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Abstract. In this paper, a technology enabling the optimization of the topology of truss or frame structures with genetic 
algorithms is presented. It has been shown that due to a huge number of possible variants the global solution of similar 
problems with exhaustive search algorithms is feasible only for systems possessing small numbers of d.o.f. s (usually until 
10 nodes). These problems can be solved in a reasonable time by genetic algorithms. The modified genetic algorithm for 
optimization of topology of truss systems is suggested, where the repair of the genotype, instead of some constraint is 
used. The solution of numerical examples with original software illustrates the efficiency of proposed technology; the 
global solutions are obtained in all cases. 
Keywords: genetic algorithms, truss structures, global optimization, finite element method. 

 
1. Introduction 

Truss systems are widely used in engineering practice. 
These systems form the framework of such constructions 
as bridges, towers, roof supporting structures etc. Usually 
the truss system includes a large number of elements 
(trusses), and the elements can have different parameters 
(length, cross-sectional area, material). Thus, truss sys-
tems can be optimized in several aspects: sizing, shape, 
and topology (Smith et al. 2002; Janušaitis et al. 2003). 
As the sizing and shape optimization of truss systems do 
not pose serious computational problems, here we will 
deal with the topology optimization. 

The aim of the topology optimization of truss sys-
tems is to find the best layout of connections between the 
given set of immovable nodes; the number of trusses 
remaining in the final system is not known in advance 
and is determined by the constraints of problem.  

The problem can be attacked using the so-called 
ground structure methods, where the optimization begins 
from an excessive-connected (of all or of a part of given 
nodes’ set) truss system (Pederson 1992), or using simu-
lated annealing methods, which indeed are a generaliza-
tion of the Monte Carlo method (Reddy and Cagan 1995).  

In the last decade, a lot of attention has been given 
to the application of genetic algorithms (GA) in similar 
problems (Bohnenberger et al. 1995; Kida et al. 2000; 
Baušys and Pankrašovaitė 2005). GAs are especially 
convenient for discrete optimization problems (Chapman 
et al. 1993), among them for the ground structure topol-
ogy optimization of truss systems. The main disadvan-
tages of GA include the fact that there are not sufficient 
capabilities for a local search and premature convergence 
(Tazawa et al. 1996); therefore, attempts were reported to 
construct the algorithms using the GA concept that do not 
contain the aforementioned drawbacks. Thus, it is possi-

ble to connect a GA with other optimization algorithms to 
obtain the hybrid GA (Yeh 1999), which allows for better 
and more stable results in a shorter solution time. The 
solution can be improved also integrating the GA with 
other computational technologies, such as parallel com-
putations (Agarwal and Raich 2006). In (Luh and Chueh 
2004) it is suggested to extend the GA concept and to use 
the so-called immune algorithms. In this paper, the modi-
fication of GA is described, allowing for a better solution 
of the truss system optimization problem with respect to 
the minimum and average (among the whole generation) 
values of objective function. On the other hand, as shown 
in numerical examples with known global solutions, the 
probability of finding the global solution is higher com-
pared with the classical GA (Goldberg 1989). One of the 
advantages of the proposed method is also the simplicity 
of its implementation. 

In mathematical terms, the topology optimization 
poses a highly non-convex optimization problem. Due to 
a large number of design parameters, the problem re-
quires inconceivable computer resources, and the global 
solution of the problem is usually not assured. 

For the objective function for topology optimization 
usually the system mass is taken (Smith et al. 2002): 
 ∑
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where eL  is length of the eth element, eρ  is density of 
element material, eA  is cross-sectional area of the same 
eth element, and n is number of truss elements.  

The constraints system ensures that: 
• Truss system is in static equilibrium state: 
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where ijF
r  is the jth force at the ith node and k is number of 

forces at the node. 
• Stresses in trusses do not exceed critical value: 

 maxσ≤σe , (3) 
where eσ  is stress in the eth truss, either tensile or com-
pressive, and maxσ is allowable stress. It seems, in order 
to have all the truss elements in the system “viable” i.e. 
all elements taking stresses above some minimum thresh-
old value, the constraint minσ≥σe  should also be intro-
duced. However, when using the genetic algorithms for 
optimization, the more robust and fast solution is ob-
tained if those imperfect trusses are retained during the 
solution process; only then the genotype is purified (puri-
fication is explained in the 5th chapter).  
• System is locally stable: 

 2

2

e

ee
e

L
IEF π

≤ , (4) 
where Fe is maximum axial compressive force that can be 
supported by the truss element before it undergoes Euler 
buckling, Ee is Young‘s modulus of the eth elements ma-
terial, and  Ie is eth element area moment of inertia. 

The mechanical characteristics of a particular me-
chanical structure can be obtained using commercially 
available finite element packages, such as general- pur-
pose finite element method (FEM) programs ANSYS, 
ALGOR, ABAQUS, COSMOS, etc. This allows dimin-
ishing the programming efforts (Puiša 2005). Authors 
have also suggested methodology of how to use the mul-
tipurpose commercial package ANSYS for topology op-
timization of truss systems (Šešok and Belevičius 2007). 

However, such an approach for large global optimi-
zation problems unacceptably lengthens the solution time 
due to the significant times of software deployment and 
unloading. This cycle is repeated millions of times during 
the optimization process. Therefore, the small specialized 
program, all the time residing in RAM, allows for more 
flexible linking with optimization algorithm. The results 
of this paper are obtained using such an original FEM 
(Spyrakos and Raftoyiannis 1997) program for ascertain-
ing all of the necessary mechanical properties of the truss 
system: overall mass of trusses, stresses in all elements, 
and the indication of the global stability of the generated 
truss system. 

The global solutions of the topology optimization 
problem obtained using the full search algorithm for 
small truss systems (until 8 nodes) are presented below in 
order to validate the authors’ results obtained with classi-
cal and modified genetic algorithms.  

 
2. FEM software 
FEM program is written in C++. The program structure is 
shown schematically in Fig. 1. 

The program has additional interface to render the 
truss system as a string of bits, and vice versa. This al-
lows for simple linking with genetic algorithms, which 
operate with bit strings (Goldberg 1989). The program  

decodes the bit string according to the programmed tem-
plate, i.e. obtains the positions of truss elements, co-
ordinates of nodes, boundary conditions, and external 
loads (Šešok and Belevičius 2007). The template for the 
particular optimization problem is created once. For other 
optimization problems the template needs to be re-
programmed or modified (this usually takes about 
30 min). 

 

  Fig. 1. Algorithm of program  
During the solution stage, all the necessary charac-

teristics of the truss system: the total length of trusses, 
stresses in each truss element, and indication of system’s 
global instability are determined. In this case, the pro-
gram instead of the statical solution returns the given 
value. 

 
3. Global solution with exhaustive search algorithm 
The exhaustive search algorithm ensures the global solu-
tion of the problem, however, only small problems can be 
solved due to the huge number of possible variants in the 
truss system. Let N be the number of the nodes in a struc-
ture, X – the number of possible truss elements, and K – 
the number of different variants of the truss system. Then, 
after (Lipskij 1988) we obtain 
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Several simple truss systems are analyzed below in 

order to ascertain the size of a system that would be fea-
sible for the full search algorithm. Let us start from the 
truss system possessing 5 given nodes, clamped at 2 
nodes, and loaded with 1 external load of 25 kN (Fig. 2). 
The cross-sectional area of all truss elements is 500 mm2, 
and the allowable stresses in the trusses cannot exceed 
35 N/mm2. 
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Fig. 2. Possible connections in the 5-node truss system  
There is 5×4×0.5=10 maximum possible number of 

truss elements between 5 given nodes. Thus, the full 
search algorithm has to analyze 210 or 1024 possible con-
nection variants. The global solution for the given data is 
shown in Fig. 3: the system has only 5 elements, and the 
maximum stress in the system is 31.156 N/mm2. The 
solution is obtained in less than 1 sec of CPU time of 
processor AMD Athlon 1,09 GHz, 1 GB of RAM.  

 

  
Fig. 3. The global solution of 5-node truss system  
Adding one node to this system (let the given posi-

tions of nodes are shown in Fig. 4) increases the maxi-
mum number of truss elements to 15, and the maximum 
number of possible variants to 215 or 32 768. The best 
solution is shown in Fig. 4, to the right; it resembles the 
former solution. The solution is found per 6 sec. 

 

  Fig. 4. 6-node truss system and the best solution 
 
Similarly, for the 7-node system we can have until 

21 elements, 2 097 152 different possible combinations 
of elements, and 7 elements in the global solution 
(Fig. 5). The solution time increases 68 times until 
406 sec. The objective value is 5708.65 mm with the 
maximum stress of 31.34 N/mm2. 

  Fig. 5. 7-node truss system and the best solution  
The largest truss topology optimization problem 

solved using the exhaustive search algorithm is the  
8-node system: until 28 elements and 228 or 268 435 456 
different variants of connections. After 59 354 sec, we 
arrive exactly to the same optimal solution (Fig. 6). 

 

  Fig. 6. 8-node truss system and the best solution  
Thus, the full search solution of the 9-node problem 

would require approximately 180 days, 10-node more 
than a hundred years. Even with a powerful computer and 
efficient software these numbers are inconceivable. 

The results of this analysis are summarized in Ta-
ble 1. The required solution time increases more rapidly 
than the increase of a number of different connections, 
because with the growth of the nodes number, there is an 
increase in the problem dimension, as well. 

 
Table 1. Summary of results with an exhaustive search algo-

rithm  
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5 1 024 0,18 1 1 
6 32 768 6 32 33 
7 2 097 152 406 64 68 
8 268 435 456 59 354 128 146 

 
4. Solution with genetic algorithms 
As the strategy of full search is not capable for truss sys-
tems of practical size, the algorithms enabling to obtain 
the solution in a reasonable time are necessary. Hereafter, 
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the possibilities of the adaptation of genetic algorithms 
for topology optimization are examined. The concepts of 
genetic algorithms for optimization problems are given in 
(Goldberg 1989; Holland 1975). The influence of genetic 
parameters on the results is also shown here. 

We compare here the solutions of the 8-node truss 
system obtained with genetic algorithms and the global 
solution (Fig. 6). Let us start with the classical genetic 
algorithm (Goldberg 1989), schematically shown in Fig. 7. 

 

 
 Fig. 7. Scheme of classical genetic algorithm 

 
Because the result of a genetic algorithm depends on 

the genetic parameters (population size, number of gen-
erations, probabilities of crossover and mutation), the 
solution process was explored using different values of 
these parameters: the size of population varies from 4 to 
50 individuals with step of 2 individuals; each population 
was obtained with different crossover probabilities (80, 
90 and 100%) and mutation probabilities (from 1 to 5% 
with step of 1%). For each set of genetic parameters 200 
generations were generated in total. Thus, 24×3×5=360 
different sets of genetic parameters were explored. With 
each set of parameters 30 independent solutions were 
obtained, thus 360×30=10 800 independent computa-
tional experiments were executed in total. 

Results of computational experiments are rendered 
in tables and figures below. 

Each row of Table 2 comprises the results of 
3×5×30=450 (i.e. 3 different crossovers and 5 different 
mutation probabilities with particular population size) 
computational experiments. In the second column, the best 
obtained objective function values are shown, while in the 
third column the averages of values in a whole population, 
and in the fourth the worst values are given. Graphically, 
the results are shown in Fig. 8; it is clear that small popula-
tions (until 20 individuals) render worse results, while the 
results for longer populations are more stable. 

Table 2. Dependency of solution results on the population size 
Population 

size 
Best 

solution 
Average 
solution 

Worst 
solution 

4 7 907.84 10 092.77 12 163.97 
6 7 667.87 9 827.33 11 592.47 
8 8 162.87 9 674.91 11 084.21 
10 7 967.91 9 564.14 10 842.14 
12 8 240.87 9 521.81 11 109.36 
14 7 641.86 9 410.95 11 119.06 
16 7 914.89 9 364.03 10 533.12 
18 7 774.8 9 319.19 10 661.55 
20 7 874.17 9 296.8 10 406.32 
22 7 768.25 9 261.82 10 508.36 
24 7 401.2 9 230.41 10 246.72 
26 7 807.38 9 209.16 10 080.36 
28 7 224.83 9 153.85 9 933.44 
30 7 942.48 9 200.02 10 188.41 
32 7 997.08 9 160.95 10 103.45 
34 7 570.27 9 121.82 10 011.74 
36 7 617.13 9 058.99 9 898.73 
38 7 623.39 9 077.36 9 972.43 
40 7 241.93 9 053.08 9 815.85 
42 6 835.18 9 063.25 10 052.12 
44 8 050.48 9 068.1 10 025.42 
46 7 063.45 9 044.41 9 867.98 
48 7 808.64 9 031.76 9 865.11 
50 6 697.88 8 996.3 9 961.93 
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  Fig. 8. The dependency of the solution results on the 
population size  
Now let us examine how the solution convergence 

rate depends on the population size. As was mentioned, 
200 iterations were generated and 30 independent compu-
tational experiments were executed for each parameter set. 
The number of the earliest iteration, where the best solu-
tion for this particular set of genetic parameters was ob-
tained among all 3×5×30=450 computational experiments 
with the same population size, was memorized (second 
column in Table 3). Similarly, the last column shows the 
worst case of convergence: at least one case was found for 
all population sizes, where for some particular set of ge-
netic parameter the best solution was found in the last gen-
eration. The third column of the table lists the average 
number of the first iteration with the best solution. 
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Table 3. Dependency of the convergence rate on the population size  

Population 
size 

First 
iteration 
number 

Average 
iteration 
number 

Last 
iteration 
number 

4 5 108.97 200 
6 4 111.79 200 
8 6 113.44 200 
10 9 113.32 200 
12 5 109.1 200 
14 5 113.73 200 
16 11 115.97 200 
18 6 113.16 200 
20 5 116.56 200 
22 5 114.4 200 
24 4 111.52 200 
26 7 115.27 200 
28 3 111.36 200 
30 3 114.71 200 
32 6 113.14 200 
34 8 117.74 200 
36 7 119.12 200 
38 5 116.25 200 
40 8 117.09 200 
42 9 117.32 200 
44 5 110.82 200 
46 11 115.28 200 
48 6 115.7 200 
50 10 118.76 200 

 
The results are shown graphically in Fig. 9. Thus, 

generally the convergence is achieved between 100th and 
150th iterations independently of the population size.  
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  Fig. 9. Dependency of the convergence rate on the popula-
tion size  
The best truss system obtained with this algorithm 

has the total elements length of 6 697.88 mm (GA pa-
rameters: population size – 50 individuals, crossover 
probability – 80%, mutation probability – 1%, number of 
the best iteration – 98) (Fig. 10). 

Thus, the global solution (5708.65 mm) was not 
achieved. The obtained solution exceeds the global one 
by 17.33%. 

 
 Fig. 10. The best solution obtained with classical GA  
5. Modifying the genetic algorithm 
The only way to achieve a better and faster solution for 
global optimization problems is to bring into the problem 
description any additional known information about the 
problem. Here we suggest to modify the GA in the fol-
lowing way (Fig. 11). As it is seen, the modified GA adds 
to the classical algorithm one additional phase, repair (or 
purification) of the genotype. Here, besides the selection, 
crossover and mutation processes, each individual is ad-
ditionally analyzed. Provided that there are particular 
trusses with stresses below some threshold values, they 
are eliminated from the truss system retaining this “im-
proved” individual in the population. Evidently, as an 
alternative for purification of the genotype, corresponding 
constraint can be led into the mathematical model:   
 minσ≥σe , (7) 
where eσ  is stress in the eth truss, and minσ  is minimum 
allowable stress. 
 

 
 Fig. 11. Modified genetic algorithm 
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However, the experience gained in optimizing nu-
merous truss systems clearly states, that such a constraint 
impedes the optimization process, because a number of 
individuals must be eliminated from each generated 
population. It is obvious from an engineering point of 
view: at the beginning of the optimization process, the 
truss system contains usually a fairly large number of 
elements and the probability to obtain the under stressed 
truss is high. The suggested heuristics proved to retain 
more possibilities for obtaining the global solution. Tech-
nically, the purification of genotype supposes reversion 
of the values of genes that correspond to the under-
stressed trusses (Fig. 12).  

 

  Fig. 12. Purification of genotype  
Numerical example 1. The results of the optimiza-

tion of the same 8-node truss system with the suggested 
algorithm are rendered here.  

Table 4 corresponds to Table 2; the results in 
graphical form are shown in Fig. 13. 

 
Table 4. Dependency of solution results on the population size 

Population 
size Best solution 

Average 
solution 

Worst 
solution 

4 5 708.65 7 297.47 17 143.46 
6 5 708.65 6 815.71 14 898.83 
8 5 708.65 6 611.25 14 693.81 
10 5 708.65 6 485.19 8 243.83 
12 5 708.65 6 436.47 8 344.28 
14 5 708.65 6 359.85 7 919.73 
16 5 708.65 6 394.31 7 919.73 
18 5 708.65 6 361.19 7 745.01 
20 5 708.65 6 384.19 7 919.73 
22 5 708.65 6 355.43 8 901.45 
24 5 708.65 6 321.13 7 919.73 
26 5 708.65 6 292.81 7 704.81 
28 5 708.65 6 286.76 7 745.01 
30 5 708.65 6 277.9 7 818.2 
32 5 708.65 6 253.68 7 818.2 
34 5 708.65 6 240.58 7 919.73 
36 5 708.65 6 198.01 7 678.15 
38 5 708.65 6 211.63 7 919.73 
40 5 708.65 6 194.46 7 919.73 
42 5 708.65 6 223.02 7 486.66 
44 5 708.65 6 160.49 7 919.73 
46 5 708.65 6 139.28 7 687.02 
48 5 708.65 6 157.94 7 486.66 
50 5 708.65 6 172.09 7 467.87 
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  Fig. 13. Dependency of solution results on the popula-
tion size  
Thus. the smaller populations (until 26 individuals) 

show worse results; for longer populations the results are 
stable. In all cases, the global solution was obtained.  

Now let us compare the convergence rates with the 
corresponding results of classical GA, shown in Table 3 
and Fig. 9 (Table 5, Fig. 14).  

 
Table 5. Dependency of the convergence rate on the population size 

Population 
size 

First 
iteration 
number 

Average 
iteration 
number 

Last 
iteration 
number 

4 1 52.17 199 
6 1 52.26 200 
8 1 53.01 199 
10 1 48.4 200 
12 1 39.34 200 
14 1 34.59 197 
16 1 29.1 184 
18 1 27.51 197 
20 1 28.56 197 
22 1 22.3 182 
24 1 21.36 199 
26 1 23.6 196 
28 1 20.84 193 
30 1 20.24 193 
32 1 17.48 168 
34 1 19.19 195 
36 1 16.16 165 
38 1 15.94 198 
40 1 14.78 189 
42 1 16.2 197 
44 2 14.07 185 
46 1 12.04 197 
48 1 12.92 185 
50 1 13.71 199 

 
As it is seen in Fig. 14, the best solution appears for 

the first time already in the 1st or 2nd iteration; an aver-
age iteration number is about 50 for smaller populations 
(until 12 individuals) and it does not exceed 15 for most 
numerous populations. In the worst case, all the 200 gen-
erations were needed to obtain the best solution. 
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 Fig. 14. Dependency of the convergence rate on the popu-
lation size  
Comparison of all obtained objective value results 

of classical GA and modified GA (Tables 2 and 4). The 
minimum, average and maximum values of objective 
function and statistical dispersion of results are shown in 
Table 6. 

 Table 6. Statistical indicators of solutions 

 
Best 

solution 
Average 
solution 

Worst 
solution 

Dispersion 
GA 6 697.88 9 283.47 12 163.97 251 626.30 
MGA 5 708.65 6 359.23 17 143.46 660 450.70 

 Thus, the modified GA renders better results for 
minimum and average values of objective function in the 
population, but for the maximum values the classical GA 
is better. Also, the increased dispersion of results testifies 
better stability of the classical GA. 

Numerical example 2. For the sake of the transpar-
ency of expected results, the proposed genetic algorithm 
was applied to the yet one truss system possessing 8 im-
movable nodes, 4 of them supported. The structure is 
loaded with concentrated load in the centre (Fig. 15).  

 

 
 Fig. 15. All possible connections in 8-node truss system  
The optimal topology of an expected discrete struc-

ture can be predicted in advance. Moreover, it was found 
using the full search algorithm (Fig. 16) in 15 hours 
3 min of CPU time. 

 

 
 Fig. 16. Global solution obtained in full search 

Again, the problem was solved with the classical 
and modified algorithms. The solution results are shown 
in Table 7.  

 
Table 7. Statistical indicators of solutions 

 
Best 

solution 
Average 
solution 

Worst 
solution 

Dispersion 

GA 8 400.16 11 321.39 20 635.84 1 838 416.50 
MGA 8 400.16 9 447.44 19 274.98 192 487.92 

 Here, both algorithms find the global solution 
8400.16 mm. However, the classical GA finds this solu-
tion only in 5 computational experiments from 10 800 
experiments in total (or in 0.046% cases), while the modi-
fied GA finds it in 316 experiments (or in 2.926% cases). 
Besides, the modified GA yields also lesser average and 
maximum value, and lower dispersion. 

 
6. Conclusions 
Genetic algorithms can be easily adapted to the topology 
optimization of truss structures.  

The genetic algorithm cannot assure the global solu-
tion of a problem. However, compared with other global 
optimizers it yields a reasonable solution in a short time. 
The solution results depend on the genetic parameters 
(population size, mutation probability, crossover opera-
tor); investigation of reasonable ranges of these parame-
ters always assures a better solution. 

The purification of the genotype instead of introduc-
ing into a set of constraints the requirement that stresses 
exceed some minimum threshold values, always assists in 
finding a better solution.  
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GLOBALUS SANTVARŲ OPTIMIZAVIMAS MODIFIKUOTU GENETINIU ALGORITMU 
D. Šešok, R. Belevičius 
S a n t r a u k a 
Straipsnyje aprašyta technologija, kuri leidžia optimizuoti strypinių sistemų (santvarų) topologiją genetiniais algoritmais. 
Parodyta, kad dėl milžiniško galimų variantų skaičiaus globalaus sprendinio radimas perrinkimo algoritmais tokio tipo 
uždaviniams yra įmanomas tik sistemoms su mažu laisvės laipsnių skaičiumi (paprastai iki 10 mazgų). Tokios klasės 
uždaviniai gali būti išspręsti per priimtiną laiką genetiniais algoritmais. Strypinių sistemų topologijai optimizuoti yra 
pasiūlytas modifikuotas genetinis algoritmas, kuriame vietoje papildomų apribojimų naudota genotipo išgryninimo ope-
racija. Skaitinių pavyzdžių sprendimas su originalia programine įranga rodo pateiktos technologijos efektyvumą. Visais 
atvejais gaunamas globalus sprendinys. 
Reikšminiai žodžiai: genetiniai algoritmai, strypinės sistemos, globalioji optimizacija, baigtinių elementų metodas. 
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