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Abstract. Three-dimensional description of a building structure taking into consideration the soil structure interaction is a 
very complex problem; the solution of it is often obtained by the finite-element method. However, this method takes a sig-
nificant amount of computational time and memory. Therefore an efficient computational model based on the subdivision of 
the structure into building elements such as wall and floor slab elements, plane and three-dimensional joints and lintels, that 
could provide accurate results with a significantly reduced computational time, is proposed in this study for the analysis of 
three-dimensional structures. The examples prove the efficiency and the computing possibilities of the model. 
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1. Introduction 

Three-dimensional description of building structure 
taking into consideration soil structure interaction is a 
very complex problem and solution of this problem is 
often obtained by the finite element method. The building 
structure and the subsoil create a uniformly interacting 
system which can be accurately described only by three-
dimensional analysis. Such analysis allows not only to 
design building structures in an efficient way but also to 
take into account complicate load and soil conditions 
Fig 1. On the area of Poland, the kinematic loads are 
caused mostly by mining [1] and road traffic (paraseismic 
effects), but lately the typical seismic effects have been 
noticed in north-eastern part of Poland and Lithuania.  

The computational model created to solve these pro-
blems, which uses classical finite elements, incorporates 
 

 
 

Fig 1. Special loads of building structures: a) changes in 
subsoil, b) vibrations, c) explosions, d) impact 

 

substantial disadvantages as a result of high time-
consuming computations (a high number of degrees of 
freedom) and extended data processing.  

Many building structures are constructed using cou-
pled shear walls or shear wall-frame systems. Therefore 
much research on efficient analysis of such structures has 
been undertaken [2–4]. Plane stress elements and beam 
elements have been used to model the shear wall core and 
frames. The transition region in which beam and shear 
walls or frames are interconnected is often the weakest 
area. In general, wall element is treated in FEM as plane 
stress element (has two translational degrees of freedom 
per node) and beam element has three degrees of freedom 
per node (two translational and one rotational). Due to 
this reason, many research workers have taken into ac-
count the connections between shear wall and beam or 
shear wall and frame [4–7]. 

The paper presents an efficient three-dimensional 
computational model (called MQDES) based on subdivi-
sion of the structure into building elements such as wall 
and floor slab elements, plane and three-dimensional 
joints and lintels, that could provide accurate results with 
significantly reduced computational time. The theory of 
Timoshenko-type beam has been used to describe wall 
and floor strips but the compression and twisting have 
been added to the classical formulation.  The description 
allows to obtain internal forces for every strip what can 
be very useful in the engineering practice (designing 
process).  

Proposed model can be useful for the analysis of 
three-dimensional structures subjected to dynamic and 
static loads but especially for the analysis of building 
structures, where mainly walls are responsible for the 
stiffness of the building.  
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2. The computational model 

2.1. The model formulation 

The computational model is formulated on the basis 
of the finite element method in agreement with Zien-
kiewicz [8]. The discrete model is constructed using the 
subdivision of the structure into building elements such 
as wall and floor slab elements, plane and three-
dimensional joints (vertical and horizontal) and lintels [9] 
(Fig 2).  

Wall and floor elements (Fig 3a), which are treated 
as vertical and horizontal strips, are described by deep 
beam scheme taking into account compression and twist-
ing. Transverse section deformation is assumed as in 
Thimoshenko-type beam in agreement with [10]. 

The displacement field of wall and floor strips is ex-
pressed by 
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where: ϕ  – angle of rotation of the strip cross-section, 

ψ – angle of twist of the strip cross-section. 
The strain field is written as 
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where: l, p – two adjacent points between which strain is 
averaged, L – distance between points l and p (width of 
the strip).  

The strain vector has the form 

 ww fLε = , (3) 

where: 
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 { }Tpl wu ψϕ0w u=f . (5) 

The stress field is determined as follows: 

 wf L D = ε D = σ , (6) 

where: D – constitutive matrix.  
Plane and spatial joints are placed between floor and 

wall strips. 
The displacement field in the plane joints (Fig 3c) 

can be expressed by: 
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The strains can be calculated as follows: 
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where: ϕ r – angle of rotation of the plane joint cross-

section, ψr – angle of twist of the plane joint cross-
section,  ln – width of the joint. 
 
 

 
a) 

 

b) 

 

 
Fig 2. a) the subdivision of the structure, b) the location of Thimoshenko-type beams
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Fig 3. Elements of the computational model: a) basic wall element, b) wall element with unknowns in the corners, 
c) plane joint, d) spatial joint, e) wall and floor elements interconnected by three-dimensional joints 

 
Connection between 3 or 4 strips and 2 strips situ-

ated in a different plane is described by three-dimensional 
joint (Fig 3d, e). However, the displacement field of the 
spatial joints (Fig 3d) is assumed as in three-dimensional 
state of stress. 
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Strain field is calculated as 
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Stress field can be described by 

 jjjj fDLDεσ == , (14) 

where: 
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D12 – matrix 6 × 6, in which: d12 = d13 = d21 = d23 = d31 = 
d32 = ν; the other elements are equal 0.  

 

2.2. The finite element method application 

The problem solution using the finite element 
method is reduced to a defined number of points, called 
nodes.  

The unknown displacements distribution of wall and 

floor elements wf is expressed by: 

 eNdf =w , (17) 

where N – shape function matrix,  de – vector of unknown 
displacements at nodes of finite elements  
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The equation of virtual work in dynamic problem is 
given by 
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where: c – damping parameter,  ρ – mass parameter,  
p(t) – changing load. 

The equation (20), expressed by internal forces W, 
has been obtained by formulas (3) and (4) and by integra-
tion of the equation (19) 
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where F– cross-sectional area. 
 { }.        = syzxzx MMQNNW   (21) 
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Internal forces can be obtained by using FEM  

 ee BdDLNdD=fLD=W = , (22) 

where: D – constitutive matrix, N – matrix of a shape 
function, de – displacement vector of nodes. 

Using equation (20) the typical system of differential 
equations can be obtained 

 P(t)=Kd+dC+dM &&& . (23) 

The solution of the equation (26) can be obtained by 
using one of well-known numerical method, ie indirect 
method (reduction and modal superposition) or direct 
method (Newmark and finite difference method). 

In order to enable easier implementation of connec-
tions of finite elements, according to the presented model, 
the unknown displacements are transferred to the corners 
of elements (Fig 3b). 

 
2.3. Soil-structure interaction problem 

The subsoil is presented as elastic contact model de-
scribed by spring constraints (Fig 4). 

Taking into account structural elements, the dis-
placements can be expressed as follows [11]: 
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The forces of subsoil interaction have the form:  
 fff R=dK , (29) 

 

where: 
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where: Rf – forces of subsoil interaction, Kf 12 – matrix 
6×6 in which: k25 = k52 = b2 , k36 = k63 = c and the other 
elements equal 0.  
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Ff, Jf, J0 – cross-sectional area and moments of inertia of 
the foundation footing, ku, kv, kw – proportional subsoil 
coefficients [12]. 

Taking into account the subsoil, the computational 
model has a form: 
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where: k – degree of freedom of the structure, f – degree 
of freedom of the contact zone between structure and 
subsoil. 
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Fig 4. The subsoil interaction in the elastic contact model: a) elastic constrains, b) soil-structure interaction 
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2.4. The model loads 

In case of problems changeable with time the system 
of differential equations (23), (25) is to be solved.  

The equation of motion for kinematic loads trans-
ferred from subsoil to building structure has the form:  

 ( ) 0=Kd+dC+ddM g
&&&&&

+ , (36) 

where: M – inertia matrix, C – damping matrix.  
In case of “step by step” method of integration the C 

matrix is often exchanged by combination of inertia-
stiffness damping: 
 KMC ⋅β+⋅α= , (37) 

α, β – coefficients, K – stiffness matrix, d&&   – accelera-

tion vector, d&  – velocity vector, d  – displacement vec-

tor, gd&&  – equivalent acceleration vector of vibrations 

transferred from subsoil to building structure. 

 ∑ ⋅=

i

i
gg a iTd&& , (38) 

Ti – transformation vector for i-direction of vibration, 
ag

i – i – component of building footing acceleration. 
Because the acceleration components ag

i are known 
from recorded vibration accelerograms, the equation (36) 
has now the form: 

 P(t)dMKd+dC+dM g =
&&&&& –= . (39) 

 
3. Numerical tests 

The numerical tests present the verification of the 
correctness, accuracy and efficiency of the proposed 
computational model by comparison with the results 
obtained by using classic finite elements. The correctness 
of the presented elements has been estimated according to 
the principals used in FEM [8]. Both described in the 
paper new elements and classic finite elements have been 
implemented into the author’s software “ORCAN” 
(kmb.pb.bialystok.pl/dydaktyka/tchyzy). 

The dynamic response of the building models have 
been tested under paraseismic impact load. The results 
have been compared taking into account displacements 
and computational time. 

 
3.1. Numerical test No 1 

Test No 1 concerns the single segment of the 
11-storey building (large-panel building technology). 
Concrete of B-20 class (according to Polish standards and 
C16/20 according to EC2) has been used for walls and 
floors of 14 cm thickness. Fig 5 a shows the horizontal 
projection of the segment, Fig 5 b – the computer model 
of the building which consist of elements proposed in the 
paper. The dynamic response of the building model has 
been tested under paraseismic impact load which had 
been registered on mining area of industrial complex 
KGHM “Polska Miedz” in Polkowice (Poland). Fig 6 
shows the accelerogram. The kinematic load used in the 
analysis corresponds to the results obtained from the 
measurements of the building foundation. The load direc-
tion is in Y axis (Fig 5). 

The computations have been carried out by using the 
author’s software “ORCAN”.  

Figs 7 and 8 present the analysis results: 
• MQDES(H) – analysis has been carried out by using 

“ORCAN” and elements presented in the paper. 
System discretisation correspond to the natural divi-
sion of the building  structure into wall and floor 
elements. 

• ORCAN – analysis has been carried out by using 
“ORCAN” with 4-node shield elements and 4-node 
plane elements. The results have been obtained by 
concentration of mesh 1, 2 and 4 times in both plane 
directions what correspond to the division into 1, 4 
and 16 elements in comparison with the natural di-
vision into wall or floor elements. 
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Fig 5. Segment of the building: a) the horizontal projection, b) computer model 
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Fig 7 shows the response in the form of displace-
ments w of segment top (without damping). Fig 8 pre-
sents the response in the form of displacements v of 
segment top (without damping). The denotations 
ORKAN-1, -2, -4 concern the mesh concentration by 
using classic shield-plate finite elements what correspond 
with the division into 1, 4 and 16 elements in comparison 
with the natural division into wall or floor elements. 
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Fig 6. Diagram of acceleration – Polkowice 13-01-2000 
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Fig 7. Displacements diagram of the top of the segment in 
w direction 

 

 
 

Fig 8. Displacements diagram of the top of the segment in 
v direction 

Table 1 presents computational times of the analysis, 
where: 

• Newmark method has been used for the integration 
if motion equations and the elements stiffness ma-
trices have been determined in every time step, 

• damping has been omitted, 
• number of integration steps NSTEP = 1500, 
• shield-plate elements have been integrated numeri-

cally: Gauss points number – 3×3, number of degree 
of freedom – 20. 
 

Table 1. Analysis of computational times 

Method 

Division 
Computational time [s] 

1 2 
MQDES 1 70 

1 930 
2 3727 ORCAN 
4 14889 

 
This test shows that proposed model which used 

MQDES elements can well describe dynamic response of 
the building and can provide accurate results with signifi-
cantly reduced computational time.  

 
3.2. Numerical test No 2 

Fig 9 shows the 4-storey building erected in the 
same technology as structure in test No 1.  The building 
consists of 3 identical segments.  

The dynamic response of the building has been 
tested under paraseismic impact load showed in Fig 9. 
The load direction is in Y axis (Fig 9). Fig 10 presents the 
response in the form of displacements w of segment top 
(without damping). Fig 11 shows the response in the form 
of displacements v of segment top. The denotations 
ORKAN-1, -2 concern the mesh concentration by using 
classic shield-plate finite elements what correspond with 
the division into 1 and 4 elements in comparison with the 
natural division into wall or floor elements. 

Table 2 presents computational times of the analysis, 
where: 

• Newmark method has been used for the integration 
of motion equations, and the elements stiffness ma-
trices have been determined in every time step, 

• damping has been omitted, 
• number of integration steps NSTEP = 5000, 
• shield-plate elements have been integrated numeri-

cally: Gauss points number – 3×3, number of degree 
of freedom – 20. 

 
Table 2. Analysis of computational times 

Method 

Division 
Computational time [s] 

1 2 
MQDES 1 171 

1 1750 
ORCAN 

2 5206 
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Fig 9. Computational model of the building 
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Fig 10. Displacements diagram of the top of the segment  
in w direction 

 
This test proved that proposed model which used 

MQDES elements can well describe dynamic response of 
the building and can provide accurate results with signifi-
cantly reduced computational time.   

 
3.3. Example of practical application 

Computational example No 3 shows the real applica-
tion of the presented  model –  the results of the  dynamic 
computations of the building located in the mining area. 

 
 

Fig 11. Displacements diagram of the segment top in v  
direction 
 

Fig 12 presents the building erected in WWT technology. 
The building consists of 7 habitation segments and 4 
separated staircases (KL). 

The staircases are the subject of the analysis. Buil-
ding has been subjected to kinematic load in the form of 
subsoil vibrations on the mining area Fig 13 b). In Fig 14 
the eigenvalues and their vibration forms have been pre-
sented. 

Fig 15 shows the horizontal displacements diagrams, 
where P4, P8 and P11 are the displacements appropriately 
at the level of 4, 8 and 11 ceiling. 

 

 
Fig 12. Staircase location
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Fig 13. Computational model of the single staircase and its foundation acceleration 

 
 

 
 

Fig 14. Free vibration forms 

 
 

 

Fig 15. Horizontal displacements diagram 
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4. Conclusions  

The presented method opens possibilities for the 
modelling and discretisation of complex three-
dimensional building structures. The model is assembled 
of elements corresponding to the division of a real struc-
ture into constituent elements, i e wall panels, floor slabs, 
plane and spatial joints as well as lintels. The description 
of stiffness changes, which is determined at the level of 
the individual cross-sectional areas of the building ele-
ments, does not increase the number of unknowns. Such a 
modelling and description of stiffness changes allow to 
create a computational model with a comparatively small 
number of unknowns.  

Because of the small number of unknowns the dy-
namic analysis of large building structures in three-
dimensional scheme can be carried out easily in relatively 
short time on commonly used hardware of PC class (the 
computational time is from dozens to several-hundreds 
times less in comparison with the commercial software).  

Numerical tests have confirmed the correctness and 
usefulness of the presented method for the analysis of 
complex structures subjected to kinematic load. 

This model can be very useful for scientific research 
and code verification purposes, for testing simple compu-
tational models, for structural designing in complicated 
load and soil conditions, for carrying out expertises or for 
modernisation existing building systems. 

 
References 

1. CHOLEWICKI, A.; CHYŻY, T. and SZULC, J. Verifica-
tion of computation methodology for buildings exposed to 
mining tremors. In Proc of the 11th International Con-

gress of the International Society for Mine Surveying, 
Cracow, 2000, p. 497–505. 

2. KIM, H. S. and HONG, S. M. Formulation of transition 
elements for the analysis of coupled wall structures. Com-
puters and Structures, 57 (2), 1995, p. 333–344. 

3. KIM, H. S. and LEE, D. G. Analysis of shear wall with 
openings using super elements. Engineering Structures, 
25 (8), 2003, p. 981–991. 

4. KIM, H. S. and LEE, D. G. Efficient analysis of flat slab 
structures subjected to lateral loads. Engineering Structu-
res, 27 (2), 2005, p. 251–263  

5. CHOI, C. K.; KIM, S. H.; PARK, Y. and CHEUN, K. Y. 
Two-dimensional nonconforming finite elements: A state-
of-art. Structural Engineering and Mechanics, 6 (1), 
1998, p. 41–61. 

6. CHOI, C. K.; LEE, P. S. and PARK, Y. M. Defect-free 
4-node flat shell element: NMS-4F element. Structural 
Engineering and Mechanics, 8(2), 1999, p. 207–231. 

7. LEE, D. G.; KIM, H. S. and CHUN, M. H. Efficient seis-
mic analysis of high-rise building structures with the ef-
fects of floor slabs. Engineering Structures, 24 (5), 2002, 
p. 613–623. 

8. ZIENKIEWICZ, O. C. The finite element method. 
McGraw-Hill, 1986. 787 p. 

9. MIEDZIALOWSKI, Cz. Three-dimensional modelling of 
wall structures. Archives of Civil Engineering, XLI (2), 
1995, p. 195–212. 

10. THIMOSHENKO, S. P. and GOODIER, J. N. Theory of 
elasticity. McGraw-Hill, New York, 1951. 608 p.  

11. MIEDZIALOWSKI, Cz. Discrete model of complex three-
dimensional structural schemes of buildings taking into 
account soil-structure interactions. Research report 
No 24, Białystok, 1994. 283 p. ( in Polish). 

12. SELVADURAI, A. P. S. Elastic analysis of soil-
foundation interaction. Elsevier, 1979. 543 p. 

 

ERDVINIŲ PASTATŲ SKAITINIS MODELIAVIMAS 

Cz. Miedziałowski, T. Chyży, J. Krętowska  

S a n t r a u k a  

Trimačio pastato modelio analizė, įvertinant statinio ir grunto sąveiką, yra labai sudėtingas uždavinys. Jis sprendžiamas 
taikant baigtinių elementų metodą. Tačiau, tiesiogiai taikant šį metodą, reikia didelio kompiuterio pajėgumo bei laiko 
sąnaudų. Todėl pasiūlytas hierarchinis skaičiuojamasis modelis šioms trimatėms problemoms spręsti. Šiame modelyje 
pastatas dalijamas į statybinius elementus, tokius kaip sienų ir perdangų plokštės, dvimačiai bei trimačiai mazgai, 
sąramos. Taikant šį modelį, gaunami tikslūs rezultatai, kartu gerokai sutrumpinamas skaičiavimo laikas. Pateikti pavyz-
džiai iliustruoja pasiūlyto modelio galimybes bei efektyvumą. 

Reikšminiai žodžiai: trimačiai pastatų elementai, superelementai, dinaminė uždavinio formuluotė, baigtinių elementų me-
todas. 
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