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Abstract. A new finite element for modelling laminated bending plates was defined based on the effective triangular 
finite element of the discrete Kirchhoff’s theory. The plates can be made of layers arranged in any order and consisting of 
different but orthotropic materials. The suggested finite element has 6 degrees of freedom in every node, i e 3 linear 
displacements and 3 rotations about the axis of coordinates. A mathematical model of the element describes stress and 
strain effects both in the plane of the element or perpendicular to it, except for shear. The suggested element can be used 
for calculating laminated plates or beams, not subjected to heavy shear stresses. Some numerical case studies are 
provided, while the results obtained are compared with the well-known analytical and numerical solutions. 

Keywords: laminates, composites, composite structures, layered plates, linear analysis, non-linear analysis, finite ele-
ment. 

 
1. Introduction 

Modern production technologies are used for manu-
facturing various composite materials. Composites, due 
to their outstanding mechanical properties, relatively low 
weight and a possibility to predetermine their characteris-
tics, are widely used not only in high-tech areas, but in 
civil engineering as well. According to their structural 
and design characteristics, composite materials can be 
subdivided into reinforced materials shaped in various 
metal or non-metal moulds and laminated or layered 
structures obtained by combining layers of various mate-
rials. Therefore, the development of structures made of 
composite materials largely depends on the ability to 
model them. 

It is hardly possible to review modelling problems 
associated with all available composite materials, there-
fore, the present paper addresses only the problems of 
modelling laminated bending plates. Though laminated 
structures are widely used, the theories of non-linear de-
formation and failure of modern layered composites as 
well as methods of mathematical modelling have not 
been fully developed and presented in detail yet. Because 
of anisotropic nature of laminated structures, all tension-
compression and bending effects as well as the interac-
tion of bending-membrane and membrane-shear effects 
should be considered [1–4]. Therefore, only a few as-
sumptions simplifying the stress-strain state for the prob-
lems associated with the analysis of thin-wall bending 
plates can be applied. 

A wide variety of finite elements are available for 
the analysis of structures made of commonly used mate-
rials. However, the problems associated with laminated 

twin-wall bending plates require a special kind of layered 
finite elements. Precise finite elements [5–9] are often 
hardly realisable in application programs due to the com-
plexity of a mathematical model. Therefore, the need for 
sufficiently accurate, efficient and applicable finite ele-
ments to be used in laminated bending plates, which do 
not require any cross-section symmetry, still remains. 

In the present paper, new types of matrix expres-
sions allowing for evaluation of all above-mentioned 
membrane and bending effects are offered for the lami-
nated anisotropic triangular finite element DKT_CST 
[10]. This finite element can be used for modelling ani-
sotropic laminated bending plates consisting of layers of 
orthotropic material arranged in any order, as well as the 
particular zones of similar plates or beams, when shear 
deformations are insignificant. 

 
2. Mathematical modelling of problems 

A finite element may be considered to be completely 
defined, when it is applied to solve linear and non-linear 
static problems as well as modal analysis [11] and its 
accuracy is determined, because all characteristic struc-
tural matrices of the element should be generated for 
these problems. Below mathematical models of the con-
sidered problems are provided. 

The following equation applies to a linear system of 
finite elements: 

 [ ] Fδ =0K ,  (1) 

where [ ]0K  is a linear stiffness matrix; δ  – a displace-

ment vector; F  – a vector of loads applied to the system. 
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Due to membrane stresses, actual plate displace-
ments are much smaller than those determined by the 
theory of linearity. A discrete problem model may be 
expressed by a system of non-linear algebraic equations: 

 ( )[ ] 0=−FδδK ,  (2) 

where the stiffness matrix depends on displacements. The 
iterative Newton-Raphson method [12, 13] was used for 
solving a system of non-linear equations. According to 
this approach, a rough solution nδ , where a connection 

error of external and internal forces 0≠nψ , was refined 

by solving a system of linear equations at every iteration: 

 [ ] nnTn K ψδ
1

1
−

+
−=Δ , (3) 

 

 [ ] [ ] [ ] [ ]LT KKKK ++=
σ0 , (4) 

where [ ]TK  is a tangent stiffness matrix; [ ]
σ

K  – a ma-

trix of initial stresses; [ ]LK  – a matrix of large displace-

ments. A connection error nψ  is calculated by the 

stresses nσ : 

 ( ) [ ] 0=−= ∫ Fσδψ

V

T
dVB , (5) 

where [ ]B  is a non-linear matrix relating deformations to 
displacements. A particular case of a geometrically non-
linear problem is the problem of initial stability [11], 
when matrix [ ] 0=LK . 

The dynamic problem is expressed by the equation: 

 [ ] [ ] [ ] 0
    2

2

0 =+

∂

∂
+

∂

∂
+ Fδδδ

t
M

t
CK , (6) 

where [ ]C  and [ ]M  are damping and mass matrices. A 
particular dynamic problem is an eigenvalue problem [11, 
14], when matrix [ ] 0=C  and 0=F . This problem is 
expressed by the equation (6) of the form: 

 [ ] [ ]δδ MK λ=0 , (7) 

where λ  denotes natural frequencies. 
 

3. Definition of the finite element 

The stress-strain relation for laminated plates [15, 
16] is expressed in the following way: 

 [ ] [ ] ,   0 keN plbpl D+D=  

  (8) 

 [ ] [ ] ,D+D bplb    0 keM =  

where MN   and  are membrane and bending stresses; 0e  
denotes midsurface membrane strains; k  – curve vector; 

[ ] [ ] [ ]bplbpl DDD  ,  ,  – accumulative constitutive matrices 
obtained by combining constitutive matrices of layers 
[17–19]: 

 

 [ ] [ ]( )∑
=

−

−=

n

k
kkk

pl zzDD
1

1 , 

 [ ] [ ]( )∑
=

−

−=

n

k
kkk

plb zzDD
1

2
1

2

2

1
, (9) 

 [ ] [ ]( )∑
=

−

−=

n

k
kkk

b zzDD
1

3
1

3

3

1
, 

where k is the layer’s number; [ ]kD  – the k-th layer con-

stitutive matrix obtained by transforming the k-th layer 
elasticity characteristics into a global system of the coor-
dinates; kz  and 1−kz  – the coordinates of the k-th layer. 

The finite element is defined as a combination of 
bending (DKT) and membrane (CST) finite elements 
[10]. The DKT element [20] has 3 nodes and 3 degrees of 
freedom, ie a bending flexure and 2 rotations per node, 
the interpolation functions of the element should meet 

only oC  continuity requirements, because only the first 
derivatives of the main variables – slopes to the middle 
surface – appear in the energy functional. The CST ele-
ment has three nodes, the 1-st order interpolation function 
and two degrees of freedom – displacements per node. 

Structural element matrices are generated based on 
the matrices of the membrane (pl) and bending (b) ele-
ments by combining them as required by the arrangement 
of the element degrees of freedom to produce a global 
element matrix. 

The vector of degrees of freedom of any node of the 
element is expressed as: 

 { }Tziyixiiiii vu θθθω ,,,,, =δ , (10) 

where iii vu ω,,  are node displacements; ziyixi θθθ ,,  – 

node rotations about the axis of the coordinates. 
The stiffness matrix of the element is as follows: 

 [ ] [ ] [ ]
[ ] [ ] ⎥⎥⎦

⎤

⎢
⎢

⎣

⎡
=

bTplb

plbpl

KK

KK
K

00

00
0 , (11) 

where [ ]plK0 , [ ]bK0  and [ ]plbK0  are membrane, bending 

and coupling stiffness matrices. 

 [ ] [ ] [ ][ ]plplTplpl BDBAK 000    = , (12) 

where A is the area of the element; [ ]plB 0  – a linear 

membrane geometric matrix [10]. The elements of matrix 

[ ]plK0  are calculated in the following way: 
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  i = 1, 2, 3,  j = 1, 2, 3, (13) 
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where pl
ijd  denotes the elements of the accumulative 

membrane constitutive matrix [ ]plD ; ib  and ic  are 

geometric coefficients. A global matrix is obtained from 
9 sections of this type. 

 [ ] [ ] [ ][ ]∫=
V

bbTbb dVBDBK 000 , (14) 

where [ ]bB 0  is a linear bending geometric matrix [10]. 

After the rearrangement [18], any element of matrix 

[ ] K b
0  is expressed in the following way: 
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 i = 1, 2, …, 9,   j = 1, 2, …, 9, (15) 

where b
ijd  denotes the elements of accumulative bending 

constitutive matrix [ ]bD ; iN  denotes the interpolation 

functions; iiiX ,  and iiiY ,  are coefficients of the interpola-

tion functions; iiib  and iiic  stand for geometric coeffi-

cients. The values of the integrals dA
L

N

L

N

A jjj

jjz

iii

iiz
∫

∂∂
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are calculated by the software package Mathematica and 
stored in the data files. To retrieve them, indices 

ii
i

iiz  + 3
3

3
  
−

=  and jj
j

jjz +

−

= 3
3

1
, calculated accord-

ing to integer calculation, are used. Then, the elements of 
the stiffness matrices are numerically synthesised. This 
method of matrix generation is more advantageous than 
numerical integration because it is time-saving and allows 
us to avoid the errors associated with numerical integra-
tion. 

Flexural strains cause plane deformations, and vice 
versa (8). This effect is determined by a coupling stiff-

ness matrix [ ]plbK0 : 

 [ ] [ ] [ ][ ]∫=
V

bplbTplplb dVBDBK 000 . (16) 

When the above rearrangement is made, the ele-

ments of matrix [ ]plbK0  can be expressed as follows: 
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 i = 1, 3, 5,   j = 1, 2, …, 9,  
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 i = 1, 3, 5,   j = 1, 2, …, 9, (18) 

where plb
ijd  denotes the elements of the accumulative 

coupling constitutive matrix [ ]plbD . 
The matrix of the initial stresses of the element is as 

follows: 

 [ ] [ ]⎥⎦
⎤

⎢
⎣

⎡
= bK

K
σ

σ 0

00
, (19) 

 [ ] [ ] [ ][ ]∫=
V

Tb dVGTGK
σ

, (20) 

where matrix [ ]G  depends only on the coordinates [14]; 
[ ]T  is a matrix of the membrane stresses. 

When the rearrangement is made [18], a single ele-

ment of matrix [ ]bK
σ

 can be expressed as: 
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 i = 1, 2, ..., 9,   j = 1, 2, ..., 9,  

where xT , yT , xyT  are the membrane stresses. 

The stiffness matrix of large displacements of the 
element is as follows: 

 [ ]
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where [ ]b
LK  and [ ]plb

LK  are non-linear matrices of bend-

ing and coupling stiffness. 
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After the rearrangement [18], the expressions for in-

dividual elements of matrices [ ] K b
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LC  are as 

follows: 
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 i = 1, 2, …, 9,   j = 1, 2, …, 9. 
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 i = 1, 2, …, 9,   j = 1, 2, …, 9. 
 

 [ ] [ ] [ ][ ]∫=
V
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L dVBDBK 0 , (27) 

where [ ]b
LB  is a non-linear geometric bending matrix 

[11]. 
After the rearrangement [18], the following expres-

sions are obtained for the elements of matrix [ ]plb
LK : 
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 i = 1, 3, 5,   l = 1, 2, 3,   j = 1, 2,…, 9, 

where b
kδ  is the displacement or turn of the bending ele-

ment node (10). 
A connection error of external and internal forces (5) 

is calculated in the following way: 
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where i is the iteration; matrices [ ] K plb
L , [ ] K b

LB  and 

[ ] K b
LC  are generated according to the calculated dis-

placements pl
iδ  and b

iδ  in iteration (i–1). 

Stresses are calculated in this way: 
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where 0σ  and Lσ  are vectors of linear and non-linear 

stresses. 

 [ ][ ] [ ][ ] bbplbplplplpl BDBD δδσ 000   += , (32) 
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4. Numerical examples 

The quality of the finite element developed for 
solving geometrically linear and non-linear static and 
eigenvalue problems will be demonstrated by standard 
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tests of bending plates. Square symmetrical and non-
symmetrical laminated plates which were fixed or hinged 
were tested by applying concentrated or distributed loads. 
The calculation results were compared as dimensionless 
values. 

 

x 
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L 
A 

1 

a) 

b) 

2 
3 
4 

1 
2 
3 

h 

h 

 

 
 
Fig 1. Computational schema: a) symmetrical laminated 
plate; b) non-symmetrical laminated plate 

 
4.1. A linear problem 

Test 1. A hinged square three-layer plate (Fig 1a) sub-
jected to uniformly distributed pressure 001,0=q  was 

considered. The plate was calculated for 3 different mate-
rials making the intermediate layer. The difference be-
tween the material properties of the intermediate and 
upper and lower layers is 1 (further (1:1:1)), 10 (further 
(1:10:1)) and 50 (further (1:50:1)) times. The thickness of 
the layers is ,0,101 =h  0,802 =h  and 0,103 =h , respec-

tively; L=1000,0. The orientation of the orthotropy axes 
of the layers is 0/45/0. The data on the properties of the 
material of the layers are given in Table 1. 

 
Table 1. A symmetrical composite: properties of the materials 

of the layers 

Modulus of elasticity 
Shear 

modulus 
Poisson’s 

ratio Layer No 

11E  22E  12G  12ν , 21ν  

1, 3 3,4156 1,7931 1,0 0,44 
a) laminated orthotropic material (1:1:1) 

2 3,4156 1,7931 1,0 0,44 
b) properties of the material of the layer (1:10:1) 

2 0,34156 0,17931 0,1 0,44 
c) properties of the material of the layer (1:50:1) 

2 0,06831 0,03586 0,02 0,44 
 
One fourth of the plate was modelled by 72, 128 and 

200 finite elements DKT_CST. A comparison of the cal-
culation results obtained at the deflection point A (Fig 1) 
by using the DST element and analytical solutions [21] is 
provided in Table 2. 

As shown in Table 2, the results obtained by using 
the element DKT_CST are monotonically approaching 
the accurate analytical and DST-based solutions. The 
accurate deflection values were obtained by subdividing a 
quarter of the plate into 128 elements. 
 

Table 2. Central deflection of symmetric layered plate 

Solutions ω  
(according to the number of elements) 

DST DKT_CST 
Test 

72 
Ana-
lytical 72 128 200 

1:1:1 166,94 168,38 166,93 167,56 167,78 
1:10:1 30,96 31,24 30,955 31,071 31,088 
1:50:1 6,77 6,76 6,702 6,723 6,729 

 
Test 2. Two laminated non-symmetrical square fixed and 
hinged plates were considered. The plates consisted of 4 
layers (Fig 1b) of overall thickness 04,0=h  and layers 

thickness ,011,01 =h  ,09,02 =h  ,1,03 =h  1,04 =h , 

respectively, and L =1,0. The data on the properties of the 
material of the layers are presented in Table 3. The orien-
tation of the orthotropy axes of the layers is 0/90/0/90. 
The plates were acted upon by a concentrated force 

0,100=P  applied at the point A. 
 

Table 3. A non-symmetrical composite: properties of the mate-
rials of the layers 

Modulus of elasticity Shear 
modulus 

Poisson’s 
ratio Layer 

No 
11E  22E  12G  12ν , 21ν  

1 8100,3 ×  8100,3 ×
8102,1 ×  0,25 

2, 3, 4 7100,3 ×  7100,3 ×
7102,1 ×  0,25 

 
A fourth of the plate was modelled by 8, 18, 32, 50, 

72, 128 and 200 finite elements DKT_CST. A compari-
son of the calculation results obtained by using the 
TRIPLT element at the deflection point A is provided in 
Fig 2. The solutions based on the use of the element 
TRIPLT were obtained when the calculations of the 
fourth part of the plate divided into 18 elements had been 
made. 

0 50 100 150 200 1,00 
1,25 
1,50 
1,75 
2,00 
2,25 
2,50 

 
TRIPLT 

  
DKT_CST 

 
TRIPLT 

  
DKT_CST 

Hinged plate: 
Fixed plate: 

 
 

 
Fig 2. Convergence of values 
 
One per cent difference between the solutions based 

on the use of TRIPLT and DKT_CST elements was ob-
tained for a hinged plate by subdividing one-fourth of the 
plate into 128 DKT_CST elements. The results of similar 
accuracy were obtained for a fixed plate by subdividing 
one-fourth of the plate into 200 DKT_CST elements. 
 
 

310−

×ω  

Number of elements 
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4.2. A geometrically non-linear problem 

The calculations were made for a fixed non-
symmetrical laminated square plate (Fig 1b). The plate 
consisted of 3 layers of the thickness: ,1,01 =h  

,65,02 =h  ;25,03 =h  L = 10,0. The data on the proper-

ties of the material of the layers are presented in Table 4. 
The orientation of the orthotropy axes of the layers was 
0/90/0. The deflection of the plate at point A was consid-
ered by changing the value of the concentrated load P 
from 0,01h to 0,7h. 

 
Table 4. Properties of the materials of the layers 

Modulus of elasticity Shear 
modulus 

Poisson’s 
ratio Layer 

No 
11E  22E  12G  12ν , 21ν  

1, 3 3,4156 1,7931 1,0 0,44 
2 1,7931 3,4156 1,0 0,44 
 
One-fourth of the plate was modelled using 128 

DKT_CST finite elements. The deflections of the plate 
observed at point A were compared with the solutions 
obtained for the triangular element SHELL91 by calcula-
ting plates subdivided into 128 elements, using the soft-
ware package ANSYS. 

The values of deflections are given in Fig 3 in terms 
of the overall plate thickness h. 
 

 

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,0 
0,5 
1,0 
1,5 
2,0 
2,5 
3,0 

Solutions: 
 Linear 
 DKT_CST 
 SHELL 91 

 
 
 

Fig 3. Central deflection of the plate 
 
The calculations show that the membrane strains oc-

cur when the deflection at point A is more than 0,2 h. 
When the linear deflection was 0,25 h, the difference 
between the non-linear solutions obtained by using the 
elements DKT_CST and SHELL91 made 0,08 %. Then, 
the linear deflection reached 2,5 h, while the difference 
between the non-linear solutions was 2 %. 

 
4.3. The eigenvalue problem 

The calculations were made for a non-fixed square 
three-layer plate (Fig 1). The whole plate was analysed to 
take into account all forms of oscillations, while the con-
ditions of symmetry were neglected. The thickness of the 
plate layers was ,1,01 =h  ,15,02 =h  25,03 =h , respec-

tively; L = 4,0; moduli of elasticity were 

;100,2 6
2211 ×== EE  Poisson’s ratio was 

;3,02112 =ν=ν  shear moduli were 6
12 1077,0 ×=G  

and density .1000=ρ  The orientation of the layers 
orthotropy axes was 0/0/0. 

The plate was modelled using 8, 32, 72, 128 and 200 
DKT_CST elements. A comparison of the first three cal-
culation results relating to non-zero eigen frequencies 
with analytical solutions is presented in Fig 4. The first 
six zero forms of the plate match the movements of a 
solid body. Non-zero forms are shown in Fig 5. 

 

0 50 100 150 200 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 
Solutions: 
[1]     analytical     DKT_CST 
[2]     analytical   DKT_CST 
[3]     analytical   DKT_CST 

 
 

Fig 4. Convergence of the first three non-zero frequencies 
 
 

             
 
a) ν = 30,66 Hz  b) ν = 60,36 Hz  c) ν = 94,27 Hz 

 
Fig 5. Forms and frequencies of the first three non-zero 
natural oscillations 
 
The convergence curves of the results presented in 

Fig 4 demonstrate that the solutions obtained using 
DKT_CST element quickly converge towards an accurate 
solution. The accurate value of the first eigen frequency 
was obtained by subdividing the plate into 128 elements. 

 
5. Conclusions 

All finite element structural matrices were generated 
using an effective analytical-numerical method of matrix 
development. This helped to avoid difficulties and errors 
involved in currently used numerical integration, to in-
crease the accuracy of calculations and to obtain analyti-
cal expressions which can be easily implemented in 
software programmes for generating the element stiff-
ness, initial stress and large displacement matrices and 
vectors of stresses. 

The suggested finite element was numerically tested 
by comparing the results obtained in solving geometri-
cally linear and non-linear static as well as eigenvalue 
problems with the well-known analytical solutions or the 
data obtained by applying the finite element method. The 

Deflection, h 

Total load 

Frequencies ν, Hz 

Number of elements
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analysis of the numerical tests shows that the element has 
good convergence characteristics as well as being suffi-
ciently accurate and saving the time of calculation. 

The suggested finite element can be used for model-
ling laminated anisotropic bending plates, their separate 
zones or beams when shear strains are insignificant. 

The program developed for modelling laminated 
bending plates can be used in design offices and at indus-
trial enterprises. 
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ĮRANKIS SLUOKSNIUOTŲ LENKIAMŲ PLOKŠTELIŲ MODALINEI ANALIZEI 

E. Michnevič 

S a n t r a u k a   

Efektyvaus diskretinės Kirchhofo teorijos trikampio baigtinio elemento DKT pagrindu suformuluotas naujas baigtinis 
elementas lenkiamoms daugiasluoksnėms plokštelėms modeliuoti. Plokštelės gali būti sudarytos iš kelių bet kokia tvarka 
išdėstytų sluoksnių, kurių medžiaga gali būti skirtinga bei ortotropinė. Naujas trikampis baigtinis elementas turi 6 lais-
vumo laipsnius kiekviename mazge: 3 linijinius poslinkius ir 3 posūkius apie koordinačių ašis. Elemento matematinis 
modelis apima visus deformacijų ir įtempių efektus tiek elemento plokštumoje, tiek statmena šiai plokštumai kryptimi, 
išskyrus šlytį. Elementas gali būti naudojamas sluoksniuotoms lenkiamoms plokštelėms arba sijoms, kurioms šlyties įtaka 
nežymi, skaičiuoti. Darbe pateikti skaitiniai pavyzdžiai, gauti rezultatai palyginti su žinomais analitiniais ir skaitiniais 
sprendiniais. 

Reikšminiai žodžiai: laminatai, kompozitai, kompozitinės struktūros, sluoksniuotosios plokštelės, tiesinė analizė, netie-
sinė analizė, baigtinis elementas. 
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