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Abstract. For the needs of this paper, certain area of issues associated with the infiltration process and neural networks
were selected. In the scope of infiltration process, the measurements and analysis of air infiltration through the buildings
have shown how difficult this process is in terms of strict mathematical models formulation. In the scope of neural
networks, attention was given to multi-layer perceptrons and systems composed of them. It must be noted that, due to
the novelty of this method, a detailed description of the neuron network theory was presented in this paper as well as
a thorough discussion of the neuron modelling process. The work was carried out in two stages, with the first stage
covering the development of detailed methodology for the construction of neural model and the second stage in which
a developed methodology was applied to modelling real objects.
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1. Introduction

Attractiveness of the neural networks in object mod-
elling and identification applications results mostly from
their ability to approximate any non-linearity and to ad-
just the accepted structure on the basis of experimental
data or other training images. The subject-matter of the
paper is neural networks being in the centre of interest
of the modern science.

Analyses of factors affecting the magnitude and
variation in time of air infiltration through the buildings
have shown how difficult this process is in terms of strict
mathematical formulation, being dependent on so many
parameters which impact is not always evident and de-
finable.

In order to achieve the stated objectives, the au-
thors’ efforts cover the following scope:

— development of methodology for neural model con-
struction on the basis of measurement results,

— construction of air infiltration models with the help
of neural network theory,

— verification of constructed models on the basis of
monitoring,

— conclusions.

2. Basics of neural network theory

The most important feature of the neural networks
is their ability to approximate any non-linearity. This

offers the possibility of solving many non-linear prob-
lems that are difficult or insoluble by other methods. As
there is no general and systematic theory for designing
non-linear systems, attempts are made to build such a
theory with the utilisation of neural network theory. The
problem has been given attention in many publications
[1-6].

3. Modelling and identification of dynamic objects

The problem of dynamic object modelling and iden-
tification is the key issue in many fields. The exact
mathematical model description or ability to build its
simulator with the use of any techniques creates, for
example, the possibility to develop control systems that
compared to the systems developed without that knowl-
edge are much more effective [7, 8]. Taking into ac-
count the great importance of these problems, hitherto
existing theoretical and application studies have been
conducted mostly in the area of mathematical modelling
problems, and from the technical viewpoint in the area
of methods for parametrical identification of various
modelling structures [9, 10]. The known developed meth-
ods refer mainly to static and dynamic linear objects,
and non-linear problems are usually solved, due to their
variety and complexity, with the use of various approxi-
mation methods and techniques [7, 11, 12].
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4. Methodology for construction of residential build-
ing air infiltration neural model

While an analysis of any problem with the use of
conventional computer requires the formulation of a
model, development of algorithm and its implementation
in the form of a programme, the neural networks are
able — with the use of proper ,,learning” schemes — to
develop the proper model of a real phenomenon on the
basis of data presented to them. In that sense, the neu-
ral network may be treated as a ,,black box” with the
only aim to react correctly to adequate input data: the
internal organisation of such a mechanism is not only
unknown but also non-essential. This means that a lot of
burdensome and expensive work may be saved during
the development of software, even though we actually
know these rules. This does not means, however, that
there is no work to be done. The issues that need solv-
ing are of different nature.

The basic problems faced during the modelling with
the help of artificial neural networks include the follow-
ing issues [13—15]:

a) issues concerning the model structure:

1. what input data describing the process are essential
and should be used,

2. what should be the representation and scaling of
these data;

b) issues concerning the architecture of neural net-
work:

1. what learning algorithm should be used,

2. what is the optimal number of network’s computa-
tional layers,

3. what is the optimal number of elements in particu-
lar layers,

4. what should be the activation function for a single
neuron,

5. how to select the way of presenting the input data,

6. what values of network’s learning parameters should
be selected.

If the above issues are properly solved, the result-
ing neural model will be correct. In the present stage of
artificial neural network development, there is no formal
procedure to deal with these problems, and it is usually
based on modeller’s experience gained from iterative
trial-and-error method. The best network architecture is
not known a priori but certain alternative of structures is
arbitrary proposed and all variants of these structures
are then tested in order to select the optimal structure
from those proposed. Obviously, better structures that
have not been taken into consideration may exist [16—
18].

When selecting structures for the alternative, the
experience of a person solving the problem is essential.

In the next part of this paper, the construction pro-
cess of neural model for air infiltration phenomenon will
be described. In reality, particular stages of the process
are not separated so clearly as presented, but otherwise
it would be difficult to discuss this process.

Measuring data were collected during measurements
performed in typical for Poland 11-floor, 5-floor and 2-
floor residential buildings made from pre-cast units [19].

5. Modelling variants

The infiltration process was modelled in the follow-
ing 6 different variants:

Variant 1. 11-floor version of the object, air exchange in room
Variant 2. 5-floor version of the object, air exchange in room
Variant 3. 2-floor version of the object, air exchange in room
Variant 4. 11-floor version of the object, air exchange in flat
Variant 5. 5-floor version of the object, air exchange in flat
Variant 6. 2-floor version of the object, air exchange in flat

The division according to the building size proved
to be indispensable in order to allow using the computer
equipment in a way as simplified as possible.

6. Characteristics of measuring data

The data were collected from field measurement, the
verification process was carried out in the framework of
other research project [19], and verified data were stored
in database where particular records include the follow-
ing information:

rl: consecutive number of measuring data record

r2: symbol of object, according to key: object num-
ber, symbol of room (small, medium, large), sym-
bol of flat (small, medium, large), symbol — one-

sided flat

r3: T, — difference between external and internal temp
[°C]

r4: V. — wind velocity [m/s]

r5: A, — angle of wind arrival in relation to room wall [°]

16: P, — difference — external and internal pressure [Pa]

r7: H,  — height of the whole object given as number of
floors [non-dimensional]

8: L, — numb of floor of measurement [non-dimensional]

9: 1 aps quotient of total length of gaps in external wood-
work and volume of room [m/m3]

rl0: M, =~ — room volume [m?]

rll: W, . — coefficient of air permeability through external
woodwork per range [m3/m.h daPa®’]:
0.5:0.5-0.8; 1.0: 0.9-1.2; 2.0: 1.8-2.4; 3.0: 2.7-3.2

r12: C_ . — the air exchange rate in room [h1]

r13: R, - layout of rooms in flat (1 — facing in one direc-
tion, 2 — facing in two directions, etc) [non-dimen-
sional]

rl4: N — number of ventilation ducts in flat [non-dimen-
sion]

rl5: I‘gapﬂ — quotient of total length gaps in external wood-

work and volume of flat [m/m3]
r16: My, — volume of the whole flat [m?]
rl7: W — coefficient of air permeability through flat ac-
cess door per range [m’/m.h daPa®’]: 2 — 2.0; 4 —
3.5-4.5; 9 —9.0-10.0
— the air change rate in a flat [h']

gapfl

r18: Cyy,
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7. Selection of network architecture

In search of the network architecture, modelling
work was based on the so-called “Crack method”, and
the following input data to the network were assumed:

— for neuron networks modelling the air change rate

in a room:

vl: A, 4 — angle of wind arrival in relation to room wall [°]

v2: Ty, — difference between external and internal temp
[°C]

v3: V.. — wind velocity [m/s]

vd: Py, - difference — external and internal pressure [Pa]

v5: L, — numb of floor of measurement [non-dimensional]

vo: 1 aps quotient of total length of gaps in external wood-
work and volume of room [m/m?]

v1: M., — room volume [m?]

v8: W 4 — coefficient of air permeability through external

woodwork per range [m?/m.h daPa®’]:

and the infiltration/exfiltration through gaps around in-
ternal doors where not modelled.

The air change rate in room was assumed as the
process state variable and named as variable 9:

v9: C

— a1 1 -1
room — &ir change rate in room [h™']

— for neuron networks modelling the air change rate
in a flat, first 5 variables were repeated the same as
in a room model and next neurons are:

v6: W . — coefficient of air permeability through external
woodwork per range [m?*/m.h daPa®7]:

v7: R, —layout of rooms in flat (1 — facing in one direc-
tion, 2 — facing in two directions, etc) [non-dimen-
sional]

v8: N ., — number of ventilation ducts in flat [non-dimen-
sional]

v9: Igapﬂ — quotient of total length of gaps in external wood-
work and volume of flat [m/m?]

v10: My, — volume of the whole flat [m?]

vll: Wgapﬂ — coefficient of air permeability through flat ac-

cess door per range [m*/m.h daPa%7]

The air change rate in flat was assumed as process
state variable and named variable 12:

v12: Cy,, — the air change rate in flat [h]

The input data for training were coded in the form
of vectors with elements standardised to the range [0,1].
As a result of the detailed study over selection of opti-
mal architecture from the networks with one hidden layer
of 4 neurons, the ultimately selected architecture is as
follows:

1. for modelling of air change rate in a room, neural

network with:

— 8 input neurons,

— 4 neurons of hidden layer

— 1 neuron of output layer.
Connection diagram of the above network may be illus-
trated as follows (Fig 1):

input

layer
ni

hidden
n2 layer
ni
n3 '
n4 o output
. n3 ayer

ns L ! n1
né
n7 n4
né

Fig 1. Connection diagram of neural networks for model-
ling the air change rate in room

where neurons in an input layer are:

nl: A,  — angle of wind arrival in relation to room wall [°]

n2: Ty, - difference between external and internal temp
[°C]

n3: V_ . — wind velocity [m/s]

nd: P.. - difference - external and internal pressure [Pa]

n5: L, — numb of floor of measurement [non-dimensional]

n6: 1 aps quotient of total length of gaps in external wood-
work and volume of room [m/m?]

n7: M, - room volume [m?]

n8: W, — coefficient of air permeability through external

woodwork per range [m?*/m.h daPa®7];

and neurons in a hidden layer are nl, n2, n3 and n4 and
the interpretation of the above network architecture may
be as follows: neuron 1 in the hidden layer represents
wind velocity, neuron 2 represents static pressure value,
neuron 3 represents weighted total of pressure values,
and neuron 4 takes into account length of gaps in wood-
work, connections between neurons reflect mutual effects
between particular factors and on final result of multi-
plicity of air exchange in a room.

output neuron : C — the air change rate in room [h™'].

room
2. for modelling of air change rate in a flat, neural
network with:
— 11 input neurons,
— 5 neurons of hidden layer
— 1 neuron of output layer.

Connection diagram of the above network may be illus-
trated as follows (Fig 2):

where neurons in an input layer are:

nl: A — angle of wind arrival in relation to room wall [°]

wind
n2: T, - difference between external and internal temp
[°C]
n3: V_ . — wind velocity [m/s]
nd: P.. - difference - external and internal pressure [Pa]
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Fig 2. Connection diagram of neural networks for model-
ling the air change rate in a flat
n5: L, —numb of floor of measurement [non-dimensional]
n6: W_ . — coefficient of air permeability through ex-
ternal woodwork per range [m?/m.h daPa%]:
n7: R - layout of rooms in flat (1 — facing in one direc-
tion, 2 — facing in two directions etc) [non-dimen-
sional]
n8: N_. . — number of ventilation ducts in flat [non-dimen-
sional]
n9: [ — quotient of total length of gaps in external wood-

gapfl

work and volume of flat [m/m?]
n10: M, — volume of the whole flat [m?]
nll: W — coefficient of air permeability through flat ac-

cess door per range [m?*/m.h daPa®7];

gapfl

and neurons in a hidden layer are nl, n2, n3 and n4 and
the interpretation of the above network architecture may
be as follows: neuron 1 in the hidden layer represents
wind pressure value, neuron 2 — static pressure value,
neuron 3 — weighted total of pressure values, neuron 4
takes into account the length of gaps in a flat (wood-
work, ducts), neuron 5 takes into account exchange value
through the access door to the total volume, connections
between neurons reflect mutual effects between particu-
lar factors and on final result of the air change rate in a
flat.

Output neuron: Cg,, — the air change rate in flat [h'].

The last issue remaining during the construction of
neural model is the problem of recurrence of training
sequence to be exposed to the neural network. In the
presented study on the construction of neural model of
air change rate, the appropriate trials of 2000, 5000,
10000, 25 000, 50 000, 75 000, 100 000 cycles were
carried out.

After 100 000 training cycles, the neural network
for modelling the air change rate reached the point at
which there was no improvement in output value. Fur-

ther testing on the cycle number influence by increasing
the number of training cycles indicated that during the
training process, the network oscillated between the val-
ues of two minimums that were very close to each other.
On the calculations of accuracy and compatibility of the
results obtained, the number of 100 thousand cycles
seemed to be optimal and further testing was carried out
on the basis of that number of recurrence of training
cycles.

The constructed neural models for determining the
air change rate in a room and in a flat were subjected to
verification process. The verification of models was car-
ried out using the data from field measurement. Field
measurement conditions are described more detailed in
[16]. The verification was carried out on the basis of
mean square deviations of the values obtained from the
model in relation to the measuring values. The results
obtained are presented in the Table 1 and in the form of
graphs in Fig 3, Fig 4 and Fig 5 in further parts of this

paper.

Table 1. Verification results for different types of buildings

Variant Mean square deviation
11-floor room 14,1 %
5-floor room 13,3 %
2-flloor room 11,9 %
11-floor flat 17,2 %
5-floor flat 15,3 %
2-floor flat 13,9 %

Example set of measuring values and values deter-
mined by the neural model of the proposed structure is
presented in the form of graphs. The graph diagonal il-
lustrates 100 % compatibility between the values obtained
by the neural model and those collected from measure-
ments. As seen in the graphs (Fig 3, Fig 4 and Fig 5),
the compatibility of results obtained is very high. At
higher values of exchange multiplicity, there is a fixed
error between the model and measuring values.

As seen from the trend line drawn on the graph, it
is easy to eliminate through a correction factor to be
determined from the difference between the trend line
and the value of y=x.

8. Conclusions

It seems that neural networks approach to the prob-
lems of finding the air change rate for a room and for a
flat gives quite good results and could be used in the
decision support models for analysis of buildings
behaviour. In some following studies the authors will use
this approach for determining the buildings possibility
to minimise energy consumption. Mean square deviations
below 15 % that occured in the presented models are
very good results fulfilling the requirement for decision
making model to describe the phenomenon nature in a
generalised way.



P. Malinowski et al / JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT — 2006, Vol XII, No 1, 83-88

Values obtained by measurements [1/h]

Measuring values [1/h]

Measuring values [1/h]

Measuring values (series 1) vs Neural model values (series 2)

for 2-floor buildings - rooms
09
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01
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Values of air change rate obtained from neural model [1/h]

+ Series 1 M Series 2

Fig 3. Measuring values versus neural model values for
2-floor buildings for the air change rate in room

Measuring values (series 1) vs Neural model values (series 2)
for 5-floor buildings - rooms
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0
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Values of air change rate from neural model [1/h]
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Fig 4. Measuring values vs neural model values for

S-floor buildings for the air change rate in room

Measuring values (series 1) vs Neural model values (series 2)
for 11-floor buildings - rooms
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Values of air change rate from neural model [1/h]
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Fig 5. Measuring values vs neural model values for
11-floor buildings for the air change rate in room

87

It also must be remembered that in such an issue as

modelling (air change rate in a room or flat), too precise
model is certainly not a desired model, because there is
a high probability of loosing the nature of the whole phe-
nomenon and constructing the model of specific room
or flat instead of general phenomena.
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NEURONINIS INFILTRACIJOS PROCESO GYVENAMAJAME NAME MODELIS
P. Malinowski, I. Polarczyk, J. Piotrowski
Santrauka

Siam straipsniui pasirinkti aspektai, susije su infiltracijos procesu ir neuroniniais tinklais. Infiltracijos pastatuose matavimai
parodé, koks sudétingas yra grieztas matematinis §io proceso modeliavimas. Analizuojant infiltracijos procesa neuroniniy
tinkly pozitiriu, démesys buvo skiriamas daugiasluoksniams perceptronams ir i$ ju sudarytoms sistemoms. Atsizvelgiant
1 $io metodo naujuma, straipsnyje pateikiamas tiek neurony tinklo teorijos, tiek i§samus neuroninio modeliavimo proceso
apraSymas. Darbas buvo atliktas dviem etapais: pirmajame sukurta neuroninio modelio sudarymo metodika, antrajame —
$i metodika buvo pritaikyta realiems objektams modeliuoti.

RaktaZodZiai: infiltracijos procesas, neuroniniai tinklai, neuroniniai modeliai.
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