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Abstract. A mathematical model and calculation algorithm for geometrically non-linear structure cross-sectional optimi-
sation are developed. Inelastic strains in the state prior to plastic collapse are evaluated. The algorithm is obtained com-
bining the extreme energy principle for minimum value dissipated power and mathematical programming theory in 
concert with a large displacement analysis. An evaluation of dissipative features by employing inelastic strains finally 
results in a significant reducement of structure carrying capacity resource versus accounting its elastic response only. The 
safety requirements of structure involve stability conditions in addition to the strength ones. Stability conditions define the 
minimum cross-sectional and slenderness values of structural members. An evaluation of the above-mentioned factors 
restrict a free development of plastic strains, thus an optimal structure generally is in a state prior to plastic failure. The 
problem is solved iteratively, as the employed values of structural elastic response are functionally related with the 
optimised parameters ones. During iterative calculus process the design parameters are defined applying the non-linear 
analysis and the tangent stiffness computational procedures. A simulation of 16-storey steel optimal frame created from 
standard profiles is presented. 

Keywords: optimisation, elastic-plastic structure, geometrically non-linearity, geometrical stiffness, tangent stiffness 
matrix, plastic collapse. 

 
1. Introduction 

The main aim of different tasks related to optimisa-
tion of building structures is to develop an optimal struc-
ture with closely related energy inputs and mass. Its 
behaviour is determined by various external factors and 
should fit the limit requirements applicable to safety and 
fitness state. Optimisation of structures manifests itself in 
the animate nature as well. Structures of living organisms 
alike building engineering ones are sufficiently strong, 
rigid and have stable bearing supports. Living organisms 
have developed their latest structural solutions per course 
of evolution in continuous fight for existence constantly 
optimizing the mass of their structural systems to with-
stand external effects and energy inputs. Thus the quanti-
tative indicators of mass and energy inputs serve the main 
criteria considered by the nature in development optimal 
structural systems. 

The solution of structural optimisation task is to 
provide a comprehensive information on its behaviour 
versus possible work conditions and at any moment of 
existence. Obviously such a broad perspective cannot 
facilitate solution of this task employing linear theory 
methods of structural mechanics. So the principle of 
small displacements becomes unreliable. Besides, the 
Hook’s law loses its validity at a certain level of stress 
state for many materials and should be replaced by a non-
linear relation. Thus linear theory assumptions must be 
abandoned in favour of considerably broader and com-

plex generalisations of the non-linear theory. First, one 
should abandon the calculations for underformed state of 
structure accounting small displacements. Second, one 
should assess the influence of changes of structural form 
and dimensions versus its stress-strain state (SSS). Third, 
one should employ a non-linear stress-strain relation 
evaluating the emerging plastic deformations. It is condi-
tioned by extremely large displacements that have been 
developed in structures prior to plastic collapse. This 
phenomenon is met in structures produced from certain 
materials leading to a violation of regular use require-
ments [1–4]. Thus one must keep in mind the above-
mentioned situations when developing mathematical 
models of the structural optimisation problems. 

Last three or four decades recognised a rather inten-
sive investigations in development of the structural opti-
mization theory, methods and calculating algorithms; 
their integration with modern systems of computer mod-
eling and automated design [1–3, 5–13]. Among the most 
effective methods one can find a methodology of struc-
tural optimization joining the mathematical programming 
theory combined with extreme energy principles and 
inelastic material response [2, 3, 5]. It became clear that 
evaluation of parameters of deformed state of a structure 
and that of material plastic characteristics serves a more 
precise reflection of its behaviour at various load stages. 
Thus the latter phenomenon is necessary to evaluate in 
mathematical models of structural optimisation problems. 
For this purpose various calculations requirements in 



R. Karkauskas / JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT – 2007, Vol XIII, No 3, 183–192 184 

concert with actual evaluation of behaviour of the struc-
ture should be formalised mathematically during all 
stages of structural deforming. Undoubtedly, it helps 
develop a more rational design of a structure. 

A structure moves to a non-linear behaviour result-
ing by: firstly, due to large deformations causing rather 
large displacements; secondly, due to emerging plastic 
deformations at a limit state reached at certain cross-
sections. Undoubtedly, optimisation of structures consid-
ering non-linear behaviour and inelastic strains is a truly 
relevant designing problem. 

The task of the present investigations is: 
• further development of the optimisation problem so-

lution methods, applying extreme dissipated energy 
principle [3, 5] for elastic-plastic geometrically non-
linear structures, evaluating deformed shape influ-
ence on structural stiffness; 

• peculiarities of development of the tangent stiffness 
matrix considering various structural changes 
caused by inner forces;  

• analysis of aspects of numerical modelling of the 
optimization problems. 
The proposed techniques are illustrated via solution 

of sixteen-story single-bay steel frame, subjected by ver-
tical and lateral loads. The optimisation is performed 
taking into account relations, valid for standard steel 
cross-sectional properties. One assumes the optimal struc-
ture to be in the state prior to plastic failure, resulting 
from strength and stability constraints. Some structural 
elements can be in a full plastic state, some partially plas-
tically deformed or in elastic state. The optimisation 
problem is solved iteratively. Each iteration employs a set 
of limit moments, have been determined in previous itera-
tion. The optimisation process is continued till certain 
convergence.  

 
2. Tangent stiffness method 

2.1. Evaluation of elastic forces and displacements by 
the tangent stiffness method 

When large displacements in loaded structure ap-
pear, its behaviour is described as the non-linear one, ie 
strain–displacement relationships contain the non-linear 
terms. To identify the elastic magnitudes of all internal 
forces, selected into the vector 

 ( ) ( )Tn,e,e,e
T

j,ee S...,,S,SS 21≡=S , 

and that of the nodal displacements 

( ) ( ) ,...,,, ,2,1,,e
T

neee
T

je uuuuu ≡=  
one must solve the following problem: 

 [ ] Fu =
τ

K ,  (1) 

where [ ] [ ] [ ]GE KKK +=
τ

 – overall tangent stiffness 

matrix of structure; [ ]EK  – linear elastic overall stiffness 

matrix; [ ]GK  – geometric stiffness matrix; n – total num- 

ber of internal member forces of the structure and m is the 
number of global displacements. 

The planar line element a-b is shown in Fig 1. Here 
values are: displacement components 

ϕ
u,u,u yx  and 

force components 
ϕ

F,F,F yx  at its ends.  
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Fig 1. Member end forces and displacements in global 
coordinates 
 
The fundamental member-forces quantities aM , 

bM , N  and distortion quantities aΘ , bΘ , δ are de-

fined in Fig 2. 
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Fig 2. Member local forces and distortions 
 
The governing stiffness non-linear relationship of 

the end moment-axial forces of the member versus corre-
sponding rotations and changes in the length (flexural and 
axial distortion) reads [4, 14, 15]: 

 [ ] [ ]( ) .kk abab,gab,eab qS +=  (2) 

In Eq (2) the member force vector is 

[ ]Tbaab N,M,M=S  and member distortion vector is 

[ ]Tbaab ,, δ= ΘΘq . The matrices [ ]ab,ek  and [ ]ab,gk  

are defined as follows: 
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where the member axial force is 

 ( )22
Θ2ΘΘΘ2

30 bbaa
EA

l

EA
N +−+

δ
= . (3) 

Referring to Fig 1, define the local member deformations 
., ba δandΘΘ  In global coordinate system it shows the 

initial undeformed configuration of the member with end 
coordinates xa, ya, xb, yb. After deformation the coordi-
nates possess the positive increments uax, uay, ubx, uby. 
Angle α  defines an orientation of deformed configura-
tion of the member a*-b*. Then one can find from Fig 1 
that 

 
( ) ( )
( ) ( )axabxb

ayabyb

uxux

uyuy
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1-tanα , 
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ab
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 ( ) ( )[ ]2
1

22
abab yyxxl −+−= . 

( ) ( )[ ] ( ) ( )[ ]22
ayabybaxabxb

* uyuyuxuxl +−+++−+= . 

Finally, the local member deformations can be expressed 
via the global ones by 
 γ+=

ϕaa uΘ , (4) 

 γ+=
ϕbb uΘ , (5) 

 ll* −=δ . (6) 
The derived physical relationship (2) yields the 

highly non-linear expressions, because they are functions 
of the member axial force. Hence for computational pur-
poses working in terms of incremental values becomes a 
necessary condition. To obtain the incremental stiffness 
relationship it is necessary to differentiate Eq (2) par-
tially, with respect to ,Θa bΘ  and ,δ  in turn. Finally one 

obtains:  
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That is  

 [ ] [ ]( ) [ ] .kkk abab,ab,eab qS ΔΔ
ΔΔ

=+=   (8) 

In Eq (7) the terms of the [ ]ab,k
Δ

 matrix are defined as: 
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4
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Now one must perform a transformation of member 
force-distortion relationships to nodal force-displacement 
relationships. From equilibrium considerations of the 
member shown in Fig 1, the relationships between the 
member basic forces and local nodal forces are: 
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That is, 
 [ ] abababA FS ′=′ .  (10) 

The incremental local nodal forces abF′Δ  are ob-

tained by differentiating equilibrium Eq (10) with respect 
to both abS  and abF′  in the usual way. It results: 

 [ ] [ ] ababababab AA SSF ′+′=′ ΔΔΔ . (11) 

It is seen that [ ]abA′Δ  relates to abF′Δ  to ,abS  when 

the member possesses an increment of displacements. 
Thus the member has been rotated slightly and obtains an 
extension, δ . Therefore 

 [ ] [ ] [ ]Q,gN,gab kkA ′+′=′Δ , (12) 

where: [ ]N,gk ′  evaluates the chord rotation effect vs the 

node force components in the member (influence of the 
chord rotation on the y,x ′′  components vs the axial 

force N in the member); [ ]Q,gk ′  evaluates the influence 

of the transverse shear Q (Fig 2) which is the result of 
node forces in the y′  direction at the ends of the member. 

The components of these forces will evidently change 
when the chord possesses the rotation αΔ . For example, 
small increment of byay u,u ΔΔ  and bxax u,u ΔΔ  give: 
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As [ ]abA′Δ  involves the displacement increments abu′Δ , 

one obtains that 

 [ ] [ ] [ ] abQ,gabN,gabab kkA uuS ′′+′′→′ ΔΔΔ . (15) 

The incremental member distortions abqΔ  are ob-

tained by transformation Eq (10), that is  

 [ ] ab
T

abab A uq ′′= ΔΔ . (16) 

Therefore, substituting Eqs (8), (16) and relation 
(15) into Eq (11), and neglecting the second order term, 
the incremental equilibrium equations one obtains 

[ ][ ][ ] [ ] [ ] abQ,gabN,gab
T

ababab kkAkA uuuF ′′+′′+′′′=′ ΔΔΔΔ
Δ

. 

Thus the incremental relation between member nodal 
forces and displacements (tangent stiffness relationship) 
in local coordinates can be written as 

 [ ] abTab k uF ′′=′ ΔΔ , (17) 

where 

 [ ] [ ][ ][ ] [ ] [ ]Q,gN,g
T

ababT kkAkAk ′+′+′′=′
Δ

 

will be composed of two parts, ie into elastic stiffness 

 [ ] [ ][ ][ ]Tabab,eabE AkAk ′′=′  

and geometrical stiffness 

 [ ] [ ][ ][ ] [ ] [ ]Q,gN,g
T

abab,abG kkAkAk ′+′+′′=′
Δ

 

relatively. This is conditioned by the presence of axial 
force in the member for the load level at the beginning of 
the increment and the subsequent effects of the geometry 
changes in their components. Thus the member tangent 
stiffness matrix [ ]Tk ′  in local coordinates may be rewrit-

ten as 
 [ ] [ ] [ ]GET kkk ′+′=′ . (18) 

The transformation from local to global components 
is now straightforward. Now define the direction cosine 
matrix [ ]abT  in the local axes and obtain the member 

tangent stiffness matrix in global coordinates 

 [ ] [ ] [ ][ ]abT
T

abT TkTk ′= . (19) 

The matrix [ ]Tk  is obtained for each member; these 

are subsequently assembled to find the system tangent 
stiffness matrix [ ]

τ
K . The latter matrix is substituted into 

the incremental equilibrium equations (17). It follows 
then that 
 [ ] .K Fu ΔΔ

τ
=   (20) 

Here uΔ  and FΔ are the m-dimensional vectors of in-
cremental values of nodal displacements and external 
loads, respectively. 

Since the member incremental internal forces are of 
interest when the effects of stresses on the member yield 
conditions are being examined, they may be obtained 
from (8) via the equation 

 [ ][ ] [ ] abab
T

abab TAk uS ΔΔ
Δ

′= . (21) 

 
2.2. Tangent stiffness method computational  
procedure 

There are different numerical procedures that can be 
incorporated in solving of non-linear problems by the 
finite element method [4, 15]. A successful procedure 
should possess the following features: 

monitoring techniques of the progress of computa-
tions along the equilibrium paths of the system; 

an iterative method to solve a set of simultaneous 
non-linear equations ensuring the equilibrium state along 
the path; 

termination schemes to end the solution process. 
To solve such a non-linear set of equations (20) we 

apply the Newton-Raphson iterative method [4, 15] with 
force control, because the load deflection curve is a con-
vex function. One must remind the reader that the struc-
ture is in the state prior to plastic collapse. It yields that 
the tangent stiffness matrix will be non-zero one: 
[ ] .0≠

τ
K  Numerical simulations proved to the final 

value was achieved in 2 or 3 steps. 
 

 
 

Fig 3. Computational procedure 
 
The computation technique principle is presented in 

Fig 3. It determines the structure non-linear response 
values. In this scheme, the loads increment vFΔ  applied 

to the system are used as the prescribed variables. Apply-
ing the Newton-Raphson method for a certain load mag-
nitude ,Fv  the iterations i  are performed for eliminating 

the unbalanced (compensating) joint forces i
v,cF , result-

ing from unbalance of joint external forces and internal 
joint forces, ie: 

 i
v,sv

i
v,c FFF −=

+1 . (22) 
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Here:  
i

v,cF  – the vector of unbalanced joint forces at the 

end of i-th iteration of the current step v; 

1+vF  – the vector of joint external forces at the end 

of the step v. 1+vF  is kept to be constant during the itera-

tions of this step; 
i

v,sF  – the vector of joint internal forces at the end of 

i-th iteration of the step v. 
The aforementioned tolerance appears, when the ac-

tual problem is linearised at the considered iteration, ie 
the tangent stiffness matrix is created for the actual nodal 
displacements being identified in the previous iteration. 

Consider the tangent stiffness method realisation 
main steps. 

Assume that the joint displacement vector vu  and 

load level vF  at the beginning of the current step v are 

known. Then the main iterations of v-th step can be car-
ried out as follows: 

1. Define the new load level of  

 FFF Δ1 +=
+ vv ,  

where FΔ –  the load increment vector; 
2. Create the structural tangent stiffness matrix 

[ ] i
vK

τ
 via assembling (combining) Eq (19) at the begin-

ning of i-th iteration of the step v and calculate its deter-
minant. When it yields the negative magnitude, one can 
state that the structure is geometrically unstable and one 
must interrupt calculation. When the determinant magni-
tude is positive, one must create incremental equilibrium 

equation (20) for unbalanced joint force i
v,cF  (note, that 

for first iteration FF Δ
1
=

=i
v,c ): 

 [ ] .Δ
i
,c

i
v

i
vK

υτ
= Fu  (23) 

3. Solve Eq (23) and determine the incremental val-
ues of global displacements at the end of i-th iteration of 
the current step v: 

 [ ]( ) i
v,c

i
v

i
v K Fu

1
Δ

−

τ
= . (24) 

4. Calculate new joint displacements, adding the in-
cremental values of displacement, being resulted from 
unbalanced nodal forces v,cF  to the ones, obtained in the 

previous iteration 

 .Δ
1 i

v
i
v

i
v uuu +=

−  (25) 

5. Update the structure of new nodal geometry: 

 i
v

i
v

i
v uxx +=

−1 . (26) 

For this purpose calculate direction cosines of structural 

units, create direction cosine matrix [ ] i
vabT  and fictitious 

matrix [ ]ivA , obtained by assemblage of the elements 

equilibrium Eq (10) matrixes [ ] i
vabA′ . 

6. Define the incremental values of member end in-
ternal forces from (21) applying the equation 

 [ ] [ ]( ) [ ] i
v,ab

i
vab

Ti
vab

i
v

i
ab TAk uS ΔΔ

Δ
′=  (27) 

and create incremental nodal forces vector in global co-
ordinate system: 

 [ ] ....,...,,
Ti

v,s
i

v,ab
i

v,
i

v,
i
v SSSSS ΔΔΔΔΔ 21=  

Here s denote the total number of finite elements. 
7. Calculate incremental values of initial nodal end 

forces of structural elements: 

 [ ] .ΔΔ
i
v

i
v

i
v,s A SF =  

8. Define the vector of nodal forces increment 

 [ ] ,ΔΔ
i
v,s

Ti
v,s C FF =  (28) 

where [ ]C  – configuration matrix of local versus global 
displacements. It contains unit and zero components. 

9. Determine total initial nodal forces and total 
member internal forces at the end of i-th iteration: 

 ,Δ
1 i

v,s
i

v,s
i

v,s FFF +=
−  (29) 

 .i
v

i
v

i
v SSS Δ

1
+=

−  (30) 

10. Calculate unbalanced (compensating) joint 
forces given in Eq (22). 

11. Check the prescribed convergence criterion in 
respect of previous iteration result: 

 eps?1
≤−

−i
v,c

i
v,c FF  

If it is not  satisfied,  repeat the calculations of steps 
1–10.  

Iterations are interrupted when the unbalanced 
forces 

υ,cF  are found to be infinitesimally small ones 

and/or satisfy prescribed tolerance magnitude. Finally, 
the deformed configuration and the matrix of equilibrium 

equations of the structure [ ] [ ][ ]vn ACA = , corresponding 

to the prescribed load F , are obtained. 
 

3. Mathematical model of structure optimisation 

An optimisation problem of a structure described as 
a geometrically non-linear system is formulated as fol-
lows. The initial configuration of a structure, active ex-
ternal load and objective function of a problem 
(optimality criterion) are known. It is necessary to find a 
distribution of member cross-section areas A  (limit 
forces 0S ) which would satisfy the optimality criterion of 

a minimum volume structure [5, 9] when separate ele-
ments deform in an inelastic way. The constraints of the 
structure optimisation problem must necessarily include 
the conditions describing the actual SSS of a structure 
being in a state of plastic collapse. The SSS values are 
obtained from extreme energy principle of minimum 
dissipated power [5]. Structural requirements for stability 
of elements under limit slenderness are applied in order to 
guarantee limitations of structural deformations. The 
aforementioned conditions restrict a free development of 
plastic strains; therefore elements of an optimal structure 
induce both elastic and inelastic (plastic) deformation 
caused by residual forces rS  and residual displacements 

ru . Thus an optimal structure is in the state prior to plas-

tic collapse. 
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Thus the mathematical model of structure optimisa-
tion problem, including these limitations (using the FEM 
terminology), is as follows: 

find min,0 →SLT  (31) 

subject to 

 [ ] [ ] [ ] ,ecrc SSS ΦΦΓ 0 ≥−  (32) 

 [ ] [ ] ,AA enrn SFS −=  (33) 

 .min
,00 crSS ≥  (34) 

The values of elastic structural response eS  ob-

tained in the last iteration of the last step of the second 
order analysis (30) are used in this mathematical model, 

ie .i
ve SS =  In their turn, they are functionally dependent 

on structure parameters which are being optimised. A 
direct introduction of this functional dependence in the 
task of structure optimisation would substantially compli-
cate both its formulation and its numerical implementa-
tion as well. Therefore the problem practically must be 
solved by iterations. The parameters of elastic response 
are calculated according to the obtained results of struc-
ture optimisation per each iteration. The iterative process 
is continued until it converges.  

As it was mentioned above, the optimisation prob-
lem (31)–(34) requires presence of functional relations 
between the values of elastic response and optimised 
parameters of a structure, which, in their turn, determine 
values of limit forces, for instance, limit bending mo-
ments plyWM σ=0 . Thus their relationship must repre-

sent a functional relation vs the cross-section area A. In 
case of standard rolled I-sections (eg of certain ones be-
ing employed in usual engineering practice), this relation 
can be approximated with required accuracy by ([9]): 

 ,AaI b1
1=   .AaW b

pl
3

3=  (35) 

It is obvious that direct implementing the above rela-
tionships into formulation of constraints of the mathe-
matical model (31)–(34) would result in the extremely 
complex expressions. Similar situation will occur when 
developing the matrix [ ]cΦ  of yield conditions. For ex-

ample, in case of standard steel rolled I-sections the yield 
conditions for the j-th cross-section read:  
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 (36) 

The eccentricities +c  and −c  (relations between limit 
bending moment and limit axial force) are unknown in 
advance here. For tensile members they read:  
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and that for compressive members:  

 .A
a

A
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N

M
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y

b
y

crj

j 1330 3
3

−
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⋅
χ

=
χσ

σ
==   (38) 

Here limit axial force (the design buckling resistance of a 
compression member) should be described by 

,AAN ycrcr σχ=σ=  where χ  is the reduction coeffi-

cient dependent on the non-dimensional slenderness λ  of 
a column ([16, 17]), which is determined as established 
by EN3 ([16]).  

Most often the lower bound min
cr,S0  of the construc-

tional requirements (34) is compatible with the minimum 

value of limit bending moment .M min
cr,0  Considering the 

buckling condition of a compressed member according to 
the limit slenderness ribλ  requirements [16, 17], it may 

be calculated using the expression: 

 .
1

2
1

2

3
min
,0

1

3

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

λ
σ=

b

b

rib

b
ycr

a

l
aM  (39) 

The solution optimum volume structure problem 
(31)–(34) can be obtained via optimisation cycles. In each 
cycle the problem solution is determined in respect of the 
obtained second-order elastic response values. One ob-
tains optimal values of limit forces of cross-sections and 
corresponding new A, I and c. Then according to the ob-
tained results of structure optimisation, the new parame-
ters of elastic response for the next cycle are calculated 
applying the tangent stiffness method. 

The main stages of structure optimisation cycle are: 
1) to determine limit slenderness ribλ  of elements of 

a structure as established by STR [17];  
2) to select the initial vector of limit forces 

min
cr,

min
cr,

pr
000 MSS ==  by to the formula (39) and to calcu-

late corresponding initial values of members cross-

section areas ( ) 31
300

b

y
pr aMA ⋅σ= ; 

3) applying the Newton-Raphson method, to identify 
the total member forces eS , to obtain the deformed con-

figuration matrix and create the matrix of equilibrium 
equations of the structure [ ] [ ][ ]vn ACA =  corresponding to 

the prescribed load F . 
4) to determine values of members eccentricities 

1
03

3 −+
⋅=

bAac  and χ⋅=
−

−
1

03
3bAac ; 

5) to develop the matrix [ ]cΦ  of yield conditions;  

6) to solve the problem of optimisation of linear 
mathematical programming (31)–(34) and, as a result, 

obtain new values of limit bending moments ;0
newM  

7) to get new values of estimated cross-section areas 

of elements ( ) 31
30

b
y

new
new aMA ⋅σ=  using the optimisa-

tion results. 
8) to verify the condition: whether absolute values of 

differences of limit bending moments are higher than the 
low positive number eps, ie verify whether 

?epsMM prnew
>− 00 ; 
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• if yes, then newA  becomes ,A0  and newM 0  be-

comes prM0  and the operation described in 

stage 3 is performed; 
• if no, then the minimum volume structure is de-

termined and next calculation operation is per-
formed; 

9) to create residual displacement influence matrix 

[ ]H  and residual member forces influence matrix [ ]G  

by combining matrix of equilibrium equations [ ]nA  and 

quasi-diagonal structure stiffness matrix [ ]K  of elemen-

tal flexural stiffness jj lEI  and tension-compression 

jj lEA stiffness (here case of alike material, ie alike 

elasticity modulus E is assumed). Then: 

 [ ] [ ][ ][ ]( ) [ ][ ]KAAKAH n
T

nn

1−
=  

 [ ] [ ][ ] [ ] [ ]KHAKG T
n −= ; 

10) to solve the structure, prior to plastic collapse, 
stress-strain state analysis mathematical model [11, 18]: 

[ ][ ][ ]

[ ][ ] [ ] [ ][ ] ,
~

KCAK

G

T
c

T

T
cc

T

maxΦ

ΦΦ
2

1
find

11
0 →⎟

⎠
⎞⎜

⎝
⎛ −

−

−− FMλ

λλ

(40) 

subject to 
 0.λ ≥  (41) 

The solution of the quadratic programming problem 
(40)–(41) yields the Lagrange multipliers λ  magnitudes 
of the optimal structure, being in state prior to plastic 
collapse. Then the residual response values are deter-
mined, applying influence matrixes H  and G  (fixed in 
stage 9) by 

 [ ][ ] λS T
cr G Φ= , 

 [ ][ ] λu T
cr H Φ= . 

Having the abovementioned values of residual re-
sponse, the actual internal forces and displacements, 
equivalent to an optimal solution, are determined.  

 

4. Numerical experiment 

For illustrating the possibilities of the proposed algo-
rithm a structural optimisation problem of a sixteen–
storey single–bay steel frame (Fig 4, a) subjected by ver-
tical and lateral loads was solved. The geometry of the 
frame, the load application points, the load magnitudes, 
the distribution of the limit bending moment types 0M  

are as shown in Fig 4, a. The total number of columns 
and beams in the frame is 48. Structural members are 
collected in 5 different groups of standard steel IPE sec-
tions, which limit bending moments are selected by the 

vector [ ] .MMMMM T
05040302010 =M The material 

physical properties are chosen as follows: yield limit 
MPa,235=σ y  elasticity modulus .GPa210=E  Geo-

metrical non-linear deformable behaviour is evaluated.  
The created FEM discrete model is presented in 

Fig 4, b. It contains 50 nodes with 112DOF =  and com-
bines two finite elements types, ie 32 columns elements 
assumed to be the compressive-tensile-flexural ones, the 
remaining 32 beams elements are flexural ones. Thus the 
discrete model contains 160 internal forces. 

Modelling the necessary data for relationships (35) 
was performed for European I-beams corresponding to 
IPE sections. The required coefficients for relations of I 
versus A (in cm) and plW  versus A are presented in Ta-

ble 1. 
 

Table 1. Coefficients of relations (35) 

Section 1a  1b  3a  3b  

IPE 0,788 5 2,321 0 0,841 1 1,657 2 

IPE A 1,013 8 2,309 3 0,946 9 1,659 5 

IPE O 0,960 0 2,233 5 0,940 9 1,610 6 

IPE 750 386,51 1,163 1 16,606 1,097 7 

IPN 1,169 8 2,127 6 1,022 7 1,559 2 

 

Table 2. The optimum volume of 16-storey steel frame solution convergence per iterations 

Iteration M01 (kNm) M02 (kNm) M03 (kNm) M04 (kNm) M05 (kNm) LTM0 

0 1 000,000 1 000,000 1 000,000 1 000,000 1 000,000 249 600 
1 1 227,853 732,812 282,819 576,208 206,648 138 504 
2 1 360,077 703,673 232,997 578,199 246,625 144 156 
3 1 403,513 690,988 219,389 573,145 242,871 144 375 
4 1 419,203 687,594 216,892 571,755 244,252 144 801 
5 1 424,609 686,465 216,243 571,255 244,314 144 925 
6 1 426,487 686,114 216,104 571,085 244,388 144 976 
7 1 427,136 686,000 216,068 571,026 244,404 144 994 
8 1 427,360 685,962 216,059 571,006 244,410 145 000 
9 1 427,437 685,950 216,056 570,999 244,412 145 001 
 A1 (cm2) A2 (cm2) A3 (cm2) A4 (cm2) A5 (cm2) V (cm3)  

10 213,017 5 136,886 0 68,171 8 122,544 1 73,438 4 2 931 310 
 282,96 177,36 86,43 148,84 86,08 3 682 500 
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Fig 4. 16-storey steel frame and discrete model
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The constructive limitations of limit critical slenderness 
120=λ≤λ rib  in respect of optimised column members 

were introduced. The buckling length bl  was determined 

according to requirements as established by STR ([17]). 
The admissible lower bounds of limit bending moments 
in each optimisation were identified for each optimisation 
cycle. Here expression (39) based on the buckling condi-
tion was employed. No structural requirements in respect 
of minimum slenderness values of beams have been in-
troduced. 

The design history is presented in Table 2. The op-
timum design was obtained per 9 iterations. Due to the 
obtained optimal distribution of the limit moments (see 
the 9 row of Table 2), the optimal cross-section areas of 
frame members were chosen. The structural minimum 
volume is 2 931 310 cm3. They are presented in the 10-th 
row of the same Table. 

A reliability of designed structure behaviour was 
verified by solving the SSS evaluation problem (40)–(41) 
for the designed optimal frame. Analysis of structural 
behaviour during the loading history was performed. 
Fig 4, b illustrates positions of plastic hinges in order of 
appearance due to the load parameter magnitude (denoted 
in the parentheses). Note that the first plastic hinge ap-
pears at the load multiplier 0,68 F, while the last, the  
35-th, appears at the load multiplier 0,995 F. The extreme 
horizontal linear displacement located at the top storey 
varies from 34,05 cm (1-st plastic hinge) till 107,46 cm 
(35-th plastic hinge). 

The optimum design of the same frame accounting 
linear elastic behaviour and allowable stress limit of 
165 MPa was obtained per 7 iterations (see the last row of 
Table 2). The minimum volume was obtained of 
3 682 500 cm3, which is 25,6 % more than the one ob-
tained via the non-linear design. 

 
4. Conclusions 

The mathematical model and design algorithm is de-
veloped for geometrically non-linear structure cross-
sectional optimisation taking into account inelastic strains 
in the state prior to plastic collapse. The algorithm is 
obtained by coupling the extreme energy principle of 
minimum dissipated power and mathematical program-
ming theory in concert with a large displacement analy-
sis. 

During iterative calculus procedures the design pa-
rameters are defined by means of non-linear analysis, 
applying a tangent stiffness computational procedures.  

The performed numerical experiment of 16-storey 
steel frame optimisation under presence of stress and 
stability constraints illustrates the efficiency of proposed 
algorithm. 

It has been shown that evaluation of physical and 
geometrical non-linearities in the optimal structural de-
sign leads as well as to the closer structural behaviour 
description comparing with an actual one, as to the mini-
misation of material resources for the optimal solution 
ensuring exploitative structural reliability. 
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TAMPRIAI PLASTINIŲ GEOMETRIŠKAI NETIESINIŲ KONSTRUKCIJŲ, NEPASIEKUSIŲ 
VISIŠKO PLASTINIO SUIRIMO, OPTIMIZACIJA 

R. Karkauskas 

S a n t r a u k a  

Plėtojamas geometriškai netiesinių konstrukcijų strypų skerspjūvių optimizacijos uždavinio matematinis modelis 
ir skaičiavimo algoritmas, įvertinantis netampriąsias deformacijas iki jos visiško plastinio suirimo. Algoritmas su-
darytas naudojant ekstreminį energijos disipacijos greičio minimumo principą ir matematinio programavimo te-
oriją gana didelių deformacijų analizei. Disipacinių savybių įvertinimas lemia reikšmingą laikomosios galios 
rezervo sumažinimą optimalios tamprios būklės konstrukcijos atžvilgiu. Eksploataciniai reikalavimai apima stip-
rumo ir stabilumo apribojimus. Uždavinys sprendžiamas iteracijų būdu, nes tampraus atsako dydžiai yra veikiami 
optimizuojamų konstrukcijos parametrų. Naudojama antros eilės netiesinė analizė grindžiama tangentiniu stan-
dumo metodu. Atliktas 16 aukštų plieninio rėmo, naudojant standartinius profilius, optimizacijos skaitinis 
eksperimentas. 

Reikšminiai žodžiai: optimizacija, tampriai plastinė konstrukcija, geometrinis netiesiškumas, geometrinis stan-
dumas, tangentinio standumo matrica, plastinis suirimas. 
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