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Abstract. There are many methods to calculate castellated steel beams; however, neither of these methods determines the 
rational cross-section selection. Selecting the rational cross-section induces a significant reduction in the quantity of steel. 
A new algorithm for selecting the rational dimensions of the castellated beams is presented in this paper. In future works it 
may be adopted and used for design. 12 m long beams, web thickness 6–12 mm and web depth 500–1000 mm are ana-
lysed in this paper. Opening size used varies from half of the web depth to the total web depth minus 100 mm. The chosen 
cross-sectional area of two flanges is equal to the cross-sectional area of the web. The thickness of the flanges is twice as 
big as the thickness of the web. The finite element method was used for geometrical and physical non-linear analysis of 
the castellated beams under a uniformly distributed load. The upper flanges of the beams are restrained out of the plane. 
The results are presented in relevant charts. 
Keywords: castellated steel beam, perforation, perforation form, diameter of perforation, rational depth, finite element 
method, ultimate load. 

 
1. Introduction 
The bigger the area of the flange, the more rational the 
beam is (Čižas 1993). Thus, the flanges cross-section 
should be as big as possible to get a beam similar to the 
castellated beams (Fig. 1). 

 

  
Fig. 1. View on test specimen of plate girder with web 
openings  
The perforated beams have a wide range of applica-

tions ranging from commercial and industrial buildings to 
parking garages. They have a scene of beauty as well. 
These beams are well acceptable for big spans. Perforated 
beams have a structural advantage because it is possible  

to pass through the web openings of the beam different 
kinds of communications (Liu and Chung 2003), which 
allow to save the effective height of the room and which 
is very important in multi-storey buildings. Advanced 
analysis of castellated beams generally has a verification 
character, i. e. the calculation, whether a beam with cer-
tain dimensions can carry the load or not, is carried out. 
In addition, there are tables used to select different types 
of castellated beams according to the load applied and the 
span. As a result of accurate analysis by finite element 
method, the design of castellated beams has become ea-
sier. A problem arises how to determine the rational di-
mensions of castellated beams, such as perforation dia-
meter, the distance between perforations, web thickness, 
effective depth, etc. Therefore, it is very important to 
develop a method for selecting the rational parameters of 
castellated beams. 

The beams used nowadays are not only made of rol-
led sections, but also built up using steel plates (Shanmu-
gam et al. 2002; Hagen 2004). They are called steel plate 
girders with web openings. Using such beams allows one 
to dispose all cross-sectional dimensions and find the 
rational ones. 

According to the experimental data, 8 failure modes 
of castellated beams are known (Mohebkhah 2004; Meg-
harief 1997; Zirakian and Showkati 2006): 

1. Flexural mechanism; 
2. Lateral torsional buckling; 
3. Distortional buckling; 
4. Web post buckling due to shear force; 
5. Web post buckling due to compression force; 
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6. Vierendeel or shear mechanism; 
7. Rupture of welded joints; 
8. Ultimate deflecting. 

 
2. Scope and aim of the investigation 
Numerous researchers have quite well investigated the 
calculation methods for load carrying capacity of castel-
lated beams. Quite a few theories are known (which can 
be trusted and used) for calculating castellated beams. 
Some of them are based on calculating the stresses in 
characteristic points such as in the corners of the open-
ings and flanges, local stability of the web posts and local 
stability of tee sections over openings, etc. (Eurocode 3 
1998; Biriulev et al. 1990; SNiP II-23-81* 1990). 

The most difficult part is to find the rational depth 
of the beams which depends on many things. It is very 
complicated to achieve this due to mathematical difficulty 
in dealing with many unknowns and formulas. Using the 
finite element method, an analysis enables us to avoid 
such problems as mentioned above. 

The main aim of this paper is:  
1. to create charts ( )p f d=  and ( )RF f d= , where 

d  – diameter of the perforation, p  – uniform load 
[kN/m], RF  – rational factor; 

2. to analyse the charts mentioned above (how p  and 
RF  depend on the perforation diameter d , thick-
ness of the web wt  and web depth wh ); 

3. to present a new algorithm for selecting the rational 
dimensions of beams. 
The modes of failure of castellated beams is not ta-

ken into account in this paper. The aim of the analysis 
performed by finite element method is to obtain only the 
ultimate load and the rational factor. 

The next formula allows for calculation of the value 
of the rational factor: 
 pLRF m= , (1) 
where RF  – rational factor; p  – uniform load [kN/m];  
L  – length of the beam [m]; m  – weight of the beam [kN]. 

According to the calculations, the charts ( )p f d=  
and ( )RF f d=  have been drawn, where d  – diameter 
of  the perforation (Fig. 2). Charts were prepared for be-
ams with web thickness of 6 – 12 mm, every 1 mm and 
with web depth 500 – 1000 mm, every 10 mm. The be-
ams with maximum rational factor, as well as beams that 
carried the maximum load may be found on these charts.  

 
3. Description of the problem 
Simply supported perforated beams with hexagonal form 
of perforations were analysed (Fig. 2). 

The main beam parameters taken for the analysis are 
as follows: 

1. Length L =  12 m. 
2. Web depth wh = 500 – 1000 mm, every 10 mm. 
3. Web thickness wt = 6 – 12 mm, every 1 mm. 
4. Flange thickness ft  equal to double thickness of the 

web. 
 

 

 
 
Fig. 2. Geometry of beam’s web with hexagonal form of 
perforation  

5. Thickness of the end stiffeners st = 10 mm. 
6. Cross-sectional area of two flanges equal to the 

cross-sectional area of the web. 
7. Diameter of perforations / 2wh  – wh  – 100 mm, 

every 10 mm. 
8. Distance between the edges of perforations 
a = 15 cm. 

9. Given an integer number of perforations, the distan-
ce from the end of the beam to the edge of the first 
perforation is minimal, but not less than 250 mm. 

10. The uniformly distributed load per unit of the span 
length. 

11. The upper flange restrained out of plane.  
12. Analysis – geometrically and physically nonlinear. 
13. Steel grade S355. 
14. Form of perforation is a hexagon circumscribed 

about the circle. 
All values of these parameters were selected becau-

se they are most common in practical use. Of course, 
some of them may be changed, especially those mentio-
ned in clauses 1, 4, 6, and 8. 

 
4. Finite element modelling 
Calculations are performed using finite element pro-
gramme COSMOSM. It is quite popular. It was applied to 
estimate the effects of soft defects on such difficult struc-
tures as cylindrical tanks (Rasiulis et al. 2006). SHELL3T 
was used as a type of finite elements. In order to simulate 
the structural behaviour of castellated steel beams with 
hexagonal web openings, a finite element model is estab-
lished as follows: 
• With material non-linearity incorporated into the fi-

nite element model. A bi-linear stress-strain curve is 
adopted in the material modelling of steel, as shown 
in Fig. 3. 

• Moreover, with geometric non-linearity incorpo-
rated into the finite element model, large deforma-
tion in the model may be accurately predicted, al-
lowing load redistribution in the web across the 
opening after initial yielding.  
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Fig. 3. Bi-linear stress-strain curve of material  
Fig. 4 illustrates the finite element model, where the 

flanges and the web of a steel beam are discretised with 
three-noded shell elements.  

 

 
 
Fig. 4. Finite element model with hexagonal form of per-
foration  
A hexagonal opening is formed in the web with re-

fined mesh configuration. After sensitivity studies on the 
density of the finite element mesh, it was found that the 
size of a finite element may be about 5 cm. The size of a 
finite element around the opening chosen is about 1,5 cm. 
The calculations were made with iterations as the analysis 
was geometrically and physically non–linear. Arc-length 
algorithm was for calculations. This algorithm was not 
chosen accidentally. Other calculation methods were not 
suitable, because when a beam buckles, an increase in 
displacements at the plane is observed, where the load is 
almost the same. The calculations stopped when the 
maximum stress or strain values were reached, when the  
node’s displacement exceeded L/250 or it started to inc-
rease very rapidly without sufficient load changing. Since 
the geometrical and physical analysis was carried out, the 
values of stresses, nodal displacements and buckling load 
may be received from the results of a single calculation. 

 

5. Results obtained from the finite element method 
analysis 
It is possible to determine by finite element method the 
calculations of the ultimate load p , which the beam can 
carry and the rational factor RF  the bigger which is the 
more rational the material of the beam is used. The calcu-
lations were performed for a wide range of beams. When 
the length of the beam L  was 12 m, the web depth wh  
altered from 500 to 1000 mm, every 10 mm. The diame-
ter of perforation at each depth also altered from / 2wh  to 
wh  – 100 mm, every 10 mm. The chosen distance be-

tween perforations was a fixed one of 150 mm; therefore 
the number of perforations changed with the diameter of 
perforations. The calculations were carried for the beams 
of such dimensions with the web thickness wt  of  
6–12 mm. The total number of beams was 10 255. 

However, due to a large number of results only so-
me of them are presented herein. 

 
5.1. Results of analysis of ultimate load 
Due to a big amount of data, below are given the charts 

( )p f d=  (Fig. 5) only for web thicknesses of 6, 9, 
12 mm, and with web depth 500–980 mm, every 40 mm. 
The charts of Fig. 5 are used to make charts for Fig. 6 
(according to formula (1)) and to better conceive ultimate 
loads which the beams can carry. To see the load changes 
in different charts, we take the same scale of ordinates. 

It is seen in the charts above, that the increase of ul-
timate load depends more on the depth of the web than on 
its thickness. When the thickness is 6 mm and the web 
depth increases, the ultimate load remains almost the 
same. This happens due to local stability of the web. 
When web thickness increases, the influence of the web 
depth is larger. In addition, when the diameter d  of pe-
rforation increases, the ultimate load decreases. The big-
ger is the ultimate load, the more it declines when d  
increases. We can see from the charts, that the highest 
load is carried by a castellated beam with the thickest and 
highest web. 

If we want to find the dimensions of the beam carry-
ing the highest load, we have to find out when stresses 
exceed the strength of the beam material when deflec-
tions do not exceed their ultimate values and stability is 
ensured. If we want to find the dimensions of the beam 
which would be rational, additionally the web of the be-
am should be the thinnest or the beam should fail due to 
all modes at the same time. 

 
5.2. Results of analysis of rational factor 
Due to a of big amount of data, bellow are given the 
charts ( )RF f d=  only for web thicknesses of 6, 9, 
12 mm, and with web depth of 500−980 mm, every 
40 mm (Fig. 6). 

To see the load changes in different charts, we take 
the same scale of ordinates. 
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a) 
 

  
b) 
 

 
 

c) 
 
Fig. 5. Dependence of p  versus d : a) for wt =  6 mm;  
b) for wt =  9 mm; c) for wt =  12 mm 
 
It is seen in the charts above that the bigger is the 

web thickness, the bigger is the rational factor. It is also 
noted that if the depth of the web is increasing, the ratio-
nal factor increases not necessarily. This happens because 
the web slenderness increase and causes the web-post 
buckling. In this case, the steel strength is not fully used.  

  
a) 
 

  
b) 
 

  
c) 

 
Fig. 6. Dependence of RF versus d : a) for wt =  6 mm; 
b) for wt =  9 mm; c) for wt =  12 mm 

 
When the web depth is not very big (500−700 mm), the 
perforation diameter has a negligible influence on the 
rational factor. The bigger the web depth, the higher the 
influence of perforation diameter on the rational factor, 
i. e. the bigger the perforation diameter, the smaller the 
rational factor is. 
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6. Selective analysis for a castellated beam with a  
rational section 
The selection of the beam could look as follows: 

1. Some data which limiting the web depth and some 
perforation dimensions are given;.  

2. According to these data, maximum value of RF  
may be found (Fig. 6). 

3. If wh  and d  are known, the beam weight may be 
found very easily. 

4. If the length and weight of the beam are known, the 
load p  [kN/m] may be found very easily. 

5. If the load distributed per square meter g  [kN/m2] 
is given, the rational beams’ spacing b  may be 
found according to formula p gb= . 
 For example: 
 

The first step: 
 

We have wh = 800 mm, d = 450 mm. 
 

The second step: 
 Finding from charts maximum RF  (Fig. 6):  
 

For wt = 6 mm, RF = 38. 
For wt = 7 mm, RF = 54. 
For wt = 8 mm, RF = 68. 
For wt = 9 mm, RF = 72. 
For wt = 10 mm, RF = 74. 
For wt = 11 mm, RF = 77. 
For wt = 12 mm, RF = 80. 
 Due to a big amount of data, not all values of RF  

given above are presented in Fig. 6. 
 

maxRF =  80. 
 

The third step: 
 Finding the beam weight: 
 

( )3 w w w openingm t h L Nt A= − ρ , 
 where: 
 

20.866openingA d=  – area of the opening, 
 

ρ = 78.5 kN/m3. 
So: 
 

( )( )23 0.012 0.8 12 17 0.012 0.866 0.45 78.5m = ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ =

24.32 kN. 
 

The fourth step: 
 According to formula (1): 
 

80 23.42 156.1312
RFmp L

⋅
= = =  kN/m. 

 

The fifth step: 
  

We have g = 8 kPa. 
 So: 
 Rational beams’ spacing will be 
 

156.13 19.58
pb g= = = m. 

 If the spacing of the beams is too big due to other 
factors, the selected rational factor may be smaller. Ano-
ther method for selecting rational dimensions of a beam 
should be applied. 

Another selection method is also possible. It may 
look as follows: 

1. The load distributed per square meter g  [kN/m2] 
and beams spacing b  are given. According to for-
mula p gb= , the load p  may be found. 

2. The diameter of the perforation d  is limited. 
3. According to the charts mentioned above (Fig. 6) 

and with known d , the maximal value of [ ]
max

RF , 
wt , number of the perforations N , density of the 

steel ρ , by approximation method according to 
formula (2) wh  may be found: 

 [ ]
2

max

0.433
2w

w

pNdh L RF t= +
ρ

. (2) 
For example: 
 

The first step: 
 

We have g = 8.0 kPa, b = 6.0 m, d =  450 mm. 
 So: 
 

8.0 6.0 24.0p gb= = ⋅ =  kN/m. 
 

The second step: 
 Finding from charts maximum RF : 
 

For wt = 6 mm, RF = 45. 
For wt = 7 mm, RF = 58. 
For wt = 8 mm, RF = 72. 
For wt = 9 mm, RF = 86. 
For wt = 10 mm, RF = 90. 
For wt = 11 mm, RF = 94. 
For wt = 12 mm, RF = 96. 
Due to a big amount of data, not all values of RF  

given above are presented in Fig. 6. 
The first iteration 
 

[ ]
max

RF = 96, 
wt = 12 mm. 

 According to formula (2): 
 

wh = 0,257 m. 
 It does not match with the chart. 
 

The second iteration 
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[ ]
max

RF = 45, 
wt = 6 mm. 

 According to formula (2): 
 

wh = 0.690 m. 
 It does match the chart. 
Therefore, we can choose a beam with web depth of 

690 mm and with web thickness of 6 mm. 
It should be noted that the method proposed in this 

paper is intended only for selecting rational cross-
sectional dimensions of a beam, but not for design. In 
order to use this method for design, we additionally have 
to use the partial safety factors whose influence the relia-
bility of steel structures and was studied by Kala (2007). 

 
7. Conclusions 

An analysis of perforated beams with a hexagonal form 
of perforations by finite element method is accomplished 
in this paper. Some conclusions may be drawn: 

1. A non-traditional method for selecting castellated 
beams has been proposed. 

2. The proposed method may be adopted and used for 
design in future works. 

3. The charts determining the behaviour of beam failu-
re may be drawn. 

4. Data received are only valid for beams with the 
condition mentioned above. 

5. With some coefficients, the curves used in charts 
can be adopted for beams of different lengths.  

6. It can be seen from calculation data that the higher 
the web, the more efficiently the beam material is 
used. However, the bigger the web slenderness, the 
more critical influence has local buckling on the be-
am’s carrying capacity. That is why it is very impor-
tant to find such dimensions of the beam which  in 
the moment of failure would ensure maximal stres-
ses in the section. 
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SIJŲ SU PERFORUOTĄJA SIENELE RACIONALAUS AUKŠČIO TYRIMAS 
B. Dervinis, A. K. Kvedaras 
S a n t r a u k a  
Yra ne viena sijų su perforuotąja sienele skaičiavimo teorija, tačiau nė viena iš jų nenurodo, kaip parinkti racionalius tokių 
sijų skerspjūvio matmenis. Jeigu sijos su perforuotąja sienele skerspjūvio matmenys būtų parinkti racionalūs, galima būtų 
sutaupyti nemažai plieno tokioms sijoms gaminti. Buvo analizuotos sijos, kurių ilgis 12 m ir sienelės storis 6−12 mm, o 
aukštis 500−1 000 mm. Perforacijos skersmuo buvo parinktas nuo pusės sienelės aukščio iki sienelės aukščio atėmus 
100 mm. Dviejų lentynų plotas buvo parinktas lygus sienelės plotui, o lentynų storis lygus dviem sienelės storiams. Anali-
zuotos sijos buvo dviatramės, apkrautos tolygiai išskirstytąja apkrova, jų viršutinės lentynos buvo suvaržytos iš plokštu-
mos. Sijos skaičiuotos baigtinių elementų metodu geometriškai ir fiziškai netiesiškai. Išanalizavus šias sijas, skaičiavimo 
rezultatai buvo pateikti grafikų pavidalu. 
Reikšminiai žodžiai: sija su perforuotąja sienele, perforacija, perforacijos forma, perforacijos skersmuo, racionalus 
aukštis, baigtinių elementų metodas, ribinė apkrova. 
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