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Abstract. Numerical simulation of the compacting of particles for the biaxial compression test using the discrete 
element method is presented. Compacting is considered as the first independent step required for a proper 
simulation of the entire compression process. In terms of the continuum approach, compacting is regarded as 
generation of the initial conditions. Three different compacting scenarios with differently manipulated loading 
history on the boundaries, namely, compacting by using the moving rigid walls, by the static pressure using 
flexible membranes as well as combining the above two methods are considered. Discrete element methodology 
and basic relations, as well as formulation of the compacting problem and computational aspects of compacting 
are presented in detail. Each of the scenarios is illustrated by the numerical results. It has been found that the 
combined compacting scenario yields the required initial conditions exhibiting the best physically adjustable state 
of particles. 
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1. Introduction 

Compression test is probably the dominating 
experimental procedure used for determining the strength 
and stress-strain properties of soils and other granular 
materials. In the compression test, a specimen is 
subjected to two independent external loadings - the 
controlled variable axial compression and constant 
lateral pressure. Triaxial tests generally comprise the 
deformation of a cylindrical specimen or rectangular 
parallelepiped, while biaxial tests allow us to investigate 
plane strain behaviour. On the other hand, biaxial test 
may be considered as a simplified model of three-
dimensional solid exhibiting the nature of the 
investigated phenomenon in hand. 

Basically, compression tests were conducted to 
determine the macrospic characteristics of the granular 
media such as deformation moduli or angle of internal 
friction. A large majority of works are dealing with 
investigation of shearing characteristics and localisation 
of deformations of material related to occurring of shear 
band. For details on the compression tests, the reader is 
referred to classical textbooks, for example [1]. The 
work of Shinohara et al [2], describing the effect of the 
particle shape on the angle of internal friction may be 
considered as an example of experimental investigation 
using the triaxial compression test. Experimental setup 
using a special biaxial shear apparatus, allowing us to 
control general plane strain deformation is presented by 
Lanier and Jean [3]. 

Recently, numerical simulation has become a 
powerful alternative to investigating the behaviour of the 

granular media. It has some advantages over laboratory 
tests. This is partially because the experimentator cannot 
observe inter-particle processes. Another reason is a 
possibility to reproduce the identical properties of 
specimens and prescription of the required parameters.  

Among currently used techniques, the discrete 
element method (DEM) is extensively applied to 
simulation of discrete and continuous problems of solid, 
fluid and molecular mechanics. The DEM, methodology 
initiated by P. Cundall and O. Strack [4], allows for the 
simulation of particle motion taking into account not 
only the obvious macroscopic domain geometry and 
constitutive relations between the macroscopic state 
variables, but also the interaction between the particles 
and their interaction with a physical environment.  

The method opens up new vistas for investigation of 
these highly complicated entities, where the experimental 
measurements are extremely difficult because the 
duration of the interaction between the particles is very 
short and the displacements of individual particles are 
relatively small. On the other hand, the increasing 
capacity of the advanced computer technologies provides 
a basis for the development of computer-aided methods. 
Comprehensive reviews of DEM methodology and 
different computational aspects of the DEM are found in 
the papers of Sadd et al [5], Džiugys and Peters [6] and 
Langston et al [7]. Fundamental issues of DEM 
simulations and a continuum model are presented in the 
works of Luding et al [8] and Luding [9]. 

High computational expenses do not allow for a 
wide application of the DEM with 3D particle models to 
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solving real scale problems. However, the use of the 2D 
particles may solve compression problems in a real time 
scale exhibiting major physical effects. A model based 
on 2D disk-shaped particles is most popular for simu-
lation of compression, especially the biaxial compression 
tests, see Lanier and Jean [3], Ting at al [10], Sitharam 
[11], Liu et al [12], Jiang et al [13]. Uniaxial and biaxial 
compression tests of the sandstone specimen were 
simulated by Hunt et al [14]. Biaxial tests for granular 
material by applying a modified DEM with an additional 
elastic spring, a dashpot and a slider resisting rotation 
were considered by Ivashita and Oda [15]. Two- 
dimensional polygon-shape particles were investigated 
by Mirghasemi et al [16]. 

Due to computational difficulties, direct simulation 
of triaxial tests is rather limited. Compression of 
spherical and clumped particles in a rectangular box was 
considered by Schmitt and Katzenbach [17]. Assessment 
of the influence of the particle size on the sharing 
characteristics of granular material by numerical 
simulation of the triaxial test using two- and three-
dimensional discrete elements was performed by 
Tsunekawa and Iwashita [18]. Uniaxial compression of 
the cylindrical specimen of cohesive geomaterial using 
an axi-symmetric model and 2D elements was studied 
numerically by Camborde et al [19]. 

In general, the applications of the DEM show a 
good agreement with macroscopic observations. By 
examining the fundamentals as well as using the 
numerical results obtained, a lot of problems should be 
solved to clarify and reduce the influence of the artificial 
computational effects occurring in DEM simulation. One 
of these is related to preparation of test specimens or, in 
terms of continuum, to prescription of the initial 
conditions.  

Generally, three basic techniques, such as free 
compacting under gravity, particle expansion, and 
compacting by compression of boundaries are considered 
throughout the references. Free compacting is the 
simplest method used merely to generate the initial 
conditions in the granular flow during transportation. 
Using the expansion method [17] the radii of all particles 
are increased gradually to a desirable value. The contact 
force developed between any two particles during the 
growth process allows particles to move in order to turn 
specimen into a dense specimen. The expansion of radii 
is convenient when it is known what should be the 
porosity of the specimen. 

Probably the most comprehensive review, focussing 
basically on compression methods of the topics discussed 
was provided by Jiang et al [13]. Originally [4], the 
compression methods were implemented by controlled 
inward motion of two (axial compression) or all four 
(isotropic compression) rigid walls resulting in 
compacting the particles. Obviously, the entire specimen 
is subject to compression (a single layer method), but the 
multi-layered method with the sequential compacting of 
separate layers has also been recently used. This type of 
compaction was applied by Schmidt [17], Lanier [3], Liu 
[12] to biaxial test. 

The alternative way of implementing isotropic 
compression is to apply the prescribed pressure directly 
to stress-controlled flexible specimen boundaries. 
Tsunekawa and Iwashita [18] generated flexible boun-
daries of the three-dimensional cylindrical specimen 
using extra particles connected via Delaunay triangu-
lation. This approach has limited application because 
complicated implementation of flexible boundaries leads 
to some additional expenses. Flexible boundaries 
composed of a chain of spherical particles were used by 
Ting et al [10] and Ivashita and Oda [15]. 

The compacting process with artificially generated 
initial conditions may affect the final results of the 
compression test. This effect was observed by 
Tsunekawa and Iwashita [18], but the causes of this 
phenomenon were not explained. The influence of the 
initial state and the sensitivity of equilibrium on the 
loading rate as well as the occurrance of oscillations 
were observed by Mirghasemi et al [16]. The importance 
of the initial conditions expressed in terms of the 
relationships between the confining pressure and 
macroscopic stresses as well as strains is most 
comprehensively illustrated by Sitharam [11].   

Another drawback of the above compression 
method is associated with the difficulty to control 
pressure values, while equilibrium of the particles at 
pressure boundaries may be not attained when the 
specimen reaches a desired density.  

The paper addresses the problem of compacting the 
particles of the specimen for the biaxial compression test. 
Compacting is considered as the first independent step 
required for a proper simulation of the entire 
compression process. In terms of the continuum 
approach, it is regarded as generation of the initial 
conditions. Three different compacting scenarios with 
differently manipulated loading histories on the 
boundaries, namely, the geometric compacting by using 
moving rigid walls, the static compacting using flexible 
membranes as well as a combination of the above 
methods are considered. Discrete element methodology 
and basic relations, formulation of the compacting 
problem and computational aspects of compacting are 
presented in detail. Each of the scenarios is illustrated by 
numerical results.  

 
2. Discrete element model and basic relations  

The two-dimensional DEM model is applied for 
simulation of the biaxial compression test. The granular 
media under compression presents an assembly of 
deformable particles in the form of discs. The DEM is a 
numerical technique aimed to track the dynamic motion 
of individual particles. Each of the particles is defined 
and considered separately, with its own mass, moment of 
inertia, radius and physical properties. The time-driven 
discrete element method [6] was used to simulate the 
time-dependent behaviour of particles. 

In two dimensions, each particle i (i = 1, N), has 
three independent degrees of freedom (two translations 
and one rotation). The motion of each particle i of the 
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granular material in time t is described by the second 
Newton law 
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where xi, yi are components of the position vector 
xi = {xi, yi}

T, iθ is the orientation angle of the gravity 

centre, mi is mass and Ii is the inertia moment of the 
particle.  

Right-hand side parameters xiF , yiF , and Ti present 

the resultants of gravity and inter-particle contact forces 
and torques, which act on the particle i, respectively: 
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Here cijd  is the geometric vector pointing from particle 

centre to contact point Cij, while g is gravity acceleration. 
The collision of particles is approximated by a 
representative overlap volume of particles in the vicinity 
of the impact point.  

Inter-particle as well as particle-wall contact 
comprises the forces due to elastic deformation, viscous 
damping and friction. Some details for contact geometry 
model may be found in [6, 15, 20]. 

The contact between two material particles is 
modelled by a spring and dashpot in both the normal and 
tangential directions and using an additional slider in 
tangential direction (Fig 1). The inter-particle force 
vector Fij = {Fxi, Fyi}

T describing the contact between the 
particles i and j acts on the contact point Cij and may be 
also expressed as the sum of the normal and tangential 
components: 

 ijtijnij  , , FFF += . (7) 

 

 
 
Fig 1. Inter-particle contact model  

The normal forces involve elastic and viscous 
components. The elastic component of normal force 

elasticijn  , ,F  corresponds to the unilateral nature of the 

contact and is actually the repulsion force. It is related to 
the amount of overlap ijh  by the average secant normal 

contact stiffness of particles i and j: 

 ijijnelasticijn hk nF = , , , (8) 

where nij is a unit vector pointing the direction of the 
contact surface through the centre of the overlap area 
towards the particle i; kn is the normal spring stiffness. 
 

The calculation of the viscous force component is 
based on the linear dependency of the force on the 
relative velocity vn,ij of the particles at the contact point 
with a constant normal damping coefficient γn  
 Fn,ij,viscous = -γn mij vn,ij , (9) 

where 
ji
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ij mm

mm
m

+

=  is the reduced mass of the 

contacting particles i and j.  
The tangential force Ft,ij may be of the static or 

dynamic character. The elastic shear force with account 
of viscous damping forms the static shear friction. All 
subsequent relative shear displacements δt,ij are resulting 
in an additional increment of elastic shear force that is 
added to the current value 
 ijijttelacticijt k tF ,,, δ= , (10) 

where tij is the unit vector of the tangential contact 
direction; kt is the shear spring stiffness; δt,ij is the value 
of tangential displacement. 

The viscous component in the tangential direction is 
modelled adequately to that in the normal direction (9): 
 Ft,ij,viscous=-γt mij vt,ij , (11) 
where γt is the tangential damping coefficient. 

The nature of the dynamic force is related to the 
friction during and after gross sliding. This force is 
defined by introducing a slider in the model.  
 Ft,ij,dynamic=-µ |Fn,ij| tij . (12) 

The slip occurs when the shear force exceeds, in 
comparison to the normal force, a certain level, which 
depends on the dimensionless friction coefficient µ. 

When the contact forces are determined, the 
acceleration of each particle is calculated by the second 
Newton’s law. New velocity and displacement are 
computed using a 5th-order Gear predictor-corrector 
scheme [6, 20].  

In this study, the computer code called DEMMAT 
[21] is used for DEM. 

 
3. Compression problem 

The discrete element method is aimed to describe a 
system consisting of a large number of particles of 
various size, shape and material. The method actually 
presents the microscopic approach describing the 
behaviour of individual particles and inter-particle 
contacts. On the other hand, the particles in the system 
may demonstrate different behaviour and properties of 
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the continuum on a macroscopic level. This system can 
be deformed as a solid body or it may expose flowability 
similar to that of a liquid or compressibility like that of 
gas. Soil is a representative medium, the behaviour of 
which, depending on particular conditions, may be 
considered as the behaviour of a mixture of particles or 
continuum in the form of a solid body or fluid.   

In the above context, the discrete element method 
may be also interpreted as one of numerical techniques 
applied to the solution of continuum mechanics 
problems. It bridges the gap between macroscopic and 
microscopic models. More precisely, using DEM 
improves the continuum models by taking into account 
inter-particle contacts and internal dissipation and 
instabilities. Application of DEM serves as the basis for 
explaining the nature of multi-level mechanisms. 

From the macroscopic point of view, the behaviour 
of a system of particles in the biaxial compression test 
may be treated as macroscopic behaviour of the two-
dimensional continuum. In most general terms, 
continuum formulation of the compression test presents 
the initial value problem. The problem domain is two-
dimensional rectangular domain (Fig 2), inside which the 
material and all mechanical properties, including 
material density, are defined a priori.  

As used in mechanics of solids, the differential 
equations of dynamic (in a simplified case, static) 
equilibrium are formulated in terms of the unknown 
time-dependent displacement vector field u(x, t):   
 ( ) ( )tt ,, xFxAu = . (13) 

The initial conditions for the continuous field 
variable are defined as 

( ) 00 , uxu = , 
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0
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In terms of the discrete approach, equilibrium 
equations (13) are replaced by Eq (1-3) written for 
individual particles. The initial state of the motion (14) 
should be defined by the initial conditions for an 
individual particle imposed in time t0 = 0. 

 
 

 
 
Fig 2. Compression test problem with boundary 
conditions  
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Here, v0i stands for the initial velocity of the 
particle i. The correct setting up of conditions (15) is a 
complicated task because of particle positioning. In order 
to achieve the real physical state in DEM, the initial 
conditions are implemented numerically by preliminary 
simulation of the particle state using the same Eq (1-3). 
Finally, instead of dealing with the conditions defined by 
Eq (6), the initial conditions are defined in time t1 
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Here, t1 is the time required for simulation of the initial 
conditions, while the given values of i1x  and i1v are 

obtained in preliminary simulation. 
Two types of boundary conditions are considered 

for a description of the granular state during 
compression. The rigid wall boundary conditions are 
used to define the interface of material with a rigid 
surface. In terms of continuum, a rigid wall allows us to 
implement only standard geometric boundary conditions 
of Dirichlet type restricting particle motion un in normal 
direction  
 ( ) ( )tutuni = . (17) 

In terms of the discrete element, the concept of a 
rigid wall is much more powerful. The discrete approach 
also allows us to impose tangential friction, where by the 
evaluation of contact, the rigid walls may be treated as 
particles of infinite radius and mass. Eq (16) is the 
unilateral condition restricting the motion of the particle 
only outside the granular domain. Furthermore, motion 
and rotation of the rigid walls may be imposed in the 
same manner.  

The static boundary conditions on the free surface 
may be implemented by adding pressure p directly to the 
particle i: 
 ( ) ( ) ini AtptF = , (18) 

where Ai presents the effective surface area of the 
particle i.  

Different manipulations are used to form various 
compacting scenarios. 

 
4. Compacting algorithm and scenarios 

Current investigation is restricted to the 
consideration of the compression of the boundaries. The 
specimen was compacted according to three different 
scenarios. Each of the scenarios is implemented by 
different time sequences of the prescription of the 
boundary conditions (17) or (18) as illustrated in Fig 2. 
The first scenario is used to prepare the specimen for the 
biaxial test with all four rigid walls. In the second 
scenario, the side walls were replaced by flexible 
membranes immediately after the generation of 
specimen. These membranes imitate rubber membranes 
used in the experiment. The third scenario is a 
combination of the first and the second scenarios.  
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According to the first scenario, the specimen is 
compacted by applying displacements for all four rigid 
walls until the required porosity is achieved. After 
generating the specimen a simulation of the biaxial test 
could be performed. In such an analysis, constant 
pressure on the side walls is kept, while the upper and 
the bottom walls are moved inward.  

In the experiments with a constant pressure 
application on the sides of the specimen, a flexible 
rubber membrane is often used. In the present numerical 
analysis, a membrane consisting of the chain of particles 
is introduced. This membrane is similar to the membrane 
used by Iwashita and Oda (2000) [15]. According to the 
second scenario, flexible membranes on the sides of the 
specimen were introduced immediately after the gene-
ration of the particles to obtain a compacted specimen 
with flexible membranes. Pressure on each particle of the 
membrane and on the top and bottom walls is gradually 
increased from zero to the required value. 

The third way of obtaining the compacted specimen 
was implemented by combining the first two ways. At 
the very beginning of the compaction, the rigid walls on 
both sides and on the top and bottom are introduced. The 
specimen is compacted isotropically by moving the walls 
inward at a prescribed speed. The compression is 
suspended before a considerable force will start to act the 
boundaries. From that point, the side walls are replaced 
by flexible membranes and pressure is gradually 
increased to the required value. The compression test can 
be performed on this compacted specimen by keeping 
constant pressure on both sides and applying 
displacements to the top and bottom walls. 

 
5. Numerical results and discussion  

The current study is aimed to prepare the specimen 
for 2D biaxial test simulation using grain size 
distribution presented in Fig 3. This distribution was 
obtained by upscaling the grain size distribution of 
Karlsruhe sand presented by Schmitt (2003) [17] by the 
factor four. 2658 particles were generated and placed in 
the rectangular area of the size 5×10 cm. The specimen 
of the unit thickness was used. The model parameters are 
given in Table 1. The time step in simulations was 

selected as ∆t ≤ 10
1 ∆tc, where ∆tc equals km /2  [12]. 

Table 1. The parameters selected for the present simulation study 

Quantity Value 
Number of particles 2658 
Radii of particles 0,5–3,5 mm 
Time step (∆t) 1·10-7 s 
Particle density 2600 kg/m3 
Coefficient of friction between particles (µ) 0,5 
Coefficient of friction between particle and 
wall (µ) 

0,0 

Coefficient of friction between particle and 
membrane (µ) 

0,0 

Normal spring constant (kn) 1,5·106 N/m 
Tangential spring constant (kt) 1,0·106 N/m 
Normal damping coefficient (γn) 500 s-1 

Shear damping coefficient (γt) 500 s-1 

 
Fig 3. Size distribution of particles used in DEM analysis 

 

 
 

Fig 4. Initial arrangement of particles 
 

The first scenario described in the previous section 
is considered. The generated specimen (Fig 4) is 
compacted by moving all four walls inward at constant 
speed until the wall displacement is equal to 3 mm. Four 
compaction processes were simulated by applying 
different speeds to the walls reaching 0,50 m/s, 0,20 m/s, 
0,05 m/s and 0,01 m/s, respectively. The resultant 
reaction forces acting on the bottom wall are shown in 
Fig 5.  During a fast  compaction  the reaction  force has  

 

 
Fig 5. The influence of the wall speed on the reaction 
force 
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   a)     b)     c)     d)  
 
Fig 6. The force network from the first scenario: a) u = 1 mm, v = 0,50 m/s, Fmax = 77,5 N; b) u = 1 mm, v = 0,20 m/s, 
Fmax = 18,9 N; c) u = 1 mm, v = 0,05 m/s, Fmax = 2,83 N; d) u = 1 mm, v = 0,01 m/s, Fmax = 0,27 N 

 
 
already increased at the first stage. This reaction may 
be accounted for the system’s dynamics. In fast 
compaction the forces between the particles near the 
boundary do not have time to be transmitted to the 
interior particles. Therefore the layers near the 
boundary are compacted more tightly than the interior 
ones. It is illustrated by the force network in Fig 6. To 
eliminate the influence of the dynamics, the 
compression should be performed at low speed. As 
shown in Fig 5, the speed of the specimen walls equal 
to v = 0,01 m/s can be applied. The compacted 
specimen is shown in Fig 7. 

In compacting the specimen, the force acting on 
the wall does not increase significantly until about 
u = 2,0 mm. The same change can be seen when the 
translational kinetic energy of the specimen is 
changed (Fig 8). This alteration could be explained by 
the alteration of the internal structure of the specimen 
as follows. Until the displacement is equal to about 
1,8 mm, the particles of the specimen work separately 
without building up a solid structure. Then, the 
particles start to work as a continuous structure. 
Therefore, the translational energy of the structure 
decreases and the reaction force on the wall starts to 
increase almost linearly 

Using the second scenario, the flexible 
membranes are introduced immediately after the 
generation of the particles. The pressure on the 
membranes and the walls is increased from 0 to 
5 kN/m in the time of 0,4 s. The change of the force 
acting on the bottom wall during compaction is shown 
in Fig 9. Comparing this force-displacement curve to 
the curve obtained by the first scenario (Fig 5, 
v = 0,01 m/s), we can see that the force acting on the 
wall increases slightly at the first stage of compaction 
(F = 13,9 N when u = 1,5 mm) while in the first 
scenario it actually remains equal to zero. 
 
 

 

 
 
 

 
 
Fig 7. Specimen compacted by moving all four walls 
according to the first scenario 
 
 

 
Fig 8. Kinetic translational energy vs displacement 



D. Markauskas, R. Kačianauskas / JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT – 2006, Vol XII, No 2, 153–161 159

 
Fig 9. The dependence of the reaction force on the 
displacement of the boundary according to the second 
scenario 
 
 

 

 
 
Fig 10. The force network from the second scenario, 
u = 1 mm, Fmax = 5,41 N 

 
 
 

 
 
Fig 11. Specimen compacted according to the second 
scenario 
 
 

The forces acting between the particles (Fig 10) 
demonstrate that no considerable network of forces is 
developed when u = 1 mm. The compacted specimen 
shown in Fig 11 has considerably distorted side 
boundaries. When using this specimen for the biaxial 
test, these boundaries can influence the result of 
simulation, therefore the third scenario for specimen 
compaction is suggested. 
 

 
Fig 12. The dependence of reaction force on 
displacement of the boundary, the third combined 
scenario 

 

 
 
Fig 13. Specimen compacted according to the third 
scenario 
 
According to the third scenario the specimen is 

compacted by moving all four walls at the specified 
speed (v = 0,01 m/s) until the wall displacement 
u = 1,8 mm is reached. Up to this displacement value 
no significant reaction force is developed (Fig 12). At 
this point, the side walls are replaced by flexible 
membranes. The pressure on the membranes and on 
the top and bottom walls is increased gradually until 
p = 5 kN/m. The compacted specimen is shown in 
Fig 13. By comparing this specimen and the specimen 
obtained using the second scenario, we can see that 
the side boundaries are more straight. Using this 
scenario it is easy to vary isotropic pressure on the 
specimen and to analyse the influence of various 
factors by ensuring that boundary conditions are the 
same. 
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6. Conclusions 

Compacting of the particles for the biaxial 
compression test regarded as a generation of the initial 
conditions is considered numerically by applying the 
discrete element method. Simulation of the com-
pacting is performed according to three scenarios. On 
the basis of the obtained results the following 
conclusions have been drawn.  

1) The first scenario for generating the 
compacted specimen is implemented by moving rigid 
walls. The application of this scenario proves the 
ability to generate the required initial porosity 
conditions. However, the specimen is sensitive to the 
loading rate. Therefore, permanent evaluation of the 
particle state and some control procedures are 
required.  

2) The second scenario for generating the 
prescribed pressure on the free boundaries is 
implemented directly by using the model of flexible 
membranes. It is computationally simple, but it results 
in an undesirable physical state of the particles. 

3) The third scenario combining the compaction 
by the moving rigid walls at the initial stage and direct 
compaction by the flexible membrane at the final 
stage seems to be the most controllable scenario 
leading to the required initial conditions with 
physically adjustable state of the particles in the most 
effective way. 
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DALELIŲ TANKINIMAS DISKRETINIŲ ELEMENTŲ METODU DVIAŠIAM KOMPRESIJOS 
BANDYMUI ATLIKTI 

D. Markauskas, R. Kačianauskas 

S a n t r a u k a  

Šiame straipsnyje pateiktas skaitinis dalelių tankinimo modeliavimas diskretinių elementų metodu dviašiam 
kompresijos bandymui atlikti. Tankinimas nagrinėjamas kaip pirmasis nepriklausomas veiksmas, reikalingas, kad 
būtų galima atlikti viso kompresijos bandymo modeliavimą. Kontinuumo teorijos požiūriu sutankinimas yra 
pradinių sąlygų generavimas. Nagrinėjami trys skirtingi tankinimo pavyzdžiai keičiant apkrovą. Diskretinių 
elementų metodologija ir pagrindiniai sąryšiai, taip pat tankinimo problemos formulavimas ir skaičiavimo aspektai 
čia detaliai išdėstyti. Kiekvieną pavyzdį iliustruoja skaitiniai rezultatai. Tyrimo metu nustatyta, kad, naudojant 
mišrųjį tankinimą, gaunamos reikiamos pradinės sąlygos. 

Reikšminiai žodžiai: diskretinių elementų metodas, klampiai tampri granuliuotoji terpė, dviašis bandymas, 
dalelių tankinimas. 
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