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Abstract. The paper is aimed at the fuzzy probabilistic analysis of fatigue resistance due to uncertainty of input parame-

ters. The fatigue resistance of the steel member is evaluated by linear fracture mechanics as the number of cycles leading 

to the propagation of initial cracks into a critical crack resulting in brittle fracture. When the histogram of stress range is 

known, the fatigue resistance is a random variable. In the event that the histogram is unknown or was acquired from a 

small number of experiments, another source of uncertainty is of an epistemic origin. Two basic approaches, which make 

provision for uncertainty of input histograms of stress range, are illustrated in the paper. Uncertainty of histograms of 

stress range is taken into account by the variability of equivalent stress range in the first stochastic approach. Input histo-

grams as considered as members of a fuzzy set in the second approach. 
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1. Introduction 

A number of variables and phenomena present dur-

ing design processes (or review) of steel structures are 

burdened by smaller and/or larger uncertainties. Problems 

in determining the service life of bridge structures are due 

to an insufficiency of information necessary for model-

ling the propagation of fatigue cracks. The basic epis-

temic uncertainties include the origin of crack initiation 

and corresponding histograms of stress range from vehi-

cle passages and further repeated loading of the structure.  

The Wöhlerian approach, which does not model the 

propagation of fatigue cracks, is used when designing the 

new structures according to standards. Linear fracture 

mechanics can be applied for the description of fatigue 

crack propagation (Kala 2006). Linear fracture mechanics 

principles and theorems have been known for some dec-

ades but in comparison with the Wöhlerian approach, 

they are not as elaborate as to where they could be ap-

plied within the framework of standard prescriptions. 

In general, the character of the quantities working 

upon the fatigue crack propagation is random. They in-

clude material, geometrical characteristics and the load-

ing effect. Random quantities can be obtained from 

measurements. Difficulties arise when the reliability of a 

new structure is to be predicted. Neither loading effect 

nor other random characteristics are known at the time of 

structure design. Uncertainties encountered in such a case 

are not of stochastic character but are of a fuzzy origin. 

The term “fuzzy” was used by Prof Lofti Zadeh, for 

the first time, in 1962 (Zadeh 1962). In 1965 he published 

his pioneer, today still classic paper entitled “Fuzzy sets” 

Zadeh 1965). The fuzzy sets have since spread practically 

to all aspects of scientific disciplines. Problems of struc-

tural dynamics, problems of partial reliability factor in 

member buckling (Ferracuti et al. 2005), stability prob-

lems in geotechnics (Vageesha et al. 2005) and optimum 

design (Lu et al. 2004) can be solved utilising fuzzy sets.  

Many typical problems of structural design are char-

acterised by both fuzzy and random uncertainties. Utilisa-

tion of fuzzy random variables and fuzzy random func-

tions enables the mathematical description of uncertainty 

characterised by fuzzy randomness. Basic terms and defi-

nitions related to fuzzy randomness have been intro-

duced, inter alia, by (Puri, Ralescu 1986). Fuzzy random-

ness arises when random variables – eg as a result of 

changing boundary conditions, cannot be observed with 

precision. If the fuzzy random function is solely depend-

ent on time, a fuzzy random process is obtained.  

Two basic approaches, which can be used for de-

scribing the combined statistical and epistemic uncer-

tainty in the form of histograms of stress range, are illus-

trated in the paper. The first approach is stochastic and 

considers the equivalent stress range as a random vari-

able. The histograms of stress range are considered as 

members of a fuzzy set in the second approach. 

 

2. Linear elastic fracture mechanics 

The calculation algorithm applied in the presented 

paper is based on the generally most used and recognised 

model describing fatigue crack growth. According to the 

Paris–Erdogan’s equation, the crack propagation rate is as 

follows: 

 ( )
mda

C K
dN

= ⋅ Δ , (1) 
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where a – crack size, N – number of cycles, C, m – mate-

rial constants. 

C, m are material constants which can be determined 

by statistical processing from a set of experimentally 

determined data pairs ( )KdNda Δ,/ . The range of the 

stress intensity coefficient KΔ  is defined by the relation: 

 ( )max minK K K F a aΔ = − = ⋅Δσ ⋅ π ⋅ , (2) 

where Δσ  quasi–constant stress range, F(a) calibration 

function. 

The mathematical model describing fatigue crack 

growth of an element stressed by in–plane bending mo-

ment is defined, according to (Kunz 1991; Gocál 2000), 

by the calibration function:  

 ( ) 432
1408.1332.739.112.1 GGGGaF +−+−= , (3) 

where a – crack size, b – size of element. 

The parameter G in (3) expresses the quotient 

G = a/b. The steel member under in–plane bending mo-

ment is shown on Fig. 1.  

 

 

 

Fig. 1. Structural detail with initial crack 

 

Rearrangement and integration of the Paris–

Erdogan’s equation (1) and consideration of the crack 

initiation propagation from a1 to a2, and corresponding 

number of cycles N1 and N2, provides the relation: 

 

( )

2 2

1 1

a N
m

m
a N

da
C dN

F a a

= ⋅ Δσ
⎡ ⎤⋅ π ⋅
⎣ ⎦

∫ ∫ . (4) 

When assembling a bridge structure (welding, cut-

ting, drilling), the fatigue crack can initiate and propagate 

with the first loading cycle. For bridge structures, it is 

therefore justified to consider the number of cycles at the 

time of fatigue crack initiation by the value N0 = 0. Pro-

vided that the initial crack size value is introduced as 

a1 = a0, and the final one, a2 = acr, relation (4) can be re-

written in the form: 

 

( )0

cr
a

m

m

a

da
C N

F a a

= ⋅ ⋅Δσ
⎡ ⎤⋅ π ⋅
⎣ ⎦

∫ , (5) 

where a0 – initial crack size, acr – critical crack size, N – 

number of cycles, C, m – material constants. 

N is the total number of cycles at crack growth from 

a0 to acr. The quasi–constant stress range Δσ  is consid-

ered in equation (5). The real loading of a bridge structure 

is random in time; the character of stress ranges is thus 

random too.  

The real stress change signal in time can be obtained 

by measurements on real bridges. The histogram of ran-

dom stress ranges (Fig. 2) is evaluated by means of the 

methods rain flow, reservoir, range count etc. A bridge 

loaded by stress change with constant amplitude does not 

practically exist; it is to be taken into consideration in the 

calculation by the method of linear fracture mechanics as 

well. For the purpose of taking the stress range spectrum, 

the right side of equation (5) can be substituted by the sum:  

 ( )∑
=

Δ⋅⋅≈Δ⋅⋅

M

i

m

ii

m
nCNC

1

σσ , (6) 

where
i

σΔ  are stress amplitudes representing individual 

classes of the spectrum; ni – the frequency of amplitudes 

in these spectrums, and M – the total number of classes of 

the spectrum. It holds that 

 Nn

M

i

i
=∑

=1

. (7) 

In a limit case, one stress range and one frequency fall 

upon each class. Based on this, the expression (7) can be 

modified as follows: 

 ( )
1 1

M N
m m

i i j
i j

C n C

= =

⋅ ⋅ Δσ ≈ Δσ∑ ∑ , (8) 

where jΔσ are individual stress ranges. After substitution 

of Eq (8) into (5), a modified form of the Paris–Erdogan’s 

Eq is obtained: 

 

( )0
1

cr
a N

m
jm

ja

da
C

F a a =

= Δσ
⎡ ⎤⋅ π ⋅
⎣ ⎦

∑∫ . (9) 

 

2.1. Equivalent stress range 

Now let us assume hypothetically that the histogram 

of the random quantity jσΔ  in Eq (9) is known from an 

experimental research. For an illustration of the problem 

solved, let us consider the histogram in the form pre-

sented in Fig. 2. 
 

 
 

Fig. 2. Histogram of stress range  
 

The character of quantities a0, acr, b, m, C in the rela-

tion (9) is generally random. Random realizations of 

quantities a0, acr, b, m can be simulated by the Monte 

Carlo (MC) simulation method. If a0, acr, b, m, C are 
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random quantities, it is necessary to simulate N realiza-

tions (also by means of the MC method) of Δσ  at each 

run of the MC method (one realization of a0, acr, b, m, C), 

which is very demanding numerically. A problem arose 

when it was necessary to simulate N = 106 to 107 realisa-

tions of the histogram jΔσ  in each run of MC method; it 

was numerically very demanding even on very quickly 

working computers. 

When comparing relations (9) and (5), it is possible 

to substitute the histogram from Fig. 2 by one equivalent 

stress range EΔσ  which can be determined from the 

relation (Tomica 2003): 

 

1

1

1 N m
m

E j
jN
=

⎛ ⎞
Δσ = ⎜ Δσ ⎟

⎜ ⎟
⎝ ⎠

∑ . (10) 

The computation relation (5) can be formally over-

written: 

 

( )0

cr
a

m

Em
a

da
C N

F a a

= ⋅ ⋅Δσ
⎡ ⎤⋅ π ⋅
⎣ ⎦

∫ . (11) 

The standard deviation EΔσ  is equal to zero only under the 

assumption that, in the histogram determination, neither 

statistical nor epistemic uncertainty exists; it is practically 

impossible in real practice. For the histogram from Fig. 2, 

N = 106 MC runs were applied, and m = 3 (Gocál 2000). 

Based on (10), it has been calculated that the value of 

34.3EΔσ =  MPa. 

 

3. Uncertainty of equivalent stress range 

3.1. Statistical analysis of equivalent stress range 

In the stochastic analysis, the uncertainties con-

nected with the determination of equivalent range EΔσ  

are usually taken into consideration by the fact that an 

equivalent range is a random variable. In relation (11), 

EΔσ  is usually considered to be a random quantity with 

Gaussian density function (Gocál 2000); by this, the un-

certainties in the histogram shape should be taken into 

account. Problems occur particularly when determining 

the standard deviation EΔσ . 

The statistical analysis of the histogram shape uncer-

tainty can be practically explained by two simple examples. 

 

3.1.1. Example 1 

Let us presume that there is no information on the 

histogram shape and that the random stress range lies 

within the interval 100;0 MPa. Further, let us suppose 

that the histogram consists of 6 classes and that the total 

number of measurements is 24. Up to 24 measurements 

can be randomly carried out in each class, ie, the problem 

results in 118 755 combinations of histogram shapes. 

The realisations of 118 755 histograms were com-

puted by a program compiled in the language Delphi. The 

method of generating histograms is practically evident 

from the part of printout in programming language Pascal: 

For i1:=0 to 24 do 
For i2:=0 to 24 do 
For i3:=0 to 24 do 
For i4:=0 to 24 do 
For i5:=0 to 24 do 
For i6:=0 to 24 do 
begin 
if i1+i2+i3+i4+i5+i6=24 
then begin 
Writeln('Frequency: ',i1, ' ', i2, ' ', i3, ' ', i4, ' ', i5, ' ', i6); 
sum:=sum+1; 
end; 
end; 
Writeln('Combination = ',sum); 

 

The realization example of the 102 037th histogram 

combination is presented in Fig. 3. For each histogram, 

10 000 realisations were simulated by the Latin Hyper-

cube Sampling (LHS) method. The LHS method is a 

method of MC type, giving for statistical analysis results 

better than the MC method (Kala 2006). 

 

 

Fig. 3. One histogram realisation from 118 755 combina-
tions 
 

The processing of 118 755 histograms provided 

118 755 files (each file contains N = 10 000 simulated 

realisations). According to (10), 118 755 random realisa-

tions of EΔσ  were the computed; one realization EΔσ  

was computed from (10) with used N = 10 000 simulated 

runs.  

The computation by using the LHS method de-

scribed in this a way is numerically highly requiring, and 

it would be necessary for a higher number of histograms 

to optimise it; the equivalent stress range (10) can be 

considered as a measure of centre of a sample, as well. 

Coefficient m was considered by the deterministic 

value m = 3. The output of statistical evaluation of 

118 755 values EΔσ  is presented in Fig. 4. 

It is evident from Fig. 4 that the equivalent stress 

range EΔσ  can be approximated by Gaussian density 

function very well. The negative value of skewness, 
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0.2495, is very interesting. If there is no information on 

the stress range histogram (each histogram shape is 

probably identical in the same way), Gaussian density 

function with mean value 61.36 MPa and standard devia-

tion 10.22 MPa can be applied for equivalent stress range. 

 

 

Fig. 4. Density function of equivalent stress range 
 

The value N = 10 000 was chosen with regard to the 

computation time and laboriousness of input ordering for 

118 755 random realizations EΔσ . Accuracy of statistical 

characteristics depends on the number of the LHS method 

simulation runs. 

 

3.1.2. Example 2 

Lognormal density functions of stress range are con-

sidered (Fig. 5). The lognormal density function mean 

value is supposed to lie within the interval 70;30 MPa. 

A set of 1 000 mean values { }70,,...08.30,04.30,30  MPa 

was considered; the difference between neighbouring 

values is 0.04 MPa. The standard deviation has been de-

rived based on the assumption that 95 % realisations 

EΔσ  lie within the interval 100;0 MPa. An example of 

5 lognormal probability density functions for 5 mean 

values 30, 40, 50, 60 and 70 MPa is presented in Fig. 5. 

 

 
 

Fig. 5. Lognormal density function of stress range 

Analogously as in the previous problem, 4 000 ran-

dom realisations EΔσ  were calculated from the relation 

(10), see Fig. 6. The coefficient m was considered by value 

m = 3; number of simulated realizations N = 10 000.  

 

 

 
Fig. 6. Density function of equivalent stress range 
 

In both cases the stress range was represented by a 

set of density functions; due to this, the standard devia-

tion of EΔσ  is not zero. For a purely stochastic uncer-

tainty, the experiments should by evaluated by one histo-

gram. The uncertainty of the value EΔσ  is not a typical 

random uncertainty but a vague (fuzzy) uncertainty fol-

lowing from uncertain experiment conditions (vague 

histograms) or from the absence of experiments. 

 

3.2. Fuzzy analysis of equivalent stress range 

A fuzzy random quantity can be understood as a 

random quantity measured under uncertain (vague) con-

ditions. Membership functions in Fig. 7 express the fuzzy 

uncertainty of equivalent stress range values for 20, 40, 

60, 80 and 100 %. Supports of fuzzy numbers are 

13.7 MPa; 27.4 MPa; 41.1 MPa; 54.8 MPa and 68.5 MPa. 

The kernel of all the fuzzy numbers is the common value 

34.3EΔσ = MPa.  
 

 
 
Fig. 7. Fuzzy numbers of equivalent stress range 
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The membership function has nothing in common 

with probability. In case of probability, the frequency of 

the occurrence of a phenomenon which had occurred 

(was experimentally found) would have to be studied.  
 

4. Fuzzy random analysis of fatigue resistance 

The fatigue resistance was defined as the number of 

cycles causing the initial crack size propagation up to the 

critical size. The fuzzy random uncertainty of fatigue resis-

tance due to fuzzy equivalent stress range ± 20 % (green 

area in Fig. 7) and input random quantities were analysed. 
 

4.1. Input random quantities 

In compliance with the results of stochastic sensitiv-

ity analysis (Kala 2006), the initial crack size presents a 

dominant random quantity for which the statistical char-

acteristics and the density function type have to be deter-

mined with a maximum precision. The initial crack size 

was modelled by a lognormal distribution (Tomica 2003) 

(Fig. 8). The problem is how to define the mean value 

and the standard deviation. According to the published 

experimental results (Tomica 2003; Hudák et al. 1999), 

based on crack propagating from the surface of weld 

joints, it is possible, for an initiating crack, to consider 

the lognormal distribution with mean ma0 = 0.526 mm and 

standard deviation Sa0 = 0.504 mm. 
 

 
 

Fig. 8. Lognormal density function of initial crack size 
 
The plate width b and critical length acr to which the 

crack propagates without the rise of macroplastic instabil-

ity were considered as the other random quantities. 

The coefficient m which is the function of many fac-

tors (Kunz 1991) was introduced randomly as well. The 

exponent m increases with decreasing fracture toughness. 

In our study, the parameter m was supposed, in a simpli-

fied way, with the Gaussian distribution to have the mean 

value of 3 and the variation coefficient of 0.01. 

The strong correlation between the parameters C and 

m (Kunz 1991) was confirmed experimentally. Provided 

that the exponent m is not any universal constant, it fol-

lows from the dimensional analysis of the Paris–

Erdogan’s equation (1), that also the physical dimension 

of the constant C gets changed in general. According to 

(Kunz 1991), the mutual relation between C and m can be 

expressed as follows: ( ) mccC
21

log += , where c1<0 a 

c2<0 are the parameters for the given material grade. In 

our problem, we considered in compliance with (Kunz 

1991), c1 = 11.141, c2 = 0.507 for the steel grade S235. 

The input random quantities are clearly given in Table. 
 

Input random quantities 

 Distribution Mean St. deviation 

Initial crack size Lognormal 0.526 0.504 

Parameter m Normal 3 0.03 

Thickness Normal 400 20 

Critical crack size Normal 200 15 

Equivalent stress r. Fuzzy number ± 20 % on Fig. 7 
 

4.2. Fuzzy random analysis of fatigue resistance 

Fatigue resistance was analysed according to (11). 

The fuzzy analysis was evaluated based on the general 

extension principle for 11 α–cuts. The statistical analysis 

was evaluated by applying the LHS method.  

The fuzzy analysis procedure may be explained by 

cut with degree of membership zero (uncertainty ±20 %). 

The first histogram with mean value 6
10100 ⋅  of fatigue 

resistance is evaluated for equivalent stress range 

27.44 MPa (–20 %), and the last histogram with mean 

value 6
1030 ⋅  of fatigue resistance is evaluated for 

equivalent stress range 41.16 MPa (+20 %). The calcula-

tion procedure is analogical for ±18 %, ±16 %, ±14 % 

and the other 11 α–cuts. 
 

 
 

Fig. 9. Fuzzy set of fatigue resistance histogram 

 

The fuzzy set of the fatigue resistance histograms is 

the output (Fig. 9). It is evident from Fig. 9 that with 

increasing value of equivalent stress range the average 



Z. Kala. Fuzzy probability analysis of the fatigue resistance of steel structural members under bending 

 

72 

fatigue resistance value decreases. The membership func-

tions of the mean value and standard deviation of the 

fatigue resistance are illustrated in Fig. 10. Both member-

ship functions are non-linear. 
 

 
 

Fig. 10. Fuzzy numbers of mean and standard deviation 
 

5. Conclusion 

The output asymmetric non–linear membership 

functions of mean value and standard deviation of fatigue 

resistance vs. triangular symmetric membership function 

of equivalent stress range are obtained. This information 

is very valuable because it quantifies the non–linear de-

pendence between the equivalent stress range and the 

theoretical fatigue resistance statistical characteristic. 

The epistemic uncertainty of histogram of a stress 

range is taken into account by taking into account the 

equivalent stress range as fuzzy numbers. This approach is 

an alternative to a purely stochastic approach which con-

siders the equivalent stress range as a random quantity, the 

information necessary for determination of its density 

function usually being absent. The fuzzy approach consid-

ers the input numbers and the output histograms as ele-

ments of sets. It extenders further possible analyses by 

operations with sets (intersection, union, etc.). 

The higher level analysis considering the history of 

loading could be outlined as fuzzy random processes. 

Specific fuzzy random processes and specific optimiza-

tion methods applicable to solution of the problem pre-

sented here are given, e.g. in (Möller, Reuter 2007; 

Karkauskas, Norkus 2006). 

 

The paper was elaborated under the research projects 
MSM 0021630519, GAČR 103/07/1067 and Junior Re-
search Project AVCzR KJB201720602. 
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FUZI TIKIMYBINĖ ANALIZĖ VERTINANT LENKIAMŲ PLIENINIŲ ELEMENTŲ ATSPARĮ NUOVARGIUI  

Z. Kala 

S a n t r a u k a  

Straipsnyje nagrinėjamas atspario nuovargio esant neapibrėžtiems pradiniams duomenims vertinimas naudojant  fuzi tiki-
mybinę analizę. Plieninių elementų atsparis nuovargiui pagal tiesinę irimo mechaniką apibūdinamas ciklų skaičiumi, kai  
pradiniai plyšiai perauga į kritinį plyšį, sukeliantį trapų suirimą. Kai įtempimų kitimo histograma yra žinoma, atsparis 
nuovargiui yra atsitiktinis dydis. Kai histograma yra nežinoma arba ji atitinka mažą eksperimentų skaičių, atsiranda kitas 
episteminės kilmės neapibrėžtumas. Pateikiami du pagrindiniai būdai, rodantys histogramos neapibrėžtumą. Pirmuoju, 
stochastiniu būdu,  įtempių kitimo diapazono histograma yra modeliuojama  ekvivalentinio įtempio kitimu. Antruoju būdu 
pradinės histogramos nagrinėjamos kaip fuzi aibės elementai. 

Reikšminiai žodžiai: nuovargis, plienas, plyšio plėtojimasis, suirimas, tikimybė, fuzi, modeliavimas, jautrumas. 
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