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Abstract. Petri nets have been used for many years to model complex processes. Examples are software design, workflow 
management, data analysis, concurrent programming, reliability engineering, real-time computing systems, operating sys-
tems, distributed systems, and biological processes. Timed petri nets enable the study of timed process reachability, i. e. 
can a certain state in the process be reached, given an initial state of TPN representing a given process. This paper shows 
how the reachability of TPN can be utilized to analyze several aspects of construction projects. TPN are introduced and 
contrasted to Activity Cycle Diagrams and are also formalized to allow for the reachability problem to be assessed. The 
benefits and limitations of the analysis are presented through the classic earth-moving problem. 
Keywords: Timed Petri nets, activity cycle diagrams, simulation, construction, reachability. 

 
1. Introduction 

In recent years, process modeling of construction activi-
ties has gained interest by researchers and practitioners 
alike. With the development of several modeling tools in 
the eighties and nineties (e.g. Cyclone (Halpin and Riggs 
1992), Stroboscope (Martinez and Ioannou 1999) and 
Simphony (AbouRizk and Shi 1994; Zhang et al. 2007; 
Seppanen and Kenley 2005; Mallasi and Dawood 2004; 
Akinci et al. 2002), construction process modeling is 
becoming an increasingly easier task. The majority of the 
construction processes modeling tools, with very few 
exceptions, utilizes the Activity Cycle Diagram (ACD) 
paradigm or similar probabilistic techniques. ACDs are 
networks of circles and squares that represent idle re-
sources, activities, and their precedence. These networks 
describe how construction operations are carried out as 
well as how and when the resources needed for these 
operations are used. 

The traditional approaches to construction project 
modeling, such as ACDs, however, rely on a representa-
tion that lacks an underlying mathematical formalism. If 
one is only interested in simulation of construction pro-
jects, then the traditional approach is sufficient. However, 
if one takes an interest in analyzing and showing proper-
ties of construction projects, then a formalism having a 
firm mathematical basis and availability of sophisticated 
analytical techniques, such as Timed Petri nets is more 
appropriate. Timed Petri nets (TPN) provide a formal 
modeling tool that can be effectively used as a process 
modeling and analysis tool. TPN can systematically ana-
lyze construction process models in a formal manner by 

utilizing several inherent properties including reachability 
and reversibility, absence of deadlock, liveness, boun-
dedness and mutual exclusion. This paper shows, how the 
reachability of TPN can be utilized to analyze several 
aspects of construction projects. TPN are introduced and 
contrasted to ACD and are also formalized to allow for 
the reachability problem to be assessed. The classic earth 
moving problem is used as an example and several key 
analysis questions are answered. It is noted that reachabi-
lity of TPN are deterministic in nature, as opposed to the 
stochastic analysis of ACD. This will be useful for criti-
cal projects analysis, where probabilistic analysis may be 
not sufficient or practical. Furthermore, the analysis of 
construction projects, using the reachability of TPN, eli-
minates the need for over assignment of project resour-
ces, since resource needs can be deterministically deter-
mined and optimized. Using TPN to analyze construction 
projects allows for a more efficient construction process 
design, which will, in turn, result in cost savings. The 
next section provides a brief introduction to Petri nets. 

 
2. Timed Petri nets 

Petri nets is a general modelling language that can be 
used for a wide variety of purposes, and it was the first 
formulated theory for discrete parallel systems. The lan-
guage is a generalization of automata theory, such that 
the concept of concurrently occurring events can be ex-
pressed. There are plenty of applications of Petri nets in a 
wide variety of areas. It is beyond the scope of this paper 
to provide an introduction to traditional non-timed Petri 
nets. There are several excellent introductions available 
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(Peterson 1981; Reisig 1982). Instead we will focus on 
the structure and behaviour of Timed Petri nets (TPNs), 
i. e. general Petri nets with time added. The treatment of 
Timed Petri nets in this paper is based closely on the 
works of Berthomieu and Menasche (1983) and Ber-
thomieu and Diaz (1991). 

Petri nets have been used for many years to model 
complex processes. Examples are software design, 
workflow management, data analysis, concurrent pro-
gramming, reliability engineering, computer architecture, 
computer networks, real-time computing systems, opera-
ting systems, distributed systems, hardware systems and 
biological processes. The bulk of this work has involved 
the used “standard” Petri nets, i. e. nets that model con-
currency and parallelism, synchronization, mutual 
exclusion and causal dependency related to processes. 
The standard Petri net does not model the passage of 
time. One version of Petri nets with time included is a 
Timed Petri net (TPN). TPNs reduce the non-
determinism in the duration of activities in Petri nets by 
associating a time interval with each transition of the net. 
Petri nets have been proposed as a tool for several appli-
cations in project management. Shih and Leung (1997) 
and Desrochers and Sanderson (1995) proposed Petri nets 
as a modelling tool for management systems. Maggot 
(1989) used Petri nets to evaluate the performance of 
concurrent processes, while Kumar and Ganesh (1998) 
and Holliday and Vernon (1987) used Petri nets for re-
source allocation in projects. This paper explores the 
application of TPNs to construction projects. 

A Timed Petri net (TPN) is a tuple P< , T , B , F , 
0M , SIM > , where P  is a finite non-empty set of pla-

ces; T  is a finite nonempty set of transitions it , which 
can be viewed as an ordered set 1 2{ , ..., ,...}it t t ; 
: PB T P× → N  is the backward incidence function, 

where PN  is a vector of positive integers of size P ; 
: PF T P× → N  is the forward incidence function; 
0 :

PM P→N is initial marking function; 
: ( )SIM T Q Q+ +→ × ∪∞  is the static interval mapping 

function, where Q+ is the set of positive rational nu-
mbers. 

Here, ( )iF t  describes, how many tokens (markers 
in places) are placed in the output places of a transition 
it , when that transition fires. Conversely, the ( )iB t  desc-
ribes the number of tokens removed from the places of 
the transition when, it fires. 0 ( )iM p is the number of 
tokens at place ip  in initial marking 0M . ( )iSIM t re-
turns [ , ]s s

i iα β describing the static firing interval for tran-
sition it , where the left bound s

iα is the static earliest 
firing time (EFT), and s

iβ is the static latest firing time 
(LFT). Times s

iα and s
iβ are both relative to the mo-

ment, that it is enabled. EFT and LFT are described as 
static because one or both may decrease as the result of 
the firing of other enabled transitions and the passage of  

time, when they become known as the dynamic firing 
interval. The mathematical formalism of TPN allows for 
several kinds of analyses that explore the behaviour of 
various models. These are shown in Table 1. In the next 
section, we start modeling the basic earth-moving pro-
blem using Petri nets. 

 
3. The classic earthmoving problem model using  
Timed Petri nets 
The classic earth-moving problem is the movement of a 
certain amount of soil by a number of trucks and a wheel 
loader. Fig. 1 shows the Activity Cycle Diagram for a 
sample application of the earth-moving problem. As was 
mentioned earlier, ACDs are networks of circles and 
squares that represent idle resources, activities, and their 
precedence. The squares represent activities, while the 
circles show resources. The the model activities are in 
Table 2. 

The ACD of Fig. 1, for example, is a graphical rep-
resentation of the information in Table 2. The rectangles 
represent activities (resources collaborating to achieve a 
task), the circles represent queues (idle resources), and 
the links between them represent the flow of resources. 
ACDs of this type are typically used to express the main 
concepts of a simulation model. Loaders are used to fill a 
number of trucks on the cut side and then haul the soil to 
the fill side. The loading time is required for the wheel 
loader to completely fill a truck. There is no restriction 
for dumping, which can take place immediately after 
hauling. This model will be amended in the next section 
to demonstrate the applicability of reachability analysis. 

The corresponding TPN model for the operation is 
shown in Fig. 2. The figure shows a model for the soil 
basic movement by trucks and a wheel loader. Three 
trucks are shown, one being loaded by the wheel loader, 
one in hauling to the dump point, and one returning from 
dumping. It is assumed that there is an infinite pile of soil 
and that operations have just begun, so at this moment 
elapsed time is zero and each process, i.e. loading, hau-
ling or returning, has just begun. 0M  is TrkQueue, Lo-
adToHaul, DumpToReturn. There are 3 enabled transi-
tions: WhlLoader, Haul and Return, so the 0I  vector 
corresponding to 0M  has 3 components ([7, 9], [10, 13], 
[12, 15]). Each interval is the static firing interval asso-
ciated with the enabled transitions WhlLdr, Haul and 
Return, respectively. Now the basic earthmoving problem 
is presented, the reachability of TPNs is presented next. 

 
4. Reachability of TPN 
Timed Petri nets enable to study the timed process reach-
ability, i.e. can a certain state in the process be reached, 
given an initial state and a TPN representing a process. In 
some sense, this is the basic problem that simulation is 
attempting to solve. Indeed, there have been extensive 
efforts devoted to establishing simulation frameworks for 
construction projects. One of the big disadvantages of 
simulation is that  the  full  range of  solutions  cannot  be  
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Table 1. Behavioural properties of PN 
Properties Meaning Example 

Reachability 

Marking M  is reachable from marking 
0M , if there exists a sequence of fi-

rings transforming 0M  to M . The 
reachability problem is decidable. 

 

Liveliness 

From any marking any transition can 
become fireable. Liveness implies dead-
lock freedom, and not vice-versa. 

 

Boundedness 
The number of tokens in any place can-
not grow, indefinitely (1-bounded also 
called safe). 

 

Schedulability 
Analysis for a given PN answers the 
question a set of firing sequences that 
can be infinitely repeated exists in the 
reachability space of the net. 

 

Conservation The total number of tokens in the net is 
constant. 

 
 
 

 

  
Fig. 1. The activity cycle diagram of the basic earthmoving  
problem 

 

Fig. 2. The Petri net formulation of the basic  
earthmoving problem 
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Table 2. Activities of the basic earthmoving problem 
Conditions needed to start Activity Outcome of  

activity 
Wheel loader idle at source. 
Empty truck waiting to load. 
Enough soil in stockpile 

Load 
Wheel loader idle 

at source. 
Loaded truck 
ready to haul 

Loaded truck ready to haul Haul Loaded truck 
ready to dump 

Loaded truck ready to dump Dump Dumped soil. 
Empty truck 
ready to return 

Empty truck ready to return Return Empty truck 
waiting to load 

 
determined. Simulation bases changes of state in the 
process on probability. Using simulation, there is no 
guarantee that all possible states of the system have been 
exposed. Indeed, there is no guarantee that a certain per-
centage of possible states have been exposed. If it is de-
sired to know, whether a certain state of a process can 
ever occur, then reachability analysis fits the bill. This is 
especially important in situations, where reaching a cer-
tain state involves a significant safety risk or produces a 
situation, where gridlock can occur, i. e. too many re-
sources in the same place at the same time. 

Reachability analysis has an advantage that all po-
ssible states of the process are exposed based on the ran-
ge of firing times of transitions. Hence, one can say 
unequivocally, whether it is possible or not for a system 
to reach a certain state. Thus, the confidence level in the 
result of reachability analysis can be much higher than 
that for simulation. The goal of this paper is to demonst-
rate that reachability analysis is useful for solving pro-
blems in construction, and can answer questions about 
construction project models that cannot be answered by 
simulation. 

A solution of the reachability problem is answering 
the question whether or not a given marking belongs to ( )0R M . Similarly, the boundedness problem is whether 
or not all markings in ( )0R M  are bounded, i. e. have a 
finite number of tokens. For all markings in ( )0R M  and 
all places p , ( )M p k≤  for some k  in N , the set of 
natural numbers. A TPN is said to be T-bounded if there 
exists a natural number k such that none of its transitions 
may be enabled more than k times simultaneously by any 
reachable marking i.e. for all ( )it  in T  there exists p 
in P  such that: ( ) ( 1) (t( ), )M p k B i p< + . When k = 1, 
the TPN is said to be T-safe. To solve the reachability 
problem of TPN, we need to construct what is called a 
reachability graph. Basically, the reachability graph desc-
ribes different states of a TPN.  

In a traditional non-timed Petri net, the state of the 
net consists solely of a marking, M. In TPNs, where time 
is part of the state, the state of the net is a pair (M , I ), 
where M  is the marking and I  is a firing interval vec-
tor. This vector associates with each transition enabled by 
M , the time interval in which the transition is allowed to 
fire. The number of entries in the firing interval vector is 
the number of transitions, enabled in M . The number of 
entries in I  will vary as markings change and the set of 
enabled transitions changes. Each entry in the firing in-
terval vector gives the range of possible firing times for 
its associated enabled transition in marking M . A state 
S  is entered at an absolute time τ  measured from the 
beginning of ( )0 0 0,S M I= . 

Now consider the classic earth moving problem in 
Fig. 2. Boundedness is decidable with coverability tree. 
For bounded nets the Coverability Tree is called Reacha-
bility Tree since it contains all possible reachable mar-
kings. The algorithm for creating a coverability tree 
builds a (finite) tree representation of the markings. This 
algorithm is known as the Karp-Miller algorithm (Fig. 3).  

 

  
Fig. 3. The Karp-Miller algorithm 
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For the soil movement above, we use a tool called Tina 
(Berthomieu et al. 2004; Berthomieu 2008], developed 
by Bernard Berthomieu of LAAS-CNRS in Toulouse 
(France) to generate the reachability graph (Fig. 4). The 
marking reachability graph, shown in Fig. 5, has 26 sta-
tes. Using this information, one can start to decide, 
whether certain conditions can be reached or not. Sample 
applications are shown in the next section. 

 
5. Reachability applications to the developed earth-
moving problem 
In this section we examine the use of reachability analysis 
to answer several practical questions concerning each soil 
movement model. The basic earth moving problem pre-
sented above is not revised to include a restrictive road 
that trucks are required to use both to and from the dump-
ing destination. Fig. 6 shows a sample schematic of the 
problem. We assume that the road narrows down at a 
treacherous bridge/curve, where trucks are permitted to 
travel in one direction only. While trucks are in the curve 
going in a certain direction,  no trucks are permitted for 
safety reasons to enter the curve in the opposite direction. 
The ACD for the new developed model is shown in 
Fig. 7. This model has 4 trucks, initially waiting to be 
loaded by a wheel loader. 

In this model the haul road has been broken into 3 
parts. Haul now consists of a Haul1, HaulCrv, and Haul2. 
Similarly, Return now consists of Return1, Return Crv, 
and Return2. HaulCrv and ReturnCrv are for crossing a 
narrow, birdge segment. This segment will eventually 
allow traffic in only one direction with no passing (single 
file loaded or empty traffic, but not both at the same ti-
me). 

The restrictive road is modeled by 4 places, In-
HaulCrv, InRetCrv, HP, RP and 4 transitions, Enter-
HaulCrv, RestHaulCrv, EnterRetCrv, and RestRetCrv. 
These places and transitions model entry and presence on 
the road in one direction only, a concept known as mutual 
exclusion. One direction of the road is modeled with En-
terHaulCrv, InHaulCrv and RestHaulCrv. The other di-
rection is modeled with EnterRetCrv, InRetCrv and 
RestRetCrv. If one truck is waiting to enter the road in 
place WaitHaulCrv and a second truck is waiting to enter 
in place WaitRetCrv, only one may enter. Suppose that 
the truck in WaitHaulCrv enters. One token will be re-
moved from place RP. Since 4 tokens are required to fire 
EnterRetCrv, no truck may simultaneously enter the cur-
ve in the return direction. The road in the haul direction is 
now open for more trucks to enter that direction. Each 
will take another token from RP. As trucks in the haul 
 

  
Fig. 4. Tina’s interface 

 
 Fig. 5. The marking reachability graph 
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Fig. 6. The developed earth-moving problem schemetic 

 
 

  
Fig. 7. The ACD of the earth-moving problem 

 
direction leave the curve by firing transition Rest-
HaulCrv, they return tokens to RP. When all the tokens 
have been returned to RP, EnterRetCrv could fire, if there 
are any trucks waiting in WaitRetCrv. If a truck fires 
EnterRetCrv, then a token is removed from HP, thereby 
blocking entry to the curve in the haul direction. The haul 
and return directions on the road have mirror images. If 
two trucks are able to simultaneously fire EnterHaulCrv 

and EnterRetCrv, following the semantics of reachability 
analysis, both firings are modeled. Each firing will gene-
rate a branch in the reachability tree. Note that this does 
not mean that mutual exclusion has been violated; it 
means only, that at a particular moment, a truck can enter 
either direction, but once a direction decision has been 
made, mutual exclusion is in effect and trucks may enter 
and travel in one direction only. 
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Now we are in a position to explore the use of rea-
chability analysis to answer some questions about the soil 
movement example. An interesting question is: (Question 
1) What is the minimum number of trucks that are needed 
to keep the wheel loader continuously busy? The wheel 
loader will be busy if there is always a truck in TrkQueue 
enabling the WhlLdr transition in Fig. 7. Since we have 
no idea at this point, how many trucks will be needed, we 
initialize TrkQueue with 100 trucks (replacing the 4 truck 
initialization in Fig. 8), We estimate that 100 trucks is 
many more than will be needed. Unused trucks will re-
main in the queue. The additional unused trucks do not 
generate any additional state classes thereby causing time 
and memory efficiency problems. To see this, suppose 
that 8 trucks are needed for hauling, and we have one 
extra truck that always remains in the queue. If we initia-
lize the queue with 100 trucks rather than 9, each state 
class will end up having 91 extra tokens rather than one 
extra token. Since TrkQueue will always be occupied, it 
will appear in all state classes with some multiplier. 
Whether the multiplier is one or 91, it does not affect the 
number of state classes. 

Using Tina to do reachability analysis of this 
example, we search the output file for the minimum nu-
mber of tokens in TrkQueue. Thoughout the remainder of 
this paper, answering reachability questions are solved by 
searching the text file generated by Tina. This can be 

done conveniently using regular expressions with a text 
editor that has support for this search method. Discussion 
of regular expression use is beyond the scope of this pa-
per. We refer the interested reader to (Martinez 1999). 
The construction and use of regular expressions can be 
automated, as well. 

Returning to the question, we find the minimum 
number of trucks remaining in TrkQueue to be 95, indica-
ting that 5 trucks can be in places other than in TrkQueue. 
Thus, with 5 trucks, the truck queue can be empty at ti-
mes. Thus 6 trucks are needed to keep the wheel loader 
continuously busy. Recall from a previous discussion, 
that 6 trucks are needed with some probability. We do not 
attempt in this paper to quantify the probability. To fur-
ther verify this result, we run the same problem with 5, 6 
or 7 trucks in WhlLdr. We see that the 5 truck example 
generates 2184 classes, whereas the 6 and 7 truck 
examples both generate 2481 classes. Thus, more classes 
are generated going from 5 to 6 trucks, indicating that 
adding another truck generates new states, whereas going 
from 6 trucks to 7 trucks does not generate any new sta-
tes. The 7th truck continues to sit in TrkQueue and is 
never used. Similar techniques can be applied to answer a 
wide array of questions on the process (Table 3). There 
are several advantages of Timed Petri nets over ACDs, 
and these are explained below. 

 

 
 Fig. 8. The TPN model for the earth-moving problem 
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Table 3. Results of reachability analyses for certain conditions of the developed earth-moving porblem 
No Question Answer 
1 What is the minimum number of trucks nee-

ded to keep the wheel loader continuously 
busy? 

The minimum number of trucks remaining in TrkQueue to be 95, indicating 
that 5 trucks can be in places other than in TrkQueue. Thus, with 5 trucks, 
the truck queue can be empty at times. Thus 6 trucks are needed to keep the 
wheel loader continuously busy. 

2 What is the penalty (in terms of trucks nee-
ded to keep the wheel loader continuously 
busy) to maintain one way travel in the cur-
ve? 

The delays waiting to enter the curve require 3 more trucks, or 100 % more 
transportation resource. 

3 With a given number of trucks, what is the 
maximum number of loads that will keep the 
wheel loader busy?   

With 14 loads and 5 trucks, the wheel loader will be busy all the time. 

4 With a certain number of loads to deliver, 
what is the minimum number of trucks nee-
ded to keep the wheel loader busy? 

5 trucks 

5 Without considering the number of loads to 
be delivered or the number of trucks availab-
le, what is the maximum number of trucks 
that can simultaneously be in the curve?   

The maximum number of trucks that can be in the curve simultaneously is 3. 

6 Without considering the number of loads to 
be delivered or the number of trucks availab-
le, what is the maximum number of trucks 
that can simultaneously be in the curve?   

Running the example with 6 followed by 5 followed by 4 trucks, we learn 
that 6 and 5 trucks produce 3 trucks in the curve, whereas 4 trucks produces 
only 2 trucks in the curve. 

7 With a certain number of trucks in use, what 
is the minimum number of loads that cause a 
given number of trucks to be simultaneously 
in the curve? 

3 loads or more are required to put 2 trucks in the curve using 5 trucks total. 
 

8 With a certain number of loads to deliver, 
what is the minimum number of trucks nee-
ded to cause a given number of trucks to be 
simultaneously in the curve? 

This turns out to be 15 loads. Thus, carrying one less load will limit the nu-
mber of trucks in the curve to 2 maximum. 

9 What change in the number of trucks in use 
is required to keep the wheel loader busy, if 
the number of trucks in the curve is limited 
for safety reasons? 

Running Tina and examining the output we find that a maximum of 4 trucks 
in use will generate 2 trucks in the curve, but not 5 trucks in use. 

10 How many extra trucks are needed to keep 
the wheel loader busy when a road closure 
increases the distance to and from the cur-
ve? 

It requires 7 trucks to keep the wheel loader busy, an increase of 1. 

11 Can we get the same effect as adding trucks 
by decreasing loads? 

The answer is “yes”. It turns out that if we limit the number of trucks to 6, 
we can complete 14 loads and still have trucks waiting. 

 
6. Advantages of the proposed Petri net approach 
The advantage of TPN reachability analysis lies in: 

1. The ability to make deterministic conclusions 
about the construction project (versus the probabilistic 
analysis of activity cycle diagrams and its tools such as 
SIMPHONY, STROBOSCOPE and CYCLONE). De-
terministic conclusions on the construction project is 
essential to several construction applications that have 
already been modeled by activity cycle diagrams, such as 
earth moving, tunneling, grading, paving and several 
others. Some practitioners have resisted the use of pro-
cess modeling techniques in the field citing their lack of 
determinism. For example, contractors want to be as sure 
as possible as to the resources, they will need on a job. 
By removing the variability of the analysis and conside-
ring a deterministic analysis technique, such as TPN, one 
can attain a highest level of confidence in the result. Un-
like activity cycle diagrams, TPN have a firm mathemati-

cal basis that allows a deterministic analysis of construc-
tion systems. 

2. Fail-safe modelling. When simulating some 
construction processes, it is important to attain a level of 
confidence that certain conditions will not arise. For 
example, when modelling a concrete manufacturing faci-
lity, it may be enough to determine that there is a small 
chance that given a certain number of trucks, the hopper 
will be idle. This information can be used to calculate and 
optimize the overall cost of production by considering the 
cost of extra trucks, versus the idle cost of the hopper. In 
order to assess this, standard simulation tools can be used 
that employ ACDs. In other situations it is important to 
be certain that particular situations will not arise and not 
just attain a level of confidence. Consider, for example, 
the developed earthmoving problem with a narrow brid-
ge. It may be imperative for structural safety reasons to 
assess the maximum number of trucks on the bridge at 
any time.  
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3. It was concluded from previous research that 
there is no consensus on the basic constructs needed for 
process modelling. It is argued, among several things that 
for reaching sufficient modelling power, and the depth of 
formal basic constructs (Sawhney et al. 1999). The tradi-
tional process modelling tools lack an underlying mathe-
matical formalism that allows for systematic analysis of 
the properties of the construction process being modelled 
(Wakefield and Sears 1997). A formalism having a firm 
mathematical basis with sophisticated analytical 
techniques is needed for fully analysis of construction 
process models. TPNs provide that formalism.  

4. The rules and logistics of using the modelling 
elements are also very simple, thus making the learning 
period very short, compared with the other process mo-
delling tools available. The models obtained are easy to 
explain to both experts and non-experts. 

 
7. Limitations of the analysis 
There are two main limitations to the analysis presented 
here: 

1. Unfortunately, the application of reachability of 
tree analysis method is greatly limited by the fact that the 
reachability tree of a Petri net may be an infinite tree for a 
given initial state or marking (Lu et al. 2003). Efforts 
have been made, however, to find some finite representa-
tions for reachability trees (Lu et al. 2003).  

2. Although the results in Table 3 do not portend 
any computational difficulties performing reachability 
analysis with Petri nets, it is well known that this problem 
suffers from state space explosion. Problems of the size 
of the soil movement example and significantly larger 
can be solved without this becoming a problem. 
However, large examples may not be tractable, because 
the number of state classes becomes prohibitively large. 
Tina deals with the problem by collapsing equivalent 
state classes into a single state class, and by ignoring the 
domain part of the state class during construction of the 
marking reachability graph. More sophisticated 
techniques have been developed. These include the appli-
cation of a region graph method to calculate the reachabi-
lity graph (Gardey et al. 2004; Gardey et al. 2006]. This 
technique has been implemented in a tool, called Romeo, 
which is faster than Tina for constructing state space 
classes and allows testing on the fly for the reachability 
of a given marking (RTS Software 2008). 

 
8. Conclusions 
In this paper, Timed Transition Petri nets were presented 
as a formal modeling tool that can be employed as a con-
struction process modeling and analysis tool. We solved 
the reachability problem for construction projects using a 
Timed Transition Petri net (TTPN), also known as a Time 
Petri net. The fireablity rules for transition and state were 
also presented and formalized. We demonstrated, how the 
reachability technique can be used to deterministically 
analyze typical construction activities. The reachability 
technique was applied to the traditional earth moving 

process and we used a computerized tool (TINA) to 
automate the process using regular expressions. 

It was shown that solving reachability problems for 
traditional construction process models is practical and 
robust using standard hardware and freeware. Furthermo-
re, analysis of construction projects using the reachability 
of TPN eliminates the need for over assignment of project 
resources, since resource needs can be deterministically 
determined and optimized. This is in contrast to the pro-
babilistic ACD, where there may be extreme unforeseen 
situations mandating assigning more resources than nee-
ded. Using TPN to analyze construction projects allows 
for a more efficient construction process design, which 
will, in turn, result in cost savings in terms of the resour-
ces necessary for the projects being analyzed. 
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PETRI LAIKO TINKLŲ PASIEKIAMUMO TAIKYMO STATYBOJE ANALIZĖ 
K. Nassar, A. Casavant 
S a n t r a u k a 
Petri laiko tinklai jau daugelį metų yra taikomi sudėtingiems procesams modeliuoti. Jų pavyzdžiai yra programinės įran-
gos kūrimas, organizacinių procesų valdymas, duomenų analizė, vientisas planavimas, patikima inžinerija, kompiuterinės 
sistemos, operacinės sistemos, išskirstytos sistemos ir biologiniai procesai. Petri laiko tinklai leidžia tirti apibrėžtų procesų 
įvykdymo pasiekiamumą per nustatytą laiką, t. y. ar tam tikra proceso būklė gali būti pasiekta turint Petri laiko tinklų 
pradinę būseną, aprašančią procesą. Šiame straipsnyje parodoma, kaip Petri laiko tinklų pasiekiamumas gali būti pritaiky-
tas statybos projektams analizuoti keliais aspektais. Apibūdinami Petri laiko tinklai yra gretinami su veiksmų ciklinėmis 
diagramomis ir suformuoti taip, kad būtų galima įvertinti pasiekiamumo problemas. Taip pat yra pristatomi analizės 
privalumai ir trūkumai nagrinėjant klasikinį žemės darbų uždavinį. 
Reikšminiai žodžiai: Petri laiko tinklai, ciklinės veiksmų diagramos, modeliavimas, statyba, pasiekiamumas. 
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