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Abstract. This paper introduces the recent state of research on shrinkage of concrete. It reviews prediction models of 

shrinkage strain and curvature analysis methods of reinforced concrete members. New test data on concrete shrinkage has 

been presented. Various factors that influence shrinkage have been discussed. A calculation technique on short-term de-

formations of cracked reinforced concrete members including shrinkage has been introduced. The technique is based on 

layer model and smeared crack approach. Shrinkage influence on behaviour of reinforced concrete beams was investi-

gated numerically and compared with test data reported in the literature. It has been shown that shrinkage has significantly 

reduced the cracking resistance and leads to larger deflections. 
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1. Introduction 

Mechanical loading, deleterious reactions, and envi-

ronment loading can result in the development of tensile 

stresses in concrete structures. Furthermore, concrete 

shrink as it dries under ambient conditions. Tensile 

stresses occur when free shrinkage is restrained. The 

combination of high tensile stresses with low fracture 

resistance of concrete often results in cracking. This 

cracking reduces the durability of a concrete structure. 

Effects of shrinkage and accompanying creep of 

concrete along with cracking provide the major concern 

to the structural designer because of the inaccuracies and 

unknowns that surround them. In general, these effects 

are taken into account of long-term deformation and 

prestress loss analysis of reinforced concrete (RC) struc-

tures. Though considered as long-term effects, shrinkage 

and creep also have influence on crack resistance and 

deformations of RC members subjected to short-term 

loading. 

This paper introduces the recent state of research on 

shrinkage of concrete and reviews the prediction models. 

Factors that influence the behaviour of the shrunk rein-

forced concrete members are discussed. Shrinkage influ-

ence on short-term behaviour of reinforced concrete 

beams has been investigated numerically and compared 

with test data reported in the literature. 
 

2. Factors, affecting shrinkage of concrete 

Four main types of shrinkage associated with con-

crete are plastic shrinkage, autogenous shrinkage, car-

bonation shrinkage, and drying shrinkage. Plastic shrink-

age is associated with moisture loss from freshly poured 

concrete into the surrounding environment. Autogenous 

shrinkage is the early shrinkage of concrete caused by 

loss of water from capillary pores due to the hydration of 

cementitious materials, without loss of water into the 

surrounding environment. This type of shrinkage tends to 

increase at lower water to cementitious materials ratio 

and at a higher cement content of a concrete mixture. 

Carbonation shrinkage is caused by the chemical reac-

tions of various cement hydration products with carbon 

dioxide present in the air. Drying shrinkage can be de-

fined as the volumetric change due to the drying of hard-

ened concrete. This type of shrinkage is caused by the 

diffusion of water from hardened concrete into the sur-

rounding environment. Drying shrinkage is a volumetric 

change caused by the movement and the loss of water 

squeezing out from the capillary pores resulting in the 

development of tensile stresses, since the internal humid-

ity attempts to make uniform with a lower environmental 

humidity. More recent investigation on various aspects of 

shrinkage is given in reference (Gribniak et al. 2007). 

The magnitude of shrinkage deformations depends 

on concrete mixture proportions and material properties, 

method of curing, ambient temperature and humidity 

conditions, and geometry of the concrete element. In the 

analysis of concrete structures two components, i.e. dry-

ing and autogenous shrinkage, are taken into account. 

The ratio of autogenous and drying shrinkage in total 

shrinkage of concrete is schematically illustrated in Fig. 1 

(Sakata & Shimomura 2004). In the case of normal-

strength concrete, it is not a problem if shrinkage is 

treated without distinguishing between autogenous and 

drying shrinkage because for such concrete autogenous 

shrinkage strain varies between 20 and 110 micro-strains. 
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This is only 10 to 20 % of the long-term shrinkage (Sil-

liman & Newtson 2006). Consequently, autogenous 

shrinkage was neglected for many years. On the other 

hand, in the case of high-strength concrete (HSC), auto-

genous and drying shrinkage should be distinguished 

because the ratio of these shrinkages to total shrinkage 

varies with respect to age when concrete is exposed to 

drying conditions (Sakata & Shimomura 2004). The fo-

cus of shrinkage research today is to understand more the 

phenomenon of autogenous and drying shrinkage (Kovler 

& Zhutovskiy 2006). 

 

 
 

Fig. 1. Shrinkage strain components in normal (a) and 

high-strength (b) concrete (Sakata & Shimomura 2004) 

 

3. Recent investigation on autogenous shrinkage 

modelling 

Models reviewed in this chapter after deal with 

autogenous shrinkage, which is justly considered as the 

most important shrinkage components in HSC. Only the 

relevant aspects of researches are presented herein. 

C. Hua, A. Erlacher and P. Acker (1995).Hua et al. 

presented a macroscopic scale analytical model of auto-

genous shrinkage (1995). It introduced a macroscopic 

stress induced by capillary depression and applied it to 

viscoelastic aging behaviour of the material. 

Hardening cement paste is considered as a contin-

uum medium with aging viscoelastic behaviour, which 

can be generally characterised by a creep function: 

 ( )
( )

( )
[ ] ( )

[ ] ( ) ( )

1
,

t

t

t t
J t t t

E t
t t b t

′α

∞
′α

′−
′ ′= + ε

′
′ ′− +

, (1) 

where ( )t
∞

′ε , ( )t′α , ( )b t′  are empirical parameters, 

which were obtained through a series of the experiments, 

as well as the values of Young’s modulus. Shrinkage 

strain was calculated using the creep function: 
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, 1 2
t s

t J t t d t′ ′ε = − ν Σ∫ , (2) 

where ( )s
t′Σ  is macroscopic stress derived using the 

following equation: 
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where γ  is surface tension of the liquid, r – radius of 

menisci curvature, P is total porosity of the material. 

C. Hua, A. Erlacher and P. Acker (1997). The pre-

vious model represented autogenous deformations on the 

macroscopic scale, whereas the present model treats 

autogenous shrinkage at the scale of hydrating cement 

grains (Hua et al. 1997). In this model, the initial state is 

taken as the time of setting when continuous skeleton is 

formed and begins to undergo the capillary depression. 

To simplify the model, it was assumed that all cement 

grains are spherical and identical, and that distribution of 

grains is periodical. This allows working on periodic cell. 

In the mechanical model the material is composed of 

three constituents with locally non-ageing properties. 

Anhydrous cement was considered as elastic isotropic, 

characterised by Young’s modulus and Poisson’s ratio, 

and modelled by internal hydrate layers. Hydrates and 

immobilised water was considered as a viscoelastic iso-

tropic component. The viscoelastic deformation of each 

layer begins when it forms. Accordingly, each new layer 

is deposited on layers already deformed by capillary de-

pression and thus each hydrate layer has its own history 

of deformation. This model allows modelling a macro-

scopically ageing material, while constituents have a very 

simple behaviour. 

E. A. B. Koenders and K. van Breugel (1997). This 

model uses thermodynamic approach to determine auto-

genous shrinkage of hardening cement paste (Koenders & 

van Breugel 1997). In this model, variation in surface 

tension is considered as the major driving force of auto-

genous shrinkage. Assuming a cylindrical pore shape, 

pore size distribution model was initially established, 

which is described mathematically by the function: 

 ( ) ( )0ln
p

V d a d d= , (4) 

where ( )p
V d  is volume of all capillary pores with di-

ameter d≤ ; d0 is the minimum capillary pore diameter 

was set to 0,002 µm , and a is the constant which reflects 

the increase of pore space with respect to the pore diame-

ter. 

Autogenous deformations are calculated using 

Bangham formula (Bangham & Fackhoury 1931): 

 l lΔ = λ ⋅Δγ . (5) 

The proportionality factor λ  utilises the empty pore 

wall area found from pore size distribution and is calcu-

lated according to the equation 

 
3E

Σ ⋅ρ
λ = , (6) 

where Σ  is pore wall area of empty pores, ρ  – specific 

mass and E – elasticity modulus of the material. 

Ishida et al. (1998). This model was derived from 

micro-mechanical physics of water in pore structure of 

concrete (Ishida et al. 1999). The capillary tension was 

assumed to be the driving force of autogenous and drying 

shrinkage. 
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The material properties of ageing concrete were ob-

tained by the analysis considering the interrelation of 

hydration, moisture transport and pore structure devel-

opment process. Cement hydration model provided hy-

dration level of each mineral and temperature develop-

ment due to heat of hydration. The capillary tension is 

assumed a driving force of both autogenous and drying 

shrinkage. This method allows modelling a macroscopi-

cally ageing material with viscoelastic behaviour, and 

additionally taking into account a loading history. 

 

4. Shrinkage and creep prediction techniques 

Designers typically use one of two code methods to 

estimate creep and shrinkage strain in concrete, ie either 

Eurocode 2 or ACI 318. Eurocode 2 is based on the CEB-

FIP MC 90 model recommended by the Euro-

International Committee, and ACI 318 is based on the 

ACI 209 model recommended by the American Concrete 

Institute (Meyerson et al. 2002: 8). This chapter presents 

three shrinkage and creep predictions models, namely the 

CEB-FIP MC 90 model, ACI 209 model, and Bažant & 

Baweia (B3) model. 

 

4.1. Modulus of elasticity 

The modulus of elasticity is an input parameter to 

the creep compliance. It is defined as the tangent modulus 

of elasticity at the origin of the stress-strain diagram and 

can be estimated from the mean compressive cylinder 

strength and the concrete age. The tangent modulus E
c
 is 

approximately equal to the secant modulus E
cm

 of unload-

ing which is usually measured in tests. Formulas accord-

ing to some relevant design codes are shown in Table 1, 

where f
cm

 is the mean concrete cylinder compressive 

strength at the age of 28 days [MPa]. 

 
Table 1. Formulas for the modulus of elasticity at age of 28 

days 

Design code Formula for E
c
 [MPa] 

Eurocode 2 ( )
0,3

22000 0,1cm cmE f= ⋅  

CEB-FIP Model Code 1990 39980cm cmE f=  

ACI 318 4733c cmE f=  

 

Besides the concrete strength, the elastic modulus 

depends also on the type of the aggregate, the curing 

conditions and the test method. The influences of these 

factors are largely responsible for the significant scatter 

which can be observed when experimental values of the 

modulus of elasticity are plotted against the concrete 

strength (Takács 2002: 14). Test result of the elastic 

modulus is usually available for major structures but it is 

very rare that at least a short-term creep test is carried out 

(Takács 2002: 30). Applying the measured elastic 

modulus into creep analysis may improve the deforma-

tion prediction or may corrupt it. A short-term creep test 

is therefore a recommended option for major structures. 

Under precise and careful implementation a creep test 

with a load duration as short as two days can be adequate 

to adjust the theoretical creep compliance with apprecia-

ble accuracy (Bažant et al. 1999). 

 

4.2. CEB-FIP Model Code 1990 (MC 90) 

The equations presented here were published in the 

final draft of the MC 90 (CEB 1991). The model is valid 

for normal density concrete with grade up to C80 and 

exposed to a mean relative humidity in the range of 40 to 

100 %. At the time when the code was prepared very 

limited information on concrete with a characteristic 

strength higher than 50 MPa were available and therefore 

the models should be used with caution in that strength 

range. 

Creep. The relationship between the total stress-

dependent strain and the stress is described with the com-

pliance function which is written as 

 ( )
( )

( )0
0

0

,1
,

c c

t t
J t t

E t E

Φ
= + , (7) 

where ( )0,t tΦ  is the creep coefficient; t0 – the age of 

concrete at loading [days]; 1,1
c cm

E E= ⋅  – the tangent 

modulus at the age of 28 days [MPa]; ( )0c
E t  – the tan-

gent modulus at the age of loading t0 [MPa]. 

The creep coefficient is estimated from 

 ( ) ( )0 0 0,
c

t t t tΦ = Φ β − , (8) 

where 0Φ  is the notional creep coefficient; ( )0c
t tβ −  – 

the time function to describe the development of creep 

with time. The notional creep coefficient is derived from 
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Φ = + β =

β = =
+

 (9) 

where RH is the relative humidity of the ambient envi-

ronment [%]; h0 – the notional size of the structural 

member [mm]; A
c
 – the area of the cross-section of the 

structural member [mm2]; u – the perimeter of the cross-

section in contact with the atmosphere [mm]. 

The time development function for the creep coeffi-

cient is written as 

 
( )

( )

0,3

0
0

0

18
01,5 1 0,012 250 1500.

c

H

H

t t
t t

t t

RH h

⎛ ⎞−
β − = ⎜ ⎟

β + −⎝ ⎠

⎡ ⎤β = + ⋅ + ≤⎢ ⎥⎣ ⎦

 (10) 

Shrinkage. The shrinkage strain is calculated as 

 ( ) ( )0,
cs s cs s s

t t t tε = ε β − , (11) 

where 0cs
ε  is the notional shrinkage coefficient; 

s
β  – the 

time function to describe the development of shrinkage 

with time; t
s
 – the age of concrete when drying begins 

[days]. The notional shrinkage coefficient can be esti-

mated from 

 ( )0cs s cm RHfε = ε β , (12) 
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where 

( ) ( ) 6

3

1

1

160 10 9 0,1 10

1,55 1 , 99 %
100

0,25, 99 %,

s cm sc cm

s

RH

s

f f

RH
RH

RH

−⎡ ⎤ε = + β − ⋅⎣ ⎦
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 (13) 

where 
sc

β  is a coefficient which depends on the cement 

type, 4 for slowly hardening cement, 5 for normal and 

rapid hardening cement and 8 for rapid hardening high 

strength cement; factor 1sβ  was assumed equal to 1,0. RH 

in Eq (13) should be not less than 40 %. 

The development of shrinkage with time is given by 

 ( )
2

00,035

s

s s

s

t t
t t

h t t

−
β − =

⋅ + −
. (14) 

The influence of mean temperature other than 20° C 

can be also taken into account. With the decreasing tem-

perature both the notional creep coefficient and the notio-

nal shrinkage coefficient are decreasing and their deve-

lopment with time are decelerated. 

 

4.3. The 1999 update of the CEB-FIP MC 1990 

The models were published in the fib Bulletin (FIB 

1999). The primary intention with the update was to im-

prove the prediction models for high-strength concrete 

and further extend the validity of the models to high-

performance concrete. 

Creep. The updated creep model was in fact first 

published in Eurocode 2 (CEN 2001). It is closely related 

to the model in the MC 90 (CEB 1991), but three strength 

dependent coefficients were introduced into the original 

model. The extended model is valid for both normal 

strength concrete and high performance concrete up to 

concrete cylinder strength of 110 MPa. Three coefficients 

were introduced into the MC 90 model: 

0,7 0,2 0,5

1 2 3

35 35 35
; ; .

cm cm cm
f f f

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
α = α = α =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (15) 

Coefficients 1α  and 2α  are meant to adjust the no-

tional creep coefficient through the RHΦ  term. Coeffi-

cient 3α  is meant to be the adjustment for the time de-

pendency function. Eqs (9) and (10) have been rearranged 

in following form: 

( )

2 1 3

18

0 3 3

1 100
1 ;

0,1

1,5 1 0,012 250 1500 .

RH

H

RH

h

RH h

⎛ ⎞−
Φ = α +α⎜ ⎟⎜ ⎟

⎝ ⎠

⎡ ⎤β = + + α ≤ α⎢ ⎥⎣ ⎦

 (16) 

Shrinkage. The shrinkage model represents a major 

change. The total shrinkage is subdivided into the auto-

genous shrinkage component and the drying shrinkage 

component. With this approach it was possible to formu-

late a model which is valid for both normal strength con-

crete and high performance concrete having compressive 

strength up to 120 MPa. 

The total shrinkage strain at time t is calculated as 

 ( ) ( ) ( ), ,cs s cas cds st t t t tε = ε + ε  (17) 

with 

 
( ) ( ) ( )

( ) ( ) ( ) ( )
0

0, ,

cas cas cm as

cds s cds cm RH ds s

t f t

t t f RH t t

ε = ε ⋅β

ε = ε ⋅β ⋅β −
 (18) 

where ( )cas
tε  and ( ),cds st tε  are the autogenous  and 

drying shrinkage strain at time t, respectively; 

( )0cas cmfε  and ( )0cds cmfε  are the notional autogenous 

and drying shrinkage coefficients, respectively; ( )as
tβ  

and ( )ds st tβ −  are the time development function for 

autogenous and drying shrinkage, respectively; 

( )RH RHβ  is the coefficient taking into account the ef-

fect of relative humidity on drying; t – the concrete age 

[days]; t
s
 – the age of concrete, when drying begins 

[days]; 
s

t t−  – the duration of drying [days]. 

The formulations for estimating the autogenous 

shrinkage are written as 

 
( )

( )

2,5

6
0

0,2

0,1
10

6 0,1

1 ,

cm

cas cm as

cm

t
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f
f

f

t e

−

−

⎛ ⎞⋅
ε = −α ⋅⎜ ⎟

+ ⋅⎝ ⎠

β = −
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where 
as

α  is a coefficient which depends on the cement 

type, 800 for slowly hardening cement, 700 for normal 

and rapidly hardening cement and 600 for rapidly harden-

ing high-strength cement. 

In Eurocode 2 (CEN 2001) autogenous shrinkage is 

calculated using the following equation: 

 ( ) ( ) 6

0 2,5 10 10cas ck ckf f −

ε = − − ⋅ . (20) 

The formulations for estimating the drying shrinkage 

are written as 

( ) ( )

( )

20,1 6
0 1

0,1
1

220 110 10

35 ,

ds cmf
cds cm ds

s cm

f e

f

− α −⎡ ⎤ε = + α ⋅
⎣ ⎦

β =
 (21) 

where 1dsα  is a coefficient which depends on the cement 

type, 3 for slowly hardening cement, 4 for normal and 

rapidly hardening cement and 6 for rapidly hardening 

high-strength cement; 2dsα  is a coefficient which de-

pends on the cement type, 0,13 for slowly hardening ce-

ment, 0,11 for normal and rapidly hardening cement and 

0,12 for rapidly hardening high-strength cement. Coeffi-

cients RHβ  and ( )s s
t tβ −  are derived according to for-

mulas (13) and (14) using factor 1sβ  calculated by 

Eq (21). The effect of ageing on the elastic modulus can 

be taken into account using the following equation: 

 ( ) ( )c E cE t t E= β , (22) 

where ( )c
E t  is the modulus of elasticity of the concrete 

at age of t days [MPa], ( )E tβ  – the time development 

function for the elastic modulus. This function can be 

derived from the relationship 
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 ( )
28

exp 1E t s

t

α

⎛ ⎞⎧ ⎫⎡ ⎤⎪ ⎪⎜ ⎟β = −⎢ ⎥⎨ ⎬⎜ ⎟⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭⎝ ⎠
, (23) 

where t is the concrete age [day]; s – a coefficient which 

depends on the cement type, 0,20 for rapid hardening 

high-strength cement, 0,25 for normal and rapid harden-

ing cement and 0,38 for slowly hardening cement; α  is 

parameter assumed equal to 0,3. 

 

4.4. ACI 209 model 

ACI 209 model (ACI Committee 209 1998) recom-

mended by the American Concrete Institute to estimate 

shrinkage and creep strain. 

Creep. This model uses a hyperbolic function to rep-

resent the creep-time relationship: 

 ( )
( )

( )
( )

0,6
0

0 00,6
0

,

10

t t

t t t

t t

−
Φ = Φ

+ −

, (24) 

where t0 – the age of the concrete at first loading [days]; 

0t t−  – the duration of loading [days]; ( )0tΦ  – the final 

creep coefficient and expressed as 

 ( )
6

0 ,
1

2,35
c i

i

t

=

Φ = γ∏ , (25) 

where 
,
, 1 6

c i
iγ = …  are empirical coefficients with ac-

count for parameters affecting the creep magnitude. 

Coefficient ,1cγ  accounts the concrete age at the 

time of the first loading, t0. 

0,118
00

,1 0,094
00

1, 25 , 7 days; moist cured,

1,13 , 1 3 days; steam cured.
c

t t

t t

−

−

⎧ ⋅ >⎪
γ = ⎨

⋅ > −⎪⎩
 (26) 

Coefficient ,2c
γ  includes the effect of variations in 

the ambient relative humidity, RH [%]: 

 ,2 1,27 0,0067 , 40 %
c

RH RHγ = − ⋅ > . (27) 

Coefficient ,3cγ  accounts the size and shape of the 

member. Two alternative methods are given for the esti-

mation of ,3cγ  (ACI Committee 209 1998). Here pre-

sented technique is based on the average thickness 

0, 02ACIh h=  [see Eq (9)] and recommended for average 

thicknesses up to about 305 to 380 mm. For average 

thickness of the member less than 150 mm, ,3cγ  is ob-

tained from Table 2. 

For average thickness of members greater than 150 

mm and up to 380 mm, ,3cγ  is calculated by the equation 

 
0, 0

,3
0, 0

1,14 0,00092 ; 1 year,

1,10 0,00067 ; 1 year.

ACI

c
ACI

h t t

h t t

− ⋅ − ≤⎧⎪
γ = ⎨ − ⋅ − >⎪⎩

 (28) 

 

Table 2. Correction factor accounts size and shape of the mem-

ber for deriving creep and shrinkage 

Average thickness 0,ACIh  
Effects 

51 76 104 127 152 

Creep 1,30 1,17 1,11 1,04 1,00 

Shrinkage 1,35 1,25 1,17 1,08 1,00 

Coefficients ,4 ,6c c
γ γ…  depend on the composition 

of the concrete 

,4

,5

,6

0,82 0,00264 ; 130 mm;

0,88 0,0024 ; 40 60 %;

0,46 0,09 1,0; 8 %,

c

c

c

s sγ = + ⋅ >

γ = + ⋅ψ ψ < ψ >

γ = + ⋅α < α >

or  (29) 

where s is the slump of the fresh concrete [mm]; ψ  – the 

ratio of the fine aggregate to total aggregate by weight 

[%] and α  is the air content [%]. These coefficients in 

undefined intervals are assumed equal to 1,0. 

Under a constant stress 0σ  first applied at age t0, the 

load-dependent strain at time t is derived from the rela-

tionship: 

 ( )
( )

( )0
0

0

1 ,
c

t t t
E t

σ
⎡ ⎤ε = +Φ⎣ ⎦ , (30) 

where ( )0c
E t  is obtained from the equation presented in 

Table 1. The concrete strength at age t0 may be obtained 

from the 28 day strength by the equation 

 ( ) ( )0

0

28
c c

t
f t f

t
=
α +β⋅

, (31) 

where α  and β  depend on the cement type and curing 

conditions. For normal Type I cement, these coefficients 

are assumed equal to 4 and 0,85 (for moist curing) and 1 

and 0,95 (for steam curing), respectively. 

Shrinkage. The shrinkage strain at time t measured 

from the start of drying is calculated by following equa-

tion: 

 ( )
( )
( )

,

,

35 ; moist cured,

55 ; steam cured,

cs u

cs

cs u

t t

t

t t

⎧ε +⎪
ε = ⎨

ε +⎪⎩
 (32) 

where ,cs u
ε  is the ultimate shrinkage at time infinity and 

represents the product of the applicable correction fac-

tors: 

 
7

6
, ,

1

780 10
cs u cs i

i

−

=

ε = × γ∏ , (33) 

where 
,
, 1 7

cs i
iγ = …  are empirical coefficients with 

account for parameters affecting the shrinkage magni-

tude. 

Coefficient ,1cs
γ  includes the effect of variations in 

the ambient relative humidity, RH [%]: 

 ,1

1,40 0,0102 , 40 80 %,

3,00 0,030 , 80 100 %.
cs

RH RH

RH RH

− ⋅ ≤ ≤⎧
γ = ⎨

− ⋅ < ≤⎩
 (34) 

Coefficient ,2cs
γ  accounts for the size and shape of 

the member. Two alternative methods as in creep analysis 

are given in (ACI Committee 209 1998) for estimating 

the ,2cs
γ . Herein presented technique is based on the 

average thickness 0,ACIh  (Table 2). For average thick-

ness of members greater than 150 mm and up to 380 mm, 

,2cs
γ  is calculated using the equation 

 
0, 0

,2
0, 0

1,23 0,0015 ; 1 year,

1,17 0,0011 ; 1 year.

ACI

cs
ACI

h t t

h t t

− ⋅ − ≤⎧⎪
γ = ⎨ − ⋅ − >⎪⎩

 (35) 
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Coefficients ,3 ,7cs cs
γ γ…  depend on the composi-

tion of the concrete 

 

,3

,4

,5

,6

0,89 0,00161 ; 130 mm;

0,30 0,014 ; 50 %;

0,90 0,002 ; 50 %;

0,95 0,008 ; 8 %;

0,75 0,00061 ,

cs

cs

cs

cs

s s

c

γ = + ⋅ >

+ ⋅ψ ψ ≤⎧
γ = ⎨

+ ⋅ψ ψ >⎩
γ = + ⋅α α >

γ = + ⋅

 (36) 

where c is cement content in concrete [kg/m3]; other pa-

rameters are analogous to Eq (29). These coefficients in 

undefined intervals are assumed equal to 1,0. 

 
Table 3. Shrinkage correction factor accounts for initial moist 

curing period 

Curing period, days 1 3 7 14 28 90 

,7cs
γ  1,2 1,1 1,0 0,93 0,86 0,75 

 

Coefficient ,7cs
γ  accounts for variations in the pe-

riod of initial moist curing and is presented in Table 3. 

For a concrete which is steam cured for a period of be-

tween one and three days ,7 1,0
cs
γ = . 

 

4.5. Bažant & Baweia (B3) model 

The complete description of the B3 model can be 

found in (Bažant & Baweja 1995a, 1995b). 

Creep. An important feature of the B3 creep model 

is that the compliance function is decomposed into the 

instantaneous response, the compliance function for basic 

creep and the additional compliance function for drying 

creep. The creep compliance is written as 

 ( ) ( ) ( )0 0 0 0

0

1
, , , ,d sJ t t C t t C t t t

E
= + + , (37) 

where E0 is the so-called asymptotic modulus; ( )0 0,C t t  

and ( )0, ,d sC t t t  are the compliance function for basic 

and drying creep, respectively. 

The instantaneous response is defined with the so-

called asymptotic modulus, E0, which is not the same as 

the conventional static modulus. The asymptotic modulus 

is considered age independent. Its value is higher than the 

real elastic modulus and it can be estimated as 

0 1,5E E≈ . According to Bažant, it is more convenient to 

use the asymptotic modulus because concrete exhibits a 

pronounced creep even after a short loading. 

Shrinkage. The shrinkage strain at time t is defined 

as: 

 ( ) ( )0,cs cs RHt t k S t
∞

ε = −ε , (38) 

where 

 
( )
( ) ( )

2 2,1 0,28 6
1 2

0

1,9 10 270 10 ,

tanh ,

cs cm

sh

w f

S t t t

− − −

∞
ε = α α × + ×

= − τ

 (39) 

where 
cs∞
ε  is the ultimate shrinkage; ( )S t  – the time 

function for shrinkage; 1α  and 2α  are the correlation 

terms for effects of cement type and curing conditions, 

respectively; w – the water content; kRH – humidity de-

pendence factor; t – the age of concrete; t0 – the age, 

when during begins; shτ  – the size dependence factor. 

The B3 model takes into account the influence of the 

material composition directly. Besides model parameters, 

which are considered in previously reviewed models, the 

cement content, the water-cement ratio, the aggregate-

cement ratio and the water content are taken into account. 

 

5. Experimental investigations of concrete shrinkage 

An important but often overlooked property of creep 

and shrinkage prediction models is the expected error of 

the prediction. Creep and shrinkage are among the most 

uncertain mechanical properties of concrete. The theo-

retical models only predict the mean tendencies based on 

observations in available experimental data. In any par-

ticular prediction the effect of a certain parameter may be 

overestimated or underestimated (Takács 2002: 17). This 

chapter introduces experimental shrinkage measurements 

performed by the authors and performs a comparison 

with the predictions by Eurocode 2 and ACI 209 predic-

tions against these data. 

 
Table 4. Mix proportion of the experimental specimens 

Explanation Measure Amount 

Sand, 0/4 mm kg/m3 905 ± 2 % 

Crushed aggregate, 5/8 mm kg/m3 388 ± 1 % 

Crushed aggregate, 11/16 mm kg/m3 548 ± 1 % 

Cement CEM I 42,5 N kg/m3 400 ± 0,5 % 

Water kg/m3 123,8 ± 5 % 

Concrete plasticiser Muraplast kg/m3 2 ± 2 % 

 

The tests were performed in the laboratory of Vil-

nius Gediminas Technical University in 2005. The ex-

perimental specimens were cured under the laboratory 

conditions at average relative humidity (RH) 64,7 % and 

average temperature 13,1 °C. Concrete mix proportion is 

given in Table 4. The ordinary Portland cement and 

crushed aggregate (16 mm maximum nominal size) were 

used. Water/cement and aggregate/cement ratio by weight 

were taken as 0,42 and 2,97, respectively. 

 

 

 

Fig. 2. Specimens for measuring the shrinkage deforma-

tions 

 

Free shrinkage measurements were performed on 

prisms of 100 × 100 × 400 mm and 280 × 300 × 350 mm in 

size. The specimens and instrumentation for measuring the 

shrinkage deformations are shown in Fig. 2. Steel gauge 

studs, with the base 200 mm, were either glued on the 

concrete surface (Figs 2a and 2b) or embedded in fresh 
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concrete (Fig. 2c). In the latter case, free shrinkage meas-

urements were initiated in 24 h after casting, whereas 

measurements on other prisms were started in 3-4 days. 

Shrinkage deformation variation in time is shown in 

Fig. 3(a). It is clearly seen the difference between the 

deformations measured in 280 × 300 × 350 mm and 

100 × 100 × 400 mm prisms. The latter effect is caused by 

the only factor, i.e. the difference in the cross-section. 

The size conversion factors obtained from the tests 

and predicted by the Eurocode 2 (EC 2) and ACI 209 

design code formulas are given in Table 5. It is seen that 

the EC 2 predictions were adequate, whereas the ACI 

technique has significantly overestimated the factor. 

Fig. 3b plots experimental points obtained for both types 

of specimens using the experimentally derived size cor-

rection factor (Table 5). The predicted shrinkage varia-

tion curves using the EC 2 and ACI 209 methods for 

280 × 300 × 350 mm prisms, based on averaged parame-

ters of test specimens are also shown in Fig. 3b. 

It can be stated that the averaged curve obtained 

from the test results falls in between the code curves. 

Numerical results in Table 6 support the graphical data. 
 

 

 

Fig. 3. Free shrinkage deformations: measured in different 

size prisms (a) and reduced to size of test beams (b) 

 

Table 5. Size factor (converting shrinkage strain from 100 ×  

100 × 400 mm prisms to 280 × 300 × 350 mm prisms) 

Beams EC 2 ACI 209 Experimentally derived 

S-1, S-1R 0,494 0,45 

S-2, S-2R 0,495 0,45 

S-3, S-3R 0,498 0,50 

S-4, S-4R 0,520 

0,678 

0,45 

Table 6. Shrinkage deformations of 280 × 300 × 350 mm prisms 

at test day ( 6
10

cs
ε × ) 

Predicted by 
Beam t0 

EC 2 ACI 209 

Experimentally 

measured 

S-1 4 days –165,6 –253,5 –194,6 

S-1R 4 days –164,1 –250,6 –188,2 

S-2 3 days –141,6 –192,2 –152,6 

S-2R 3 days –143,3 –196,2 –155,7 

S-3 4 days –132,0 –191,1 –137,0 

S-3R 4 days –133,3 –194,6 –139,6 

S-4 4 days –152,5 –203,3 –172,0 

S-4R 4 days –154,5 –209,0 –177,0 

 

6. Creep and shrinkage models in comparison 

Experimental results of creep and shrinkage are 

marked with a large scatter, at least from the perspective of 

existing approach in modelling. The creep compliance and 

the shrinkage strain given by the theoretical models are 

seen as the expected average value of the responses and the 

prediction is also characterised by the corresponding 

measure of variation. Consequently, the structural response 

should be considered as a statistical variable rather than a 

deterministic value. The expected statistical variation has 

to be taken into account in the structural design. The re-

ported coefficient of variation is 20 % for the creep com-

pliance and 35 % for the shrinkage strain for the MC 90 

(CEB 1991). The same values are 23 % and 34 % for the 

B3 model (Bažant & Baweja 1995a, 1995b). 

A recent comparison of models discussed in Chap-

ter 4 using the distribution of residuals of the creep pre-

dictions showed that the Eurocode 2, ACI 209 and B3 

models overestimated the creep for 39 %, 23 % and 42 %, 

of the total number of data points and underestimated the 

creep for 61 %, 77 % and 58 %, respectively (Al-

Manaseer & Lakshmikantan 1999). The mean coefficient 

of variation for the residuals for the Eurocode 2, ACI 209 

and B3 models were 31 %, 38,6 % and 32 %, respec-

tively. The prediction model parameters and correspond-

ing limitations are presented in Table 7. In this table A/C 

is aggregate-to-cement ratio; W/C is water-to-cement 

ratio; t0 or ts are the age of concrete at loading and begin-

ning of a shrinkage, respectively. 

A comprehensive investigation into accuracy of 

shrinkage and creep prediction models was performed by 

Meyerson et al. (2002: 46). It has been shown that the 

Eurocode 2 predicts the creep and shrinkage strain of 

concrete with the best precision and accuracy. Al-

Manaseer & Lam (2005) performed a comparative analy-

sis of shrinkage and creep models using experimental 

data from RILEM Data Bank. It has been found that B3 is 

the best model to predict shrinkage and creep effects; 

Eurocode 2 predictions of creep were also considered 

accurate. 

Schellenberg et al. (2005) compared the creep and 

shrinkage predictions made by Eurocode 2 and ACI 209. 

It has been stated that the differences between codes can 

be significant in early stages of construction. For longer 

periods of time there was found no essential difference 

between predictions. It has been pointed out that the most 
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important thing is taking the shrinkage and creep effects 

into consideration, while it is only of a secondary impor-

tance which code is applied. 

 
Table 7. Models variables and limitations 

Variable EC 2 ACI 209 B3 

f
cm

 [MPa] 20–120 – 17–69 

A/C – – 2,5–13,5 

Cement [kg/m3] – – 160–720 

W/C – – 0,35–0,85

RH [%] 40–100 40–100 40–100 

Cement type I, II or III I or III I, II or III 

t0 or t
s
 (moist cured) – 7≥  days 0s

t t≤  

t0 or t
s
 (steam cured) – 1 3≥ −  days 0s

t t≤  

 

7. Influence of shrinkage and creep on deformations 

of RC structures 

Under restraining conditions, shrinkage is always as-

sociated with creep which relieves the stresses induced by 

shrinkage. In general, shrinkage and creep are taken into 

account of long-term deformation and prestress loss 

analysis of concrete structures (Zamblauskaitė et al. 

2005). Though considered as a long-term effect, shrink-

age may significantly reduce crack resistance and in-

crease deformations of RC members subjected to short-

term loading (Bischoff 2001; Sato et al. 2007). However, 

most of the known techniques do not include these effects 

in a short-term analysis. 

To better understand how volumetric changes of 

hardened concrete can result in cracking, Fig. 4(a) com-

pares the time dependent strength (cracking resistance) 

development with the time dependent residual stresses that 

develop. If strength and residual stress development are 

plotted as shown in Fig. 4(a), it is likely that the specimen 

will crack when these two lines intersect. Similarly, it fol-

lows that if strength of the concrete is always greater than 

the developed stresses, no cracking will occur. 

The residual stress that develops in concrete as a re-

sult of restraint may sometimes be difficult to quantify. 

This residual stress cannot be computed directly by mul-

tiplying the free shrinkage strain by the elastic modulus 

(ie Hooke’s Law) since stress relaxation occurs. Stress 

relaxation is similar to creep. However, while creep can 

be thought of as the time dependent deformation due to a 

sustained load, stress relaxation is a term used to describe 

the reduction in stress under a constant deformation. This 

reduction is illustrated in Fig. 4b in which a specimen of 

original length (I) is exposed to drying and a uniform 

shrinkage strain uniformly developed across the section. 

If the specimen is unrestrained, the applied shrinkage 

would cause the specimen to undergo a change in length 

of ∆L+ (II). To maintain the condition of perfect restraint 

(ie no length change) a fictitious load can be envisioned 

to be applied (III). However, it should be noted that, if the 

specimen was free to displace under this fictitious load-

ing, the length of the specimen would increase (due to 

creep) by an amount ∆L- (IV). Again, to maintain a per-

fect restraint (ie no length change) an opposing fictitious 

stress is applied (V) resulting in an overall reduction in 

shrinkage stress (VI). This illustrates that creep can play a 

very significant role in determining the magnitude of 

stresses that develop at early ages and has been estimated 

to relax the stresses by 30 % to 70 % (Weiss 1999: 145). 

 

 

 

Fig. 4. Stresses in a restrained concrete member due to 

shrinkage and accompanying creep (Weiss 1999: 145): a – 

stress development and b – conceptual description of re-

laxation 

 

Deformational behaviour of plain and RC members 

due to shrinkage has been analysed under the assumption 

of uniform distribution of shrinkage strain across the 

section. As shown in Figs 5a and 5c, shrinkage of an 

isolated plain concrete member would merely shorten it 

without causing camber. Reinforcement embedded in a 

concrete member provides restraint to shrinkage leading 

to compressive stresses in reinforcement and tensile 

stresses in concrete (Figs 5b, 5d). If the reinforcement is 

not symmetrically placed in a section, shrinkage causes 

non-uniform stress and strain distribution within the 

height of the section (Fig. 6). The maximal tensile 

stresses appear in the extreme concrete fibre, close to a 

larger concentration of reinforcement. 

 
 

Fig. 5. Deformations of concrete and RC member due to 

shrinkage (Gribniak et al. 2007): a – plain concrete mem-

ber; b – symmetrically reinforced section; c – free shrink-

age deformation; d – deformations in a symmetrically re-

inforced element due to restrained shrinkage 
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Fig. 6. Deformations of asymmetrically RC member due 

to shrinkage (Gribniak et al. 2007): a – plain concrete net 

section; b – asymmetrically reinforced section; c – defor-

mations in asymmetrically reinforced element due to re-

strained shrinkage 

 

8. Prediction methods for shrinkage deflection 

It is common for all approximate methods based on 

beam model to calculate the mid-deflection f by the for-

mula representing an approximate integration of curva-

ture of cracked cross-sections: 

 2
.f s l= ⋅ κ ⋅  (40) 

In the above, s is the factor depending on a loading case 

covering the shape of moment distribution; κ  – the cur-

vature; l – the beam span. The crucial point is how to 

estimate the shrinkage curvature. This chapter presents 

some methods for predicting this curvature. 
 

8.1. Eurocode 2 method 

It is pointed out in Eurocode 2 (CEN 2001) that time 

dependent deformations of concrete from creep and 

shrinkage shall be taken into account. Shrinkage curva-

ture 
cs

κ  may be assessed using the following expression: 

 
,

,

; ;
1

s cm
cs cs e e c eff

c eff

E ES
E

I E
κ = ε α α = =

+Φ
, (41) 

where 
cs
ε  is the free shrinkage strain (see Eq (17)); S – 

the first moment of area of the reinforcement about the 

centroid of the section; I – the second moment of area of 

the section; Φ  – the creep coefficient relevant for the 

load and time interval (see Eq (8)). 
 

8.2. ACI 435 method 

Based on the ACI 435 (ACI Committee 435 2003), a 

long-term curvature at time t is the sum of three compo-

nents corresponding to the influence of external loading, 

creep and shrinkage. Shrinkage curvature is determined, 

using the equivalent tensile force method, by the follow-

ing formula: 

 
,

;
1

c c c
cs cs c eff

eff

A e E
E

I
κ = ε =

+ χΦ
, (42) 

where 
cs
ε  is the shrinkage strain (see Eq (32)); ec is the 

distance between the centroid of plain concrete area Ac 

and the centroid of the age-adjusted transformed section 

(Fig. 6); Ieff – moment of inertia about the centroid of the 

age-adjusted transformed section composed of Ac plus 

,s c effn E E=  multiplied by areas of reinforcements; 

χ  – the ageing coefficient (can be assumed 1,0); Φ  – the 

creep coefficient (see (24)). 

8.3. Modified equivalent tensile force method 

The equivalent tensile force method (a fictitious 

elastic analysis) has been used in various forms at least 

since 1936, for instance see (Branson 1977: 168). This 

method was modified in (ACI Committee 435 2003) 

using 0,5Ec and the gross section properties for better 

results, is given by next equation: 

 ( )1 2
,

2 ;
cs g

cs cs cs s s s
c eff g

N e
N E A A

E I
κ = = ε + , (43) 

where eg is the distance between the centroid of the plain 

concrete section and the extreme tensile fibre (Fig. 6); Ig 

refers to pain concrete section, other notations are the 

same as in Eq (41). 

 

8.4. Miller’s method 

Miller’s method (1958) refers to singly reinforced 

members only. This method assumes that the extreme 

fibre of a beam farthest from the tensile steel shrinks in 

the same degree as the free shrinkage of the concrete, and 

the shrinkage curvature is calculated by formula: 

 ( )
,

1 ;
cs cs cs cs s cs cs

k d kκ = ε − = ε ε , (44) 

where 
,s cs

ε  is the steel strain due to shrinkage. Miller 

suggested empirical values of coefficient kcs equal to 0,1 

for heavily reinforced members and 0,3 for moderately 

reinforced members. 

 

8.5. Branson’s method 

Branson’s method (1977: 169) represents a modifi-

cation of Miller’s method. This method is applicable to 

both singly- and doubly-reinforced members. The shrink-

age curvature of a member is derived by the formula: 
 

3

1 2

0,7 , 3,0 %,

, 3,0 %,

; 100%; 100 %.

cs

cs

cs

s s

p
p p

h p

h p

A A
p p p p p

bd bd

⎧ ε Δ
Δ Δ ≤⎪

κ = ⎨
⎪ ε Δ >⎩

′ ′Δ = − = ⋅ = ⋅

 (45) 

This method is also suggested by British Standard 

Code and recommended by ACI 209 (ACI Committee 

209 1998). 

 

8.6. Corley & Sozen method 

This method (Branson 1977: 171) is given by 

 ( ) 1 20,035
; ; .s s

cs

A A

d bd bd
′ ′κ = ρ−ρ ρ = ρ =  (46) 

The constant 0,035 may be used for sections where 

the free shrinkage is known or where it is of the order of 

500 micro-strains. In this case, the calculated curvature 

may be multiplied by the ratio of shrinkage to 500 micro-

strains. This procedure is also recommended by ACI for 

the design of concrete bridges (Branson 1977: 171). 
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9. Analysis of shrinkage effect on deformational  

behaviour of RC beams 

Two numerical analyses of shrinkage effect on de-

formational behaviour of RC beams are presented in this 

chapter. The test results reported by Фигаровский [Figa-

rovskij] (1962) are used for this purpose. The experimen-

tal beams were cured under the laboratory conditions at 

average relative humidity (RH) 53 %. The beams of rec-

tangular section, 3,0 m in span, were tested during 29 

days under a four point bending system with 1,0 m pure 

bending zone. Basic parameters of the beams employed 

in the analyses are presented in Table 8. 

 
Table 8. Parameters of test beams (Фигаровский [Figarovskij] 

1962) 

h d b a2 As1 As2 p fc,cube200 fy Es 
Beams 

mm mm2 % MPa GPa

P1-1Kk 251 228 179 15 149,4 56,5 0,37 28,0 389 210 

P2-2Pk 252 232 179 15 221,5 56,5 0,53 30,9 428 200 

P3-2Pd 250 230 180 15 364,5 56,5 0,88 35,3 437 200 

 

9.1. Prediction of shrinkage curvature 

This sub-chapter presents a comparative analysis of 

predictions made by the methods discussed in Chapter 8. 

Shrinkage curvature of beam P3-2Pd (Table 8) was cal-

culated. The calculation results are presented in Fig. 7. 

Fig. 7 also shows (by dashed vertical lines) shrinkage 

deformations calculated for the beam using the Eurocode 

2 and the ACI 209 methods. 

 

 

 

Fig. 7. Shrinkage curvatures of the beam P3-2Pd 

(Фигаровский [Figarovskij] 1962) 

 

It can be noted that predictions made by most of the 

methods, ie Eurocode 2, Modified equivalent tensile for-

ce, Branson’s and Corley & Sozen, are very close. The 

curvatures calculated (for a normative value of shrinkage 

strain) using these methods were 437, 493, 417 and 

404 × 10-6 m-1, respectively. In contrast to this, the predic-

tion by the ACI 435 method was 256 × 10-6 m-1. 

 

9.2. Numerical modelling the test beams 

In this section, the deflection predictions made by 

Eurocode 2 (CEN 2001) and ACI 318 (ACI Committee 

318 2005) code methods and the layer model (Kaklauskas 

2004) are checked against the experiment data of RC 

beams reported by Фигаровский [Figarovskij] (1962). 

Deflections predicted by the codes are shown in Fig. 8. 

 

 

 

Fig. 8. Deflection of test beams (Фигаровский [Figa-

rovskij] 1962) prediction by the code methods 

 

In the layer model shrinkage was modelled by a fic-

titious axial force and bending moment as shown in 

Fig. 9 (see also Fig. 6). Eurocode 2 technique was used 

for calculating free shrinkage strains. Concrete tensile 

and compressive strengths and modulus of elasticity were 

defined using Eurocode 2. An elastic-plastic relationship 

has been adopted for reinforcement material idealisation. 

The Eurocode 2 stress-strain relationship was assumed 

for the compressive concrete. A simple linear tension 

stiffening relationship shown in Fig. 10a was taken for 

modelling cracked tensile concrete. Factor β  in this rela-

tionship was calculated using the relationship proposed 

by Kaklauskas (2001: 70): 

 2
32,8 27,6 7,12p pβ = − ⋅ + ⋅ , (47) 

where p is the reinforcement ratio (%). Beam P1-1Kk was 

reinforced with plain bars, thus according recommenda-

tions (Kaklauskas 2001: 70), β  was reduced by 20 %. 

Experimental and calculated moment-deflection dia-

grams are shown in Fig. 10b. A good agreement of calcu-

lation results with experimental data, when shrinkage 

effect was taken into consideration, should be noted. 

Fig. 10b shows that shrinkage has significantly reduced 

the cracking resistance and leads to larger deflections. On 

average, deflections after cracking have increased about 

15 % when shrinkage was taken into account. Table 9 

presents a relative error of deflection predictions at ser-

vice load (corresponding to 50 % of the ultimate bending 

moment M
u
) including and ignoring shrinkage. 

 

 

 
Fig. 9. Modelling the  shrinkage in layered model by ficti-

tious actions (axial force and bending moment) 
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Table 9. Relative error of deflection predictions at service load-

ing 

Relative error ( )calc obs obsf f f− , % 

Layer model Beams 
EC 2 ACI 318 Shrinkage 

ignored 

Shrinkage 

included 

P1-1Kk –49,8 37,4 54,8 41,8 

P2-2Pk –35,2 –6,24 35,4 12,3 

P3-2Pd 12,4 9,3 16,7 4,1 

 

 

 

 
Fig. 10. Numerical modelling of test beams (Фигаровс-

кий [Figarovskij] 1962): stress-strain relationship used in 

the numerical analysis (a) and calculated moment-

deflection relationships (b) 

 

10. Concluding remarks 

Beyond the uncertainties associated with the creep 

and the shrinkage characteristics in concrete, which are 

undoubtedly the biggest obstacle to improve the accuracy 

of deformation prediction, there are further uncertainties 

contributing to the deformation problem in RC structures. 

It seems evident that the shrinkage prediction models can 

be found in ф reasonable agreement when the parameters 

are in the range which is typical of an experimental setup 

in a laboratory. The availability of sufficient experimental 

data within that range provides a more solid basis for 

adjusting the theoretical models and the degree of uncer-

tainty is smaller. 

Shrinkage curvatures analysis has shown the differ-

ence in almost 1,7 times between predictions made by 

ACI 435 method and other methods. 

Deflection analysis has shown that code methods in-

directly take into account the shrinkage effect: the code 

predictions of cracking moment are in accordance with 

test results. 

In the numerical short-term deflection analysis, 

shrinkage and creep effects have to be taken into account. 

The calculated deflections ignoring shrinkage were un-

derestimated by about 15 %. 
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BETONO TRAUKIMOSI ĮTAKA GELŽBETONINIŲ ELEMENTŲ ELGSENAI: SKAIČIAVIMO 
YPATUMAI 

V. Gribniak, G. Kaklauskas ir D. Bačinskas 

S a n t r a u k a  

Straipsnyje atlikta betono traukimosi įtakos gelžbetoninių elementų elgsenai analizė, pateikta betono traukimosi 

deformacijų apskaičiavimo modelių apžvalga, aptarti traukimosi sukeltų kreivių nesimetriškai armuotuose 

gelžbetoniniuose elementuose apskaičiavimo metodai, taip pat pateikti nauji betono traukimosi eksperimentinių 

tyrimų duomenys. Aptarti veiksniai, turintys įtaką traukimosi deformacijoms, aprašytas supleišėjusių gelžbet-

oninių elementų trumpalaikių deformacijų apskaičiavimo algoritmas, rodantis traukimosi įtaką. Algoritmas pagrįs-

tas sluoksnių modeliu ir vidutinių deformacijų koncepcija. Traukimosi įtaka gelžbetoninių sijų elgsenai nagrinėta, 

taikant normų bei sluoksnių metodus. Teoriniai rezultatai palyginti su literatūroje paskelbtais eksperimentinių 

tyrimų rezultatais. Parodyta, kad betono traukimasis gerokai sumažina trumpalaike apkrova veikiamų gelžbet-

oninių sijų atsparumą pleišėjimui bei lemia didesnes įlinkių reikšmes. 

Reikšminiai žodžiai: traukimasis, gelžbetonis, pleišėjimas, trumpalaikis apkrovimas, valkšnumas. 
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