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Abstract. A common provision in quality control/quality assurance (QC/QA) highway pavement construction contracts is 
the adjustment of the pay that a contractor receives on the basis of the quality of the construction. It is important to both 
the contractor and the contracting agency to examine the amount of pay that the contractor can expect to receive for a 
given level of construction quality. Previous studies have shown that computer simulations can provide a better, more de-
tailed examination of the pay schedule than is possible by simply determining the expected pay. In particular, the simula-
tion process can provide an indication of the variability of pay at various quality levels and can identify the factors most 
responsible for pay adjustments. Stochastic simulation models are very useful in estimating and analyzing payment risk in 
highway pavement construction. However, such models are constrained by their computational requirements, and it is of-
ten necessary to couple them with simpler models to speed up the process of decision-making. This paper investigates the 
use of Neural Networks (NN) to build surrogate models for a pavement construction payment-risk prediction model. The 
results show that although the average error associated with the NN predictions are acceptable; in some particular cases 
the errors may be unacceptably high. 
Keywords: QC/QA, artificial neural networks, pavement construction, payment risk, stochastic simulation. 

 
1. Introduction 
Quality control (QC) is a procedure or set of procedures 
intended to ensure that a manufactured product adheres to 
a defined set of quality criteria or meets the requirements 
of the client or customer, whereas quality assurance (QA) 
is intended to ensure that a product under development 
(before work is complete, as opposed to afterwards) 
meets specified requirements. QA specifications are an 
important component of an organization’s commitment to 
overall quality management, and consist of several activi-
ties, including process control, acceptance, and some-
times – independent assurance of a product (Buttlar and 
Harrel 2000).   

To promote the construction of better-quality as-
phalt pavements, over the years, a number of state 
highway agencies have moved from using traditional 
method specifications to using statistically based QC/QA 
specifications (Patel et al. 1997). In many QC/QA speci-
fications, the contractor is primarily responsible for 
quality control of the process, whereas the highway agen-
cy is responsible for testing the acceptance of the product. 
These specifications are typically statistics based, in 
which methods such as stratified random sampling and 
lot-by-lot testing are used, allowing contractors to ensure 
that their operations are producing an acceptable product 

(TRR 1996). There is considerable literature discussing 
the various steps involved in developing a new QA speci-
fication for asphalt pavements (Burati and Patrick 2000; 
NCHRP 38; NCHRP 65; NCHRP 212; Weed 1995; Bura-
ti 2006). 

Specifications for the construction of asphalt pave-
ments can generally be classified into method-related 
specifications (MRS), end-result specifications (ERS), 
performance-related specifications (PRS), or combina-
tions thereof. Method specifications give a set of proce-
dures, that if followed by the contractor, will result in full 
payment for the constructed facility. This places a great 
deal of responsibility and testing burden on the agency 
rather than the contractor. End-result and performance-
related specifications, as their names imply, require a 
contractor to achieve specified as-produced or as-
constructed quality levels, which are ideally linked to the 
attainment of good future performance. These types of 
specifications shift most or all of the responsibility for 
producing a high quality product to the contractor, and 
should ideally offer the contractor complete freedom in 
the methods used to arrive at these quality levels (Buttlar 
and Harrell 2000). 

Quality is estimated by measuring certain quality 
characteristics like density, air voids, asphalt content etc. 
But the measurement process has some uncertainties 
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involved because of measurement errors, operator is er-
ror, instrument bias etc (Buttlar and Harrell 2000). Fig. 1 
shows some real data from Illinois highway construction 
project. Voids in the gyratory (a laboratory compaction 
equipment) asphalt concrete specimen were measured by 
the contractor and the district. For the same material two 
parties got different values. From the plot it can be noted 
that: 
(1) There is a clear shift in the two measurements. This 

is called as bias, i.e. consistently measuring lesser or 
more than the real value or other party. 

(2) In addition, it can be seen that the difference in 
measurement varies from one pair of readings to the 
other. This is called as measurement variability.  
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Fig. 1. Contrast in air void measurements in 3 projects by 
2 parties 
 
This means that if the payment to the contractor is 

based on these measurements, there is a probability that 
he either gets more pay than he deserved or is paid less 
than that. Payment risk is defined as the difference 
between the payment made to the contractor based on the 
above-mentioned quality characteristic measurements. 
The ideal pay is based on the actual quality of the pave-
ment constructed. It is desirable to determine the magni-
tude of risk involved with such construction processes 
and relate them to the factors that may be affecting them. 
This knowledge can be used to reduce this risk. 

The parameters that have been identified to signifi-
cantly affect risk are: 1) production variability, 2) measu-
rement variability, 3) targeted mean quality, 4) sample 
size, 5) bias in measurements of contractor, agency and 
third party, 6) upper and lower specification limits for the 
quality characteristic and 7) tolerance allowed in compa-
ring the measurements of the contractor, agency and the 
third party. It is desirable to have a simulation that would 
take the above-mentioned parameters as input and would 
predict risk in the form of a risk plot showing magnitude 
of risk verses the mean quality characteristic and confi-
dence intervals for the risk.  

 
2. Objective 
Although Monte Carlo-based simulations are generally 
used for these purposes, such simulations are often com-
putationally intensive and therefore not very useful for 
batch processing because of prohibitive time require-
ments. This paper explores the feasibility of using com-
putational intelligence-based systems such as neural net-
works for developing surrogate simulation models for 

risk analysis in highway construction processes. In this 
problem, although the simulations work with generation 
of normally distributed random numbers, the calculations 
and conditional processing of data make the output non-
linear and harder to map and therefore the use of compu-
tational intelligence-based techniques was investigated. 

 
3. Neural networks-based surrogate model 
Background 
Neural networks (NN) have been found to be powerful 
and versatile computational tools for organizing and cor-
relating information in ways that have proved useful for 
solving certain types of problems too complex, too poorly 
understood, or too resource-intensive to tackle using mo-
re traditional computational methods. NN have been suc-
cessfully used for tasks involving pattern recognition, 
function approximation, optimization, forecasting, data 
retrieval, and automatic control, to name just a few (Hay-
kin 1999).  

There are several different types of artificial neural 
networks such as back-propagation neural networks 
(BPNN), radial basis function networks (RBFNN), proba-
bilistic neural networks (PNN), and generalized regression 
neural networks (GRNN). Computing abilities of neural 
networks have been proven in the fields of prediction and 
estimation, pattern recognition, and optimization (Haykin 
1999). The best-known example of a neural network trai-
ning algorithm is back-propagation (Rumelhart et al. 1986; 
Haykin 1994; Fausett 1994; Patterson 1996), which is 
based on a gradient-descent optimization technique. The 
back-propagation neural networks have been described in 
many sources (Hegazy et al. 1994; Adeli and Hung 1995; 
Mehrotra et al. 1997; Haykin 1999). 
 
Feed forward neural networks 

First, the possibility of using a fully connected, feed 
forward neural network model as a surrogate model for 
simulating payment risk in highway construction was 
investigated. NNs are parallel connectionist structures 
constructed to simulate the working network of neurons 
in human brain. They attempt to achieve superior perfor-
mance via dense interconnection of non-linear computa-
tional elements operating in parallel and arranged in a 
pattern reminiscent of a biological neural network. The 
perceptrons or processing elements and interconnections 
are two primary elements which make up a neural 
network. A single perceptron is mathematically represen-
ted as (Haykin 1999): 
 ,)(
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 −ϕ=ϕ= ∑
=

n

i
jijijk bwxvy  (1) 

where ix  is input signal, ijw  – synaptic weight, jb  – bias 
value, jv  – activation potential, φ() – activation function, 
ky  – output signal, n – the number of neurons for previous 

layer, and k – the index of processing neuron. 
Multilayer perceptrons (MLPs), frequently referred 

to as multi-layer feedforward neural networks, consist of 
an input layer, one or more hidden layers, and an output 
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layer. Training in a MLP is an unconstrained optimization 
problem, which is subject to the minimization of a global 
error function depending on the synaptic weights of the 
network (Goktepe et al. 2004). For a given training data 
consisting of input-output vectors, values of synaptic 
weights in a MLP are iteratively updated by a training 
algorithm to approximate the target behaviour. This upda-
te process is usually performed by backpropagating the 
error signal layer by a layer and adapting synaptic 
weights with respect to the magnitude of error signal 
(Goktepe et al. 2004). Rumelhart et al. (1986) presented 
the first backpropagation training algorithm for use with 
MLP structures. 

 
Backpropagation algorithm 
The backpropagation training algorithm for a simple 
three-layer MLP structure (one input layer, one hidden 
layer, and one output layer) is described as follows. The 
network is initially presented with an input vector (x1, x2, 
x3,… xN), augmented by a bias x0 = 1. The net activations 
of the hidden neurons and the outputs from the hidden 
layer are calculated as follows: 
 ,)(

0



ϕ=ϕ= ∑
=

N

i
ijijj xvnethI  (2) 

where i varies from 0 to N and j – from 1 to L hidden 
neurons. The synaptic weights of the interconnections 
between the inputs and the hidden neurons are repre-
sented by .jiv  Among the non-linear activation func-
tions, the sigmoid (logistic) function is the most usually 
employed in ANN application. The presence of a non-
linear activation function, φ(), is important because,  
otherwise, the input-output relation of the network could 
be reduced to that of a single-layer perceptron. The com-
putation of the local gradient for each neuron of the mul-
tilayer perceptron requires that the function φ() be con-
tinuous. In other words, differentiability is the only 
requirement that an activation function would have to 
satisfy. The sigmoid function is a bound, monotonic, non-
decreasing function that provides graded, non-linear re-
sponse within a specified range, 0 to 1.The sigmoid non-
linear activation function is given by: 
 ,)exp(1

1)(
j
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where β is a parameter defining the function slope. The 
net activations for the neurons in the output layer and the 
outputs are calculated as follows: 
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where k varies from 1 to M output neurons. The synaptic 
weights of the interconnections between the hidden neu-
rons and the output neurons are represented by wkj. The 
system error is then computed by comparing the actual 
outputs (yk) with the desired outputs (dk). The error terms 
for the output neurons ( o

kδ ) and the hidden neurons ( hjδ ) 
are given by: 

 )()( kkkok netoyd ϕ′−=δ , (5) 
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where the sigmoid activation function is differentiated as 
follows: 
 )1())(1)(()( kkkkk yynetonetoneto −=ϕ−ϕ=ϕ′ , (7) 
 ).1())(1)(()( jjjjj IInethnethneth −=ϕ−ϕ=ϕ′  (8) 
Then, the synaptic weights are updated for each neuron in 
the hidden layer and the output layer. The backpropaga-
tion algorithm essentially changes synaptic weights along 
the negative gradient of error energy function; thus, 
weight changes are proportional to the magnitude of error 
energy. The formulations for weight updates in the output 
layer and the hidden layer are given as: 
 )]1()([)()1( −−α+ηδ+=+ twtwItwtw kjkjjokkjkj , (9) 
 )]1()([)()1( −−α+ηδ+=+ tvtvxtvtv jijiihjjiji , (10) 
where η is the learning rate parameter that can be selected 
from the range [0,1] and α indicates momentum term 
varying within [0,1]. 

In this algorithm, the error energy used for monito-
ring the progress toward convergence is the generalized 
value of all errors that is calculated by the least-squares 
formulation and represented by a Mean Squared Error 
(MSE) as follows (Haykin 1999): 
 ,)(1
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where M is the number of neurons in the output layer and 
P represents the total number of training patterns. 

 
4. Achieving optimum network architecture 
For this problem, the input layer will have 11 nodes, cor-
responding to the risk parameters identified previously: 
(1) asphalt concrete production variability, (2) measure-
ment variability, (3) targeted mean quality, (4) sample 
size, (5) bias in measurements of contractor, (6) bias in 
measurements of agency, (7) bias in measurements of the 
third party, (8) upper specification limits for the quality 
characteristic, (9) lower specification limits for the qual-
ity characteristic, (10) tolerance allowed in comparing the 
measurements of the contractor, agency and third party 
(for N = 1 comparison), and (11) tolerance allowed in 
comparing the measurements of the contractor, agency 
and third party (for N = 3 comparison). The last two input 
parameters are based on standard Illinois Department of 
Transportation (IDOT) procedure. The output parameters 
are (1) the mean risk magnitude, (2) higher confidence 
limits, and (3) lower confidence limits corresponding to 
one value of chosen quality characteristic. The output is 
desirable in the form of a risk plot showing magnitude of 
risk verses the mean quality characteristic and confidence 
intervals for the risk. Fig. 2 shows a typical risk plot with 
mean risk and 90% confidence intervals for payment 
based on voids measurements. 
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A Monte Carlo-based simulation was developed to 

generate 60 000 data points for training the NN model 
and 25 000 data points were used for testing. The input 
values were chosen randomly from within their feasible 
ranges. The data sets were normalized to fall between 0.0 
and 1.0. In this case, although the simulations works with 
generation of normally distributed random numbers the 
calculations and conditional processing of data makes the 
output to be often non-normally distributed. This is evi-
dent in Fig. 1 as well. The distance of the lower confiden-
ce limit from the mean is much greater than that between 
the upper confidence limit and the mean, especially in the 
middle part of the plot. This makes the simulation non-
linear and harder to map. 

One of the most important issues in the development 
of an NN model is the architecture. Determination of the 
input and output variables, number of hidden layers, and 
number of hidden neurons in each hidden layers is crucial 
in the development part of the NN models. The architec-
ture of the NN model has significant effect on the success 
of the developed model. Usually, a neural network with 
too few hidden neurons is unable to learn sufficiently 
from the training data set, whereas a neural network with 
too many hidden neurons will allow the network to me-
morize the training set instead of generalizing the 
acquired knowledge for unseen patterns (Rumelhart et al. 
1986). Haykin (1999) recommends using two hidden 
layers; the first one for extracting local features and the 
second one for extracting global features.  

Initially, a network with only one hidden layer was 
tried in this study. The MATLAB® software was used for 
developing the NN models. But the errors were higher 
than acceptable. Fig. 3 shows the MSE for network with 
one hidden layer with respect to number of neurons in the 
hidden layer for two different learning rates (denoted as 
LR in Fig. 3). The MSE were determined with 50 000 
random cases in the training set and 25 000 cases in the 
test set. Number of cycles run in training was fixed at 
150. Some preliminary runs indicate that after 150 cycles 
generally the change in MSE with cycles is very small, 
even if not minimal or zero. In this Fig., MSEs are shown 
for scaled data. However, the best possible accuracy with 
one hidden layer also may be not considered acceptable 
because, when unscaled, they will translate to 16% to 
22% error in payment. 
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Two or more hidden layers were expected to capture 

the non-linearities of the phenomena better, so several 
two hidden layer architectures were tested. The MSEs for 
all the cases, as shown in Fig. 4, remained between 0.115 
and 0.16. This shows that a network architecture with two 
hidden layers is more suited for this problem compared to 
one hidden layer architecture. In most cases, the MSE 
increased as the learning rate increased from 0.2 to 0.3. 
When the learning rate was increased above 0.3, the 
magnitude of increase in MSE values was lower. With a 
learning rate of 0.5, the MSE decreased slightly for the 
same cases, thus indicating unstable performance for 
learning rates above 0.3. Similar analyses were also car-
ried out with 3 hidden layers, but the MSE values were 
found to be much higher than those from 2 hidden layers. 
Therefore, the final optimal architecture had two hidden 
layers. The momentum parameter was set to zero during 
training. 

 

 
 Fig. 4. Mean squared error (MSE) for two hidden layer 

network 
 
Also, parametric analyses were conducted to deter-

mine the optimum number of hidden neurons. The results 
showed that network with 15 neurons in each of the hid-
den layers had the best performance. The chosen neural 
network (11-15-15-3) was run for 500 epochs (cycles) 
and the errors against the number of epochs are plotted in 
Fig. 5. Considering constraints on the processing time, it 
was decided that the network could be trained for 250 
epochs without compromising on solution quality. 

An important factor in training neural network is to 
have sufficient number of training cases while avoiding 
over-fitting. In all the cases, 50 000 training cases were 
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used. To determine the optimal number of training cases 
required, the chosen network was trained with 60 000 
cases and then with 85 000 cases. The MSEs in both the 
cases were almost identical. However, the decrease in 
error when using 60 000 cases was significant compared 
to that with 50 000 cases. This shows that 60 000 cases 
may be a good number for the training set. Moreover, it 
was also found that training errors were comparable to 
the errors in independent test set cases. This indicated 
that the network was trained to adequate precision 
without over-fitting. 
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Fig. 5. Training curve for 11-15-15-3 network 
 

5. Results and discussion 

Fig. 6 contrasts the predicted values of payment risk with 
the expected values. In this plot, the dark solid line repre-
sents the expected value of mean risk for a particular set 
of input parameter values. The lighter band around it is 
formed by plotting the corresponding predicted values. 
The thickness of the band shows the spread in prediction. 
Smaller spread would mean that the predicted mean risks 
are closer to the expected mean risks and hence errors are 
small and vice-versa. In the sample result, the spread in 
mean risk is almost ± 7.5% for the first part of the plot. 
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Figs 7 and 8 show the results for two standard risk 

plots for air voids in constructed asphalt pavements. The 
entire plot is obtained by running the neural network 
simulation for each data point. Fig. 7 shows that for the 
cases analyzed the predicted values are very close to the 
expected values. If the network does predict risk with this 

much accuracy, then the chosen network would be consi-
dered as a good surrogate simulation model.  
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Fig. 8 shows another representative case, where the 

predicted values are significantly away from the expected 
ones, especially for higher air voids. In this case, 
however, the predicted values are appreciably away from 
the expected ones, especially for higher voids values. It 
should be noted that the most important part of risk plots 
are the peak risks. This represents one of the extreme 
cases. 
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The results show that although the average error as-

sociated with the NN predictions are acceptable, in some 
particular cases the errors may be unacceptably high (es-
pecially around very high or very low input values). This 
provides motivation for trying some improvements in the 
surrogate model so that such errors can be reduced. Futu-
re research efforts will focus on investigating other types 
of computational intelligence paradigms such as hierar-
chical approach, decision trees, and support vector ma-
chines (SVM), as surrogate models, for payment risk 
analysis in highway pavement construction. It is noted 
that the data used in this paper is purely synthetic and 
future research will also focus on the applicability of the 
developed neural networks models to actual field data. 
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NEURONINIŲ TINKLŲ PAKAITALO MODELIS MOKĖJIMO RIZIKAI KELIŲ STATYBOJE NUSTATYTI 
A. Manik, K. Gopalakrishnan, A. Singh, S. Yan 
S a n t r a u k a 
Bendroji sąlyga kokybės kontrolės užtikrinimo (QC/QA) kelių tiesimo sutartyse yra užmokesčio nustatymas. Jį rangovas 
gauna atsižvelgdamas į statybos kokybę. Svarbu rangovui ir agentūrai išnagrinėti užmokesčio kiekį, kurio rangovas gali 
tikėtis gauti už tam tikrą statybų kokybę. Ankstesni tyrimai parodė, kad pasitelkiant kompiuterinį modeliavimą galima 
gauti geresnį, daug išsamesnį apmokėjimo vaizdą. Tai galima padaryti paprasčiausiai nustatant tikėtiną užmokestį. Mode-
liavimo procesas rodo užmokesčio kitimą paisant kokybės ir gali pateikti veiksnius, nuo kurių priklauso kainos nustaty-
mas. Tikimybinis modelis yra labai naudingas apskaičiuojant ir analizuojant užmokesčio riziką tiesiant kelių dangas. Ta-
čiau tokie modeliai yra suvaržyti kompiuterinių reikalavimų, ir dažnai juos reikia susieti su paprastesniais modeliais norint 
greitinti sprendimų priėmimo procesą. Šiame straipsnyje tyrinėjamas neuroninių tinklų naudojimas pakeičiantiems mode-
liams sukurti norint teisingai nustatyti kelių dangos tiesimo užmokestį. Rezultatai parodė, kad vidutinė paklaida, susijusi 
su neuroninių tinklų spėjimu, yra priimtina, tačiau kai kuriais atvejais paklaidos gali būti neleistinai didelės. 
Reikšminiai žodžiai: kokybės kontrolės užtikrinimas, dirbtiniai neuroniniai tinklai, kelių statyba, mokėjimo rizika, sto-
chastinis modeliavimas.  
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