ >3 Sl X
k=1jj=1kk=1
(bld31 +cdf )+ Y, ¥k (b,d32 + c,dn’) 29)

(Y/ Xk + X ik Xbld% +cpdsy | ))
[N Nk A,
A

i=1,3,5 1=1,23, j=1,2,.,9,
where 62 is the displacement or turn of the bending ele-

ment node (10).
A connection error of external and internal forces (5)
is calculated in the following way:

1

1b b
EKf ]ﬁi
kot L|.b b
[KI{’ ]ﬁl” +5[KLB]r8i+
b kb 1[0 kb
[KLB]EI‘ +E[KLC}SL‘

where i is the iteration; matrices [K flb] , lK ZBJ and

V= (30)

lK icJ are generated according to the calculated dis-
placements 87 ! and 6? in iteration (i—1).

Stresses are calculated in this way:

pl pl
Co o

where 6, and ¢, are vectors of linear and non-linear

T 0 Y ) R

stresses.

o) = [DP’b]T[BOP’]ﬁPZ + [Db][Bg]ﬁb, (33)
of = [p"[Brb". (34
o’ :%[D””’ ['[82p*. (35)

4. Numerical examples

The quality of the finite element developed for
solving geometrically linear and non-linear static and
eigenvalue problems will be demonstrated by standard
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tests of bending plates. Square symmetrical and non-
symmetrical laminated plates which were fixed or hinged
were tested by applying concentrated or distributed loads.
The calculation results were compared as dimensionless
values.

A
y e
! a
} (I 3
I 2
! I |
]
LI 4-——. — L —
A! X b)
|
i I
i dy=
1

Fig 1. Computational schema: a) symmetrical laminated
plate; b) non-symmetrical laminated plate

4.1. A linear problem

Test 1. A hinged square three-layer plate (Fig la) sub-
jected to uniformly distributed pressure g=0,001 was

considered. The plate was calculated for 3 different mate-
rials making the intermediate layer. The difference be-
tween the material properties of the intermediate and
upper and lower layers is 1 (further (1:1:1)), 10 (further
(1:10:1)) and 50 (further (1:50:1)) times. The thickness of
the layers is h; =10,0, h, =80,0 and h; =10,0, respec-
tively; L=1000,0. The orientation of the orthotropy axes
of the layers is 0/45/0. The data on the properties of the
material of the layers are given in Table 1.

Table 1. A symmetrical composite: properties of the materials
of the layers

Modulus of elasticity Shear PO]SS(.m’S
Layer No modulus ratio
E Ey Gy, Vi2s Vo
1,3 3,4156 1,7931 1,0 0,44
a) laminated orthotropic material (1:1:1)
2 | 34156 | 17931 | 10 [ 044
b) properties of the material of the layer (1:10:1)
2 | 034156] 0,17931] 0,1 | 044
¢) properties of the material of the layer (1:50:1)
2 | 006831] 0,03586] 002 | 044

One fourth of the plate was modelled by 72, 128 and
200 finite elements DKT_CST. A comparison of the cal-
culation results obtained at the deflection point A (Fig 1)
by using the DST element and analytical solutions [21] is
provided in Table 2.

As shown in Table 2, the results obtained by using
the element DKT_CST are monotonically approaching
the accurate analytical and DST-based solutions. The
accurate deflection values were obtained by subdividing a
quarter of the plate into 128 elements.

323

Table 2. Central deflection of symmetric layered plate

Solutions @
Test (according to the number of elements)
DST Ana- DKT_CST
72 lytical 72 128 200
1:1:1 166,94 | 168,38| 166,93 |167,56 167,78
1:10:1 ] 30,96 | 31,24 |30,955 |31,071 31,088
1:50:1| 6,77 6,76 6,702 | 6,723 | 6,729

Test 2. Two laminated non-symmetrical square fixed and
hinged plates were considered. The plates consisted of 4
layers (Fig 1b) of overall thickness 7 =0,04 and layers
h, =0011, hy, =009, hy=0]1 h,=01,
respectively, and L =1,0. The data on the properties of the
material of the layers are presented in Table 3. The orien-
tation of the orthotropy axes of the layers is 0/90/0/90.
The plates were acted upon by a concentrated force
P =100,0 applied at the point A.

thickness

Table 3. A non-symmetrical composite: properties of the mate-
rials of the layers

Layer Modulus of elasticity msol:ii?lll‘ls Poizslst;):’s
Ne Ey Exn G Viz> Vai
1 3,0x10% | 3,0x10% 1,2x10% | 025

2,3,4 | 30x107 | 30x107| 12x107 | 025

A fourth of the plate was modelled by 8, 18, 32, 50,
72, 128 and 200 finite elements DKT_CST. A compari-
son of the calculation results obtained by using the
TRIPLT element at the deflection point A is provided in
Fig 2. The solutions based on the use of the element
TRIPLT were obtained when the calculations of the
fourth part of the plate divided into 18 elements had been
made.

2,50 T T
2,001 Hinged plate:
3 | —A—TRIPLT —V— DKT_CST
ox10 1,75 Fixed plate:
B —®— TRIPLT —® DKT CST
1,501 o : : :
1,251
1’00 1 1 1 1
0 50 100 150 200

Number of elements

Fig 2. Convergence of values

One per cent difference between the solutions based
on the use of TRIPLT and DKT_CST elements was ob-
tained for a hinged plate by subdividing one-fourth of the
plate into 128 DKT_CST elements. The results of similar
accuracy were obtained for a fixed plate by subdividing
one-fourth of the plate into 200 DKT_CST elements.
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4.2. A geometrically non-linear problem

The calculations were made for a fixed non-
symmetrical laminated square plate (Fig 1b). The plate
consisted of 3 layers of the thickness: & =0,],
h, =0,65, h; =0,25; L =10,0. The data on the proper-
ties of the material of the layers are presented in Table 4.
The orientation of the orthotropy axes of the layers was
0/90/0. The deflection of the plate at point A was consid-

ered by changing the value of the concentrated load P
from 0,014 to 0,7A.

Table 4. Properties of the materials of the layers

Layer | Modulus of elasticity msoltlieflll.ls PO;ZSt(i): S
No
Ey Ey Gy, Vizs Vai
1,3 3,4156 1,7931 1,0 0,44
2 1,7931 3,4156 1,0 0,44

One-fourth of the plate was modelled using 128
DKT_CST finite elements. The deflections of the plate
observed at point A were compared with the solutions
obtained for the triangular element SHELL91 by calcula-
ting plates subdivided into 128 elements, using the soft-
ware package ANSYS.

The values of deflections are given in Fig 3 in terms
of the overall plate thickness A.

Deflection, h
30 : j j 3 ! :
Solutions: :

25 . Linear

i ‘ —®— DKT_CST| ' : ;
‘ —A— SHELLY1 | | : ‘

1,5
; : &

i i i i i i i

0,
8,00 005 010 015 020 025 030 035

Total load

Fig 3. Central deflection of the plate

The calculations show that the membrane strains oc-
cur when the deflection at point A is more than 0,2 h.
When the linear deflection was 0,25 h, the difference
between the non-linear solutions obtained by using the
elements DKT_CST and SHELL91 made 0,08 %. Then,
the linear deflection reached 2,5 h, while the difference
between the non-linear solutions was 2 %.

4.3. The eigenvalue problem

The calculations were made for a non-fixed square
three-layer plate (Fig 1). The whole plate was analysed to
take into account all forms of oscillations, while the con-
ditions of symmetry were neglected. The thickness of the
plate layers was h; =01, h, =015, h3=0,25, respec-

tively; L=4,0; moduli of were

E, = E, =2,0x10°;

elasticity

Poisson’s ratio was

Vi, =V, =0,3; shear moduli were G, =0,77 x 10°
and density p=1000. The orientation of the layers
orthotropy axes was 0/0/0.

The plate was modelled using 8, 32, 72, 128 and 200
DKT_CST elements. A comparison of the first three cal-
culation results relating to non-zero eigen frequencies
with analytical solutions is presented in Fig 4. The first
six zero forms of the plate match the movements of a
solid body. Non-zero forms are shown in Fig 5.

Frequencies v, Hz

Solutions:
[1] —®— analytical—*— DKT_CST
[2] —®— analytical—®— DKT_CST
[3] —*— analytica —Y— DKT _CST

IR RS o

0 50 100 150 200

Number of elements

Fig 4. Convergence of the first three non-zero frequencies

a) v=30,66 Hz

b) v=60,36 Hz c)v=94,27 Hz

Fig 5. Forms and frequencies of the first three non-zero
natural oscillations

The convergence curves of the results presented in
Fig 4 demonstrate that the solutions obtained using
DKT_CST element quickly converge towards an accurate
solution. The accurate value of the first eigen frequency
was obtained by subdividing the plate into 128 elements.

5. Conclusions

All finite element structural matrices were generated
using an effective analytical-numerical method of matrix
development. This helped to avoid difficulties and errors
involved in currently used numerical integration, to in-
crease the accuracy of calculations and to obtain analyti-
cal expressions which can be easily implemented in
software programmes for generating the element stiff-
ness, initial stress and large displacement matrices and
vectors of stresses.

The suggested finite element was numerically tested
by comparing the results obtained in solving geometri-
cally linear and non-linear static as well as eigenvalue
problems with the well-known analytical solutions or the
data obtained by applying the finite element method. The
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IRANKIS SLUOKSNIUOTU LENKIAMU PLOKgTELIU MODALINEI ANALIZEI

E. Michnevi¢

Santrauka

Efektyvaus diskretinés Kirchhofo teorijos trikampio baigtinio elemento DKT pagrindu suformuluotas naujas baigtinis
elementas lenkiamoms daugiasluoksnéms ploksteléms modeliuoti. Plokstelés gali biiti sudarytos i$ keliy bet kokia tvarka
iSdéstyty sluoksniy, kuriy medZiaga gali buti skirtinga bei ortotropiné. Naujas trikampis baigtinis elementas turi 6 lais-
vumo laipsnius kiekviename mazge: 3 linijinius poslinkius ir 3 posiikius apie koordinaciy asis. Elemento matematinis
modelis apima visus deformacijy ir jtempiy efektus tiek elemento plokStumoje, tiek statmena Siai plokStumai kryptimi,
iSskyrus Slyti. Elementas gali baiti naudojamas sluoksniuotoms lenkiamoms ploksteléms arba sijoms, kurioms $lyties itaka
nezymi, skaiciuoti. Darbe pateikti skaitiniai pavyzdziai, gauti rezultatai palyginti su Zinomais analitiniais ir skaitiniais
sprendiniais.

ReikSminiai Zodziai: laminatai, kompozitai, kompozitinés struktiiros, sluoksniuotosios plokstelés, tiesiné analizé, netie-
siné analizé, baigtinis elementas.
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