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Abstract. To meet the target completion time of a construction project is one of the most important performance indi-
cators of project management. This paper proposes a fast and accurate method for evaluating the reliability of project 
completion time in large construction projects, using reliability theory. The proposed method is developed to overcome 
the limitations of existing methods, including the inaccuracy of the program evaluation and review technique and the 
long computational time of the narrow reliability bounds method. The proposed method is established in three main 
parts: (i) calculating the statistics of paths duration in the network; (ii) truncating insignificant paths of the network; and 
(iii) proposing an innovative solution to accurate estimate for reliability of project completion time. The effectiveness of 
the proposed method is evaluated using an example project. It is found that the results of the proposed method on the 
reliability of completion time are accurate. It is also found that the proposed method significantly reduces the number of 
analysed network paths and the computational effort. The method proposed here can serve as a fast and accurate tool for 
project managers and project planners in project planning, re-planning, and project control phases. 
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Introduction 

The critical path method (CPM) has been popularly used 
in the construction industry to estimate project comple-
tion time, or duration, for generations (Nasir et al. 2003; 
Mo et al. 2008; Okmen, Oztas 2008; Jun, El-Rayes 
2011). This may largely be due to its simplicity since 
CPM assumes that the durations of project activities are 
deterministic. CPM uses forward-pass and backward-
pass algorithms to calculate which sequence of activities 
has the least float (Lee, Arditi 2006). 

Project activities, however, generally have variabil-
ity associated with them, leading to uncertainty in the 
planning formulation. The variability in estimating of 
an activity’s duration may arise from various features, 
primarily the work itself and the estimator having insuf-
ficient data to characterise the work exactly (Carmichael 
2006). This variability has led to the consideration of 
probability methods, both analytically such as PERT 
(Program Evaluation and Review Technique) (Halpin, 
Riggs 1992; Ahuja et al. 1994; Kerzner 2009) and NRB 
(Narrow Reliability Bounds) (Ditlevsen 1979; Schuëller, 
Stix 1987; Melchers 1999; Rackwitz 2001), and nu-
merically, such as Monte Carlo Simulation (MCS) (Lu, 
AbouRizk 2000; Lee, Arditi 2006) and Simplified Monte 
Carlo Simulation (SMCS) (Diaz, Hadipriono 1992). 

Simulation methods are widely used as a practi-
cal technique to incorporate variability in construction 
projects (Lu, AbouRizk 2000; Lee, Arditi 2006). How-
ever, simulation approaches require large samples for 
large-scale projects in which each simulation requires 
the scheduling of all the project activities, including the 
forward path analysis of the CPM to calculate the project 
completion time (Ang et al. 1975; Lu, AbouRizk 2000; 
Guo et al. 2001; Zammori et al. 2009). 

Although simulation methods are well established 
in construction, it is still desirable to formulate and solve 
the problem of the reliability of project completion time 
by analytical methods, even with simplifications (Li, 
Melchers 1993). This is largely because analytical ap-
proaches assist practitioners in greater understanding of 
the problem nature by evaluating the parameters involved 
in the problem (Li, Melchers 1993). In evaluating the re-
liability of a project completion time, however, analytical 
methods, such as PERT and NRB, are not widely used. 
This might be due to some limitations that exist in such 
analytical methods. PERT, developed by the US Navy in 
1958, introduces uncertainty into the estimates for ac-
tivity durations (Kerzner 2009; Jun, El-Rayes 2011). In 
PERT, calculations are performed on an expected activity 
duration together with an associated measure of the vari-
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ability of this duration. However, PERT only considers 
the critical path of a network and it neglects the impact 
of correlation between the network paths (Jun, El-Rayes 
2011). This may lead to unrealistic results (Ahuja et al. 
1994; Halpin, Riggs 1992). Compared with PERT, NRB 
takes all the paths into consideration, which provides 
more realistic results. However, NRB requires a large 
number of calculations (Ditlevsen 1979), which might 
not be ideal for practical use by construction managers. 
Other methods have also been proposed, such as approx-
imation methods (Ang et al. 1975; Gong, Hugsted 1993; 
Guo et al. 2001), multivariate methods (Anklesaria, 
Drezner 1986) and fast and accurate multivariate meth-
ods (Jun, El-Rayes 2011). All these can be referred to in 
literature. 

Despite significant contributions of the above men-
tioned studies to the reliability of project completion 
time, a comprehensive survey of research literature in 
the area of construction management as shown in Ta-
ble 1, suggests that there are few or no studies that have 
focused on developing an accurate and fast analytical 
method to determine the reliability of project completion 
time. This paper addresses this shortfall. The paper pro-

poses a fast and accurate analytical method, an original 
and practical one, for evaluating the reliability of project 
completion time of large construction projects. The ben-
efit of developing such a method to construction manag-
ers is that the proposed method significantly improves 
the efficiency, accuracy, practicality and confidence in 
evaluating the reliability of project completion time for 
large-scale construction projects. The proposed method is 
designed to overcome the limitations of existing analyt-
ical reliability methods including: the inaccuracy of the 
program evaluation and review technique (PERT) and the 
long computational time of the narrow reliability bounds 
(NRB) method. The paper addresses a real life problem 
in construction project management by proposing an ac-
curate and fast analytical solution to the reliability prob-
lem of project completion time, thereby, contributing to 
current knowledge and practices in project planning and 
control. The solution follows an ordered argument and 
can be easily usable by practitioners.

In order to achieve this, the reliability problem of 
project completion time is formulated. Then a fast and 
accurate analytical method for estimating the reliability 
of project completion time is developed. The method is 

Table 1. Methods for the reliability of project completion time in construction

Method Methodology Advantages Limitations Reference

Deterministic The critical path 
method (CPM) Simple

Incapable of considering 
the impact of various 
construction risks and 
uncertainties

Nasir et al. (2003); Mo et al. 
(2008); Okmen and Oztas 
(2008); Jun and El-Rayes 
(2011)

Analytical
(probabilistic)

Program evaluation 
and review technique 
(PERT)

Probabilistic 
scheduling capabilities; 
simple and practical

Ignore all subcritical paths; 
produce unrealistic results

Halpin and Riggs (1992); 
Ahuja et al. (1994);  
Kerzner (2009)

Narrow reliability 
bounds (NRB)

Consider all network 
paths; provide more 
realistic results

Require a large number of 
calculations Ditlevsen (1979)

Numerical
(probabilistic)

Monte Carlo simulation 
(MCS)

Provide the most 
accurate results

Require large computation 
load for large-scale projects

Halpin and Riggs (1992); 
Diaz and Hadipriono (1993); 
Lu and AbouRizk (2000);  
Lee and Arditi (2006)

Simplified Monte Carlo 
simulation (SMCS)

Consider all network 
paths

The use of a computer is 
recommend Diaz and Hadipriono (1992)

Approximation
(probabilistic)

Probabilistic network 
evaluation technique 
(PNET)

Consider all network 
paths Produce optimistic results Ang et al. (1975)

Multivariate normal 
distribution.

Consider all network 
paths

The durations of all 
activities are assumed to be 
normally distributed

Sculli and Shum (1991)

Back-forward 
uncertainty-estimation 
(BFUE)

Consider all network 
paths

The real relationship 
between the merging paths 
might be complicated.

Gong and Hugsted (1993)

The modified stochastic 
assignment model 
(MSAM)

Consider all network 
paths

When the variance is large 
compared to the mean value 
is not applicable

Guo et al. (2001)

Multivariate
(probabilistic)

Multivariate normal 
distribution

Consider all network 
paths

Applicable for small 
networks Anklesaria and  

Drezner (1986)

Fast and accurate risk 
evaluation (FARE)

Reduce the number of 
calculations

The use of a computer is 
recommend Jun and El-Rayes (2011)
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developed in three main parts: (i) calculating the statis-
tics of paths duration in the network; (ii) truncating in-
significant paths of the network; and (iii) proposing an 
innovative solution to accurate estimate for the reliabil-
ity of project completion time. A worked example of a 
real construction project is presented to demonstrate the 
application of the developed method and to show its ca-
pabilities in providing fast and accurate solution to deter-
mining the reliability of project completion time.

1. Problem formulation

A project network, typically, consists of many activities, 
some of which can proceed in parallel, while others can 
only proceed after certain preceding activities have been 
completed. In reality, the completion time or duration 
for each activity [Note, the terms “completion time” and 
“duration” in this paper are interchangeable] is not cer-
tain because there are so many factors, such as weather 
condition, materials delay, productivity and site condition 
that may affect the activity duration (Yang 2005; Yang 
et al. 2014). As such, the completion time of the project 
should be treated as a random variable. In addition, such 
factors have a significant effect on the project final cost. 
Whilst this paper focuses on project completion time, it 
is acknowledged that project completion time also affects 
the project cost.

Typically, the project completion time is the com-
pletion time of the longest path of the project network, 
called critical path and denoted by TC in this paper.

In evaluating the reliability of completion time for 
the critical path a criterion should be established. In re-
liability theory, this criterion can be expressed by a limit 
state function, as follows (Li, Melchers 2005):

 ( , )C L C LG T T T T= − , (1)

where TL is an acceptable limit for the project comple-
tion time, for example a target completion time (dura-
tion). From Eqn (1), the reliability of completion time, 
denoted by R, for the critical path can be determined by 
(Li, Melchers 2005):

 ( ), 0C L C LR P G T T P T T = < = <    , (2)

where P[ ] denotes the probability of an event. Following 
reliability theory (for example, Melchers 1999), TC and 
TL are treated as random variables with 

CTf  (u) and 
LTf

(v) as their probability density functions, respectively, 
and u and v are random variables. It follows that when TC 
and TL are random variables Eqn (2) can be expressed as:

 ( ),
C LT T

D

R f u v dudv= ∫∫ , (3)

where ( )C LT Tf u,v  is the joint probability density func-
tion of TC and TL; and D is the domain that represents 
TC < TL. 

When TC and TL are independent, Eqn (3) can be 
obtained by (Melchers 1999):

 ( ) ( )L CT TR F z f z dz
+∞

−∞
= ∫ , (4)

where F( ) is a cumulative distribution function; f( ) is a 
probability density function; and z is a random variable. 

As a special case when both the completion time 
of the critical path and the acceptable limit are normal 
random variables; that is TC ~ N(µC, 2

Cσ ), and TL ~ N(µL, 
2
Lσ ), the analytical solution of Eqn (4) is possible and 

can be obtained by (Melchers 1999):
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where Φ( ) is the standard normal distribution function 
(zero mean and unit variance). 

In the case that TL is the project target completion 
time and has a deterministic value, t, Eqn (5) can be ex-
pressed as:

 ( )CR = Φ −β , (5a)

where βC is referred to as completion index in this paper 
and is defined as:

 

C
C

C

tµ −
β =

σ
. (5b)

Equation (5a) is used by PERT for the longest path 
in a network to estimate the reliability of project com-
pletion (Kerzner 2009; Jun, El-Rayes 2011). PERT de-
termines the longest path deterministically by using the 
critical path method. Despite the simplicity of PERT, it is 
rather exceptional to evaluate the reliability of the project 
completion by considering only one path and neglecting 
the influence of correlation between the network paths. 
Accordingly, PERT produces inaccurate results, often op-
timistic, that is uncorrelated, results (Halpin, Riggs 1992; 
Ahuja et al. 1994; Jun, El-Rayes 2011).

In order to consider the effect of all paths on the 
reliability of the project completion time, the network 
needs to be modelled as a series system (Melchers 1999). 
By a system approach, the reliability of the project com-
pletion time can be expressed by:

 
1 fR p= − , (6)

where pf is the probability of the project completion time 
to be longer than a target time. 

For a series system, the project completion time be-
ing longer than the target time is the union of the com-
pletion times of all possible paths being finished longer 
than the target time:

 ( )1 2 ...f kp P F F F=    , (7)

where Fj corresponds to the event that path j’s comple-
tion time is longer than a target time; the notation   
denotes the union of events; and k is the number of the 
paths in the project network.

Following reliability theory, pf can be determined 
by (Melchers 1999):
 ( )...f x

D x

p f x dx
∈

= ∫ ∫ , (8)

where x represents the vector of all the basic random 
variables affecting the completion time of the project, 
such as weather condition, productivity and so on.



In series systems, for most practical cases, Eqn (8) 
is rather complicated to evaluate (Schuëller, Stix 1987; 
Rackwitz 2001). Rather than attempting the direct inte-
gration of Eqn (8) an alternative approach is to develop 
upper and lower bounds for pf. Following probability the-
ory, Eqn (7) can be written as (Melchers 1999):
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where the notation   refers to intersection of events; and 
( )i jP F F  is the probability of the intersection of paths 

i and j completion times being longer than a target time. 
It follows directly from Eqn (9) that, if P(Fi) <<  1, 

then the terms ( )i jP F F , ( )i jP F F Fϑ   and etc., are 
negligible. If only the terms P(Fi) in Eqn (9) are retained, 
it can be shown that upper and lower bounds on pf, re-
ferred to as first-order series bounds, can be obtained by 
(Grimmelt, Schuëller 1982–1983; Ramachandran 1984):
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1 1
max
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i i
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  ≤ ≤  ∑ . (10)

Unfortunately, for many practical cases the series 
bounds provided by Eqn (10) are too wide; that is in-
accurate to be meaningful (Grimmelt, Schuëller 1982–
1983). To overcome this problem of inaccuracy due to 
wide bounds, second-order series bounds, also known as 
narrow reliability bounds (NRB), were proposed which 
retains terms, such as ( )i jP F F  in Eqn (9) (Melch-
ers 1999). Following the NRB method, upper and lower 
bounds on pf can be obtained by (Ditlevsen 1979): 
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where the ordering of the network paths from 1 to 
k is based on their decreasing significance; that is 
( ) ( ) ( )1 2 ... kP F P F P F> > > .

Using Eqn (6) an upper and a lower bound for R can 
be calculated by:

( ) ( ) ( )
1

1
2 1

1 Max 0,
k i

UB i i j
i j

R P F P F P F F
−

= =
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(12a)
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j ii

R P F P F P F F
<=

   = − + −     
∑  ,  (12b)

where RUB and RLB are upper and lower bounds of the 
reliability of project completion time, respectively. 

The lower and upper bounds of ( )i jP F F , which 
are used in Eqns (12a) and (12b) can be obtained by 
(Ditlevsen 1979):

( )

( ) ( )2 2
Max , ;

1 1
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(13b)

where 
iCβ  is a completion index obtained in Eqn (5b) by 

letting C = i; and ρij is the correlation coefficient between 
paths i and j. 

It has been shown that for a range of distribution 
types and a range of variances the results of NRB are 
very accurate and close to the simulation results (Grim-
melt, Chueller 1982–1983; Diaz, Hadipriono 1993). 
Unfortunately, the application of NRB to evaluating the 
reliability of project completion time is time consuming 
when the size of the network is large. This is because in 
a large-scale project with many paths, Eqns (13a) and 
(13b) need to be calculated for any pair of paths which 
results in a large number of calculations. To overcome 
this large computational problem a novel method named 
“Fast and Accurate Reliability Bounds” (FARB) is devel-
oped as presented in the next section.

2. Fast and accurate reliability bounds

Fast and Accurate Reliability Bounds (FARB) can pro-
vide a novel analytical solution to determining the relia-
bility of completion time of large-scale construction pro-
jects. The method is designed to overcome the limitations 
of existing analytical reliability methods, including: the 
inaccuracy limitation of PERT attributable to neglecting 
the correlation between the network paths by incorporat-
ing a multipath method; and the long computational time 
of NRB. The FARB solution consists of three main parts: 
(i) calculating the statistics of paths duration; (ii) truncat-
ing insignificant paths; and (iii) developing an innovative 
solution to provide a fast and accurate estimate for the 
reliability of completing time in large-scale construction 
projects.

2.1. Calculating the statistics of paths  
completion time
In order to calculate the reliability of completion time for 
each path S in a project network, its associated mean (µS) 
and variance ( 2

Sσ ) should be obtained. These parameters 
are calculated in FARB based on probabilistic theory and 
can be determined by:

 1
;

S

j

n

S a
j=

µ = µ∑  (14)
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1 1 1
,

S S S

j q jqj

n n n

a a aS a
j j q j= = = +

σ = σ + σ σ η∑ ∑ ∑  (15)

where 
jaµ  is the mean duration of activity j, located on 

path S; nS is the number of activities on path S; 2
jaσ  is 

the variance of the duration of activity j; and 
jqaη is the 

correlation between activities j and q. 
In practice, it is most likely that all activities are 

statistically independent; that is 0aη = , and accordingly, 
each path S duration variance can be obtained by:

 

2 2

1
.

S

j

n

S a
j=

σ = σ∑  (16)

If sufficient activities are included in a network 
path, and the activities are not correlated, the central limit 
theory dictates that each path S duration can be approx-
imated to a normal distribution with mean and variance 
obtained in Eqns (14) and (16), respectively. Noting that, 
considerable activities have to be added in a path before 
the central limit theorem becomes applicable. Five to ten 
activities seem to be a minimum number required (Car-
michael 2006).

Equations (14) and (16) require the statistics of ac-
tivity durations. As mentioned before, the duration of 
each activity j is a random variable, depending on basic 
random variables, such as weather, productivity, site con-
dition, crew motivation and so on. In practice, the prob-
abilistic information of the basic random variables is not 
easy to obtain. To overcome this difficulty, the approach 
of PERT is widely used to calculate the mean and vari-
ance of each activity j duration based on three descrip-
tors: an optimistic activity duration, denoted to; a pes-
simistic activity duration, denoted tp; and a most likely 
activity duration, denoted tm. All three descriptors are, 
accordingly, the planner’s estimates of an activity’s du-
ration reflecting the nature of the activity or the planer’s 
own uncertainty of the activity duration. Notably, the 
variability given to the activity duration estimate should 
not cover infrequent and unusual circumstances, such as, 
industry disputes, accidents, changes in work methods, 
alterations in the resources used, or similar (Carmichael 
2006). Following PERT, each activity j mean and vari-
ance can be, respectively, obtained by:

 

4
;

6j
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2.2. Truncating insignificant paths
In order to calculate the reliability of completion time for 
a given project network, Eqns (12a) to (13b) are required 
to be calculated by considering the correlation between 
all paths in the network. This leads to a large number of 
calculations for large-scale projects. For this purpose, a 
scheme is developed to truncate the number of paths. 

The truncation of the paths numbers in a project 
network is based on the principle proposed by Ang et al. 
(1975):

 – the paths in a network with high mean durations and 
high variances have the greater effect on the reliabil-
ity of project completion duration;

 – if durations on several paths are highly correlated, 
these paths are replaced by a single representative 
path which has the highest variance among each set 
of correlated paths; and

 – paths with a low correlation coefficient are assumed 
independent and are grouped as other representative 
paths. 
Following Ang et al. (1975) and Carmichael (2006), 

the correlation coefficients between any two paths i and 
j are calculated, assuming all activities are statistically 
independent, by:

 

2

,
ma

m
ij

i j

σ
ρ =

σ σ

∑
 (19)

where m includes all activities common to paths i and j.
For every pair of paths i and j, the correlation coef-

ficient, ρij, is compared with a correlation coefficient, ρ0. 
When ρij < ρ0, paths i and j are treated as independent 
paths. Ang et al. (1975) recommend that a value of 0.5 
for ρ0 is appropriate for construction networks.

2.3. Innovative solution
This part develops an innovative solution to estimating 
the reliability of project completion time of large-scale 
construction projects in which their scheduled network 
may include tens of thousands of network paths. The de-
velopment is based on the principles presented in parts 
(i) and (ii), and the reliability theory, discussed earlier. 

Considering paths i and j are two representative and 
independent paths. Following probability theory, for any 
pair of independent events Fi and Fj, the probability that 
events Fi and Fj both occur is:

 ( ) ( ) ( ).i j i jP F F P F P F=  (20)

Substituting Eqn (20) into Eqns (12a) and (12b), for 
m representative and independent paths, upper and lower 
bounds for the reliability of the project completion time 
being shorter than t are, respectively, obtained by: 

( ) ( ) ( ) ( )1

1

2 1
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UB C C C C
i j
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= =
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R
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(21b)

where 
iCβ  is a completion index for path i obtained in 

Eqn (5b). 
Notably, the results from the proposed method, 

FARB, should be accurate as Eqns (21a) and (21b) are 
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derived based on NRB, which has been proved an accu-
rate method (Grimmelt, Schuëller 1982–1983; Diaz, Had-
ipriono 1993). Also FARB is a fast method as Eqns (21a) 
and (21b) are calculated only for the represented paths of 
a network without any need for calculating Eqns (13a) 
and (13b) for any pairs of the paths in a network. Accord-
ingly, FARB should significantly improve the efficiency, 
accuracy, practicality and confidence in predicting proj-
ect completion time of large-scale construction projects. 
The next section presents the application of the proposed 
method.

3. Worked example

An example construction project is analysed to dem-
onstrate the use of the developed FARB method and to 
show its capabilities in providing fast and accurate esti-
mate for the reliability of completion time in construc-
tion projects. The project, which was first presented by 
Brook et al. (1967), concerns the construction of a road 
pavement. The project involves the paving of 2.2 miles 
of road and the construction of appurtenant drainage 
structures, excavation to grade, placement of macadam 
shoulders, erection of guardrails, and landscaping. For 
more details about the project activities, and their dura-
tion means and variances see Guo et al. (2001) due to 
space limitation of the paper. 

Figure 1 illustrates the project network, Table 2 lists 
the duration statistics of individual activities, and Table 3 
gives all of the nine paths of activity network for the 
exampl project. Table 4 shows means and variances of 
the durations of all paths. It also illustrates the correla-
tion coefficients between the paths. The mean (µ) and 
variance (σ2) of the duration of each path were, respec-
tively, calculated by Eqns (14) and (16) and the correla-
tion coefficients between any two paths were obtained 
by Eqn (19) for the example project network. In Table 4, 
the paths were sorted in a descending order on the ba-
sis of their duration’s variance. This is to remove highly 
correlated paths from the analysis and replace them with 
representative paths that have the highest variance among 
each set of correlated paths. Notably, Ang et al. (1975)
suggest sorting the paths in a descending order on the 
basis of their duration’s mean. Their approach, however, 
does not guarantee the selection of representative paths 
that have lower reliability of completion time (Jun, El-
Rayes 2011). In practice, project managers should pay 
more attention to controlling any factors (risks) that 
affect both the path with the longest duration, i.e., the 
critical path, and the path with the highest variance. This 
is because such paths have the highest effect on the reli-
ability of project completion time.

Following Ang et al. (1975), paths with a correla-
tion coefficient, ρ, greater than ρ0 = 0.5 were considered 
to be dependent. That is, paths 2 to 5 are represented by 
path 1, and paths 7 to 9 are represented by path 6. The 
FARB method considers paths 1 and 6 as the network 
representative paths, and it calculates the reliability of the 

Fig. 1. Activity network of the exemplar project

Table 2. Duration statistics of activities

Activity to  
(days)

tm  
(days)

tp 
(days)

ma 
(days)

σa
2 

(days)2

1 0 0 0 0 0.0
2 3 1 6 2 0.3
3 2 5 8 5 1.0
4 2 6 11 6 2.3
5 2 3 5 3 0.3
6 1 4 25 7 16.0
7 4 10 16 10 4.0
8 2 2 8 3 1.0
9 5 6 14 7 2.3
10 1 4 13 5 4.0
11 3 1 12 3 2.3
12 3 9 15 9 4.0
13 3 4 12 5 2.3
14 2 3 5 3 0.3
15 2 6 29 9 20.3
16 2 5 14 6 4.0
17 3 1 6 2 0.3
18 2 7 12 7 3.0
19 1 4 13 5 4.0
20 4 10 16 10 4.0
21 1 5 21 7 11.0
22 2 6 11 6 2.3
23 3 7 30 10 20.3
24 2 6 11 6 2.3
25 2 2 8 3 1.0
26 2 2 8 3 1.0
27 3 4 12 5 2.3
28 0 0 0 0 0.0

Table 3. Paths of activity network for the example project

Path Activities in path
1 1, 6, 10, 15, 19, 21, 23, 24, 26, 27
2 1, 6, 11, 16, 19, 21, 23, 24, 26, 27
3 1, 5, 9, 14, 19, 21, 23, 24, 26, 27
4 1, 3, 23, 24, 26, 27
5 1, 2, 17, 23, 24, 26, 27
6 1, 4, 7, 12, 13, 18, 20, 22, 25, 27
7 1, 5, 8, 13, 18, 20, 22, 25, 27
8 1, 3, 28, 20, 22, 25, 27
9 1, 2, 17, 28, 20, 22, 25, 27
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project completion time by considering these two repre-
sentative paths. It should be noted that for the example 
project Eqns (13a) and (13b) are required to be calcu-
lated 36 times by the NRB method. In comparison, those 
Equations are not required to be calculated by FARB. Ac-
cordingly, FARB reduces the amount of calculations for 
large-scale projects significantly. Using Eqns (21a) and 
(21b), the reliability of project completion for different 
target durations, t, can be calculated by: 

( ) ( ) ( ) ( ){ }1 2 1 2
1 Max 0, ;UB C C C CR  = − Φ β + Φ β −Φ β Φ β   

(22a)

( ) ( ) ( ) ( ){ }1 2 1 2
1 .LB C C C CR = − Φ β +Φ β −Φ β Φ β  (22b)

The calculation results show that the second term of 
the bracket in Eqn (22a) is positive. Accordingly, for this 
project RUB = RLB which provides accurate value rather 
than bound. This is supported with the Diaz and Hadipri-
ono (1993) study. They showed that the lower and upper 
bounds obtained with NRB are very close to each other. 
To compare the results of FARB with NRB, Eqns (12a) 
to (13b) were calculated by considering all paths of the 
exemplar project. 

Figure 2 shows the reliability of project completion 
for the different target durations, t, produced by FARB 
and NRB. In this figure upper bound and lower bound are 
denoted by UB and LB, respectively. 

Figure 2 demonstrates that the results for the reli-
ability of project completion time obtained by FARB are 
in between those of upper and lower bounds of NRB. 
The maximum difference between the FARB results and 
those of NRB for lower bound is 0.06 and for upper 
bound is 0.15. This demonstrates that FARB produces 
results close to NRB.

To further evaluate the accuracy of the FARB 
method, Monte Carlo simulation was used to analyse the 
exemplar project. The maximum number of samples for 
MCS was set to be 10,000. Diaz and Hadipriono (1993) ar-
gue that 1000 interactions give a good result. The reliabil-
ity of project completion time in MCS was calculated by:

 
,nR

N
=  (23)

where N is the total number of samples conducted by 
MCS; and n is the total number of times that the pro-
ject duration is shorter than the target duration, t, during 
simulation.

Figure 3 compares results of the reliability of proj-
ect completion time produced by the FARB method and 
those of the Monte Carlo simulation method. Figure 3 
demonstrates that FARB results are in good agreement 
with MCS results.

The differences between the results produced by 
Monte Carlo simulation and those of FARB are shown 
in Figure 4. 

Table 4. Ordered paths and duration statistics

Path (i) Mean duration (µi) (days) Variance (σi
2) (Days)2 Path correlations

ρi1 ρi2 ρi3 ρi4 ρi5 ρi6 ρi7 ρi8 ρi9

1 57 81.0 1
2 52 62.88 0.79 1
3 49 43.43 0.69 0.78 1
4 29 26.73 0.55 0.63 0.76 1
5 28 26.21 0.56 0.63 0.76 0.97 1
6 61 25.0 0.05 0.06 0.07 0.09 0.09 1
7 42 16.00 0.06 0.07 0.09 0.11 0.11 0.74 1
8 29 10.5 0.08 0.09 0.11 0.19 0.69 0.59 0.73 1
9 28 9.99 0.08 0.09 0.11 0.14 0.17 0.60 0.75 0.93 1

Fig. 2. Reliability of project completion time for different 
target durations
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Fig. 3. Reliability of project completion time produced  
by FARB and Monte Carlo simulation
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Figure 4 illustrates that the maximum difference 
between the MCS results and those generated by FARB 
is less than 1.1%. To measure the significant of this, a 
t-test analysis was conducted. Using Figure 3 data, Ta-
ble 5 details the result of the t-test. It needs to be noted 
that smaller t-values translate into larger p-values. So 
the smaller the t-value is the less likely the difference is 
significant. A critical t-value is the minimum t-value re-
quired to have p < 0.05. If the t-value is less than or equal 
to the critical t-value, then the difference between the 
two data sets are not statistically significant (Montgom-
ery et al. 2012). In Table 5 the one-tailed test corresponds 
to the possibility of the difference between the two data 
sets in only one direction (positive or negative) while 
the two-tailed test corresponds to the possibility of the 
difference between the two data sets in both directions 
(positive and negative) (Montgomery et al. 2012).

Table 5. The t-test result for comparing results produced  
by FARB and Monte Carlo simulation

t-value 0.02
p-value one-tail 0.49

t-critical-value (one-tail) 1.68

p-value two-tail 0.98

t-critical-value (two-tail) 2.01

According to Table 5, the t-value is less than the 
t-critical value with a p-value higher than 0.05. This 
demonstrates that the difference between the reliability of 
the project completion time produced by MCS and FARB 
are not statistically significant (Montgomery et al. 2012). 
This suggests that FARB can produce very similar, if not 
exact, results to those generated by MCS. These accurate 
results were generated by significant reductions in the 
number of analysed network paths and the computational 
effort compared to NRB. Accordingly, FARB can signifi-
cantly improve the efficiency, accuracy and practicality 
of utilizing analytical reliability techniques for project 
completion time in large-scale construction projects.

The above results were obtained by the consider-
ation that paths with a correlation coefficient, ρ, greater 
than ρ0 = 0.5 are dependent. To examine the effect of 

ρ0 values on the results provided by FARB, considering 
paths with ρ, greater than ρ0 = 0.65 are dependent. Ac-
cordingly, paths 2 through 3 are represented by path 1, 
path 5 is represented by path 4, path 7 by path 6 and path 
9 by path 8. Using Eqns (20a) and (20b) upper and lower 
bounds for the reliability of project completion time for 
the different target durations, t, were calculated. Figure 5 
shows the differences between upper and lower bounds 
of the reliability of project completion time produced by 
FARB with ρ0 = 0.65. This figure demonstrates that the 
results for upper and lower bounds are so close to each 
other, and they can be considered as the same results.

Figure 6 compares the reliability of project com-
pletion time produced by FARB for different ρ0 values. 
This figure shows the results for ρ0 = 0.65 and ρ0 = 0.50 
are close to each other. However, Figure 6 illustrates that 
for a high ρ0 value, for example ρ0 = 0.8, the results 
may become very conservative. As a lower value of ρ0 
requires smaller amount of calculation, a value of 0.5 for 
ρ0 is appropriate for construction networks.

4. Further discussion

This paper proposes an accurate and fast analytical so-
lution to the problem of reliability of completion time 
of construction project networks, thereby contributing to 
current knowledge and practice in project planning and 
control. The solution follows an ordered argument and 
is usable by practitioners. The paper will be of interest 

Fig. 4. Difference between reliability of project completion 
time produced by FARB and Monte Carlo simulation
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Fig. 6. Reliability of project completion time  
for different ρ0 values
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to academics and practitioners involved in the planning 
and control of construction projects. It provides an under-
standing of reliability analysis in projects networks; that 
is broader than existing treatments. Project managers and 
project planners, during planning and re-planning phases, 
might use an analytical approach to compare the Mon-
te Carlo simulation results for the reliability of project 
completion; the proposed analytical method should assist 
planners in these phases. The proposed method should 
also significantly improve the efficiency, accuracy, practi-
cality and confidence in evaluating the reliability of pro-
ject completion time for large-scale construction projects. 
Although this paper largely focuses on the reliability of 
project completion time, the results provide guidance on 
analysing reliability problems in other areas of engineer-
ing with probabilistic natures.

It should be noted that problems associated with 
resource usage, resource smoothing and resource con-
strained scheduling, may arise as sub-problems of the 
total planning problem. Such sub-problems may or may 
not be significant problems depending on the degree to 
which resources are considered in the initial planning. 
At planning stages, resources are often treated in two 
broad approaches (Carmichael 2006): (a) resources are 
taken into consideration when establishing the durations 
of activities. No further action is required to be done by 
FARB; (b) resources are ignored (or resources are as-
sumed to be available) when establishing the durations 
of activities. It is then required to carry out resource ma-
nipulation (resource smoothing or resource constrained 
scheduling). In such cases, FARB can be utilized as a 
useful means of estimating the reliability of project com-
pletion time after resource manipulation. How such re-
source manipulation can be done is not within the scope 
of this paper and could be the subject of another study. 
It should also be noted that in this paper the calculated 
project completion time is based on normal (least cost) 
activities durations. A problem associated with reducing 
the project duration, referred to as the project compres-
sion problem, may arise as another sub-problem of total 
planning problem (Carmichael 2006). Project compres-
sion may be considered as a part of an iterative anal-
ysis attached on planning when the project completion 
time should meet a deadline. Shortening the durations 
of critical activities (activity compression) may lead to 
project compression which often comes at cost. There is, 
therefore, a trade-off between shortening the project com-
pletion time and increasing the project cost. In practice, 
such trade-off is not easy due to the availability of cost-
duration data for any activity, and the accuracy of this 
data. In the circumstances where such data is available, 
FARB can be utilized as a useful means of estimating the 
reliability of project completion time after compression. 
How compression can be done is beyond the scope of 
this paper and could be the subject of another study.

A number of further developments from the present 
paper are possible; for example, time dependent prob-

lems. These problems move beyond the static methods 
discussed here to dynamic methods that change with 
times. In this sense the reliability of the project com-
pletion time should be developed as a function of time. 
Further extension could be made to develop methods for 
other engineering reliability problems. The verification 
of the method proposed in this paper was conducted on 
an example project obtained from the literature. Further 
assessment of the method could be carried out on differ-
ent projects to enlarge the sample, and provide further 
evidence on the merits of method proposed in the paper.

Conclusions

A fast and accurate method for evaluating the reliability 
of project completion time for large construction projects 
has been developed using reliability theory. An exemplar 
project has been analysed to show the application of the 
proposed method and to demonstrate its capabilities in 
predicting the reliability of project completion time. It 
has been found that the results of the proposed method 
are accurate compared to the results produced by the 
Monte Carlo simulation method with sufficient samples. 
It has also been found that the reliability of project com-
pletion time predicted by the proposed method for upper 
and lower bounds are very close to each other. Further-
more, it has been demonstrated that the proposed method 
significantly reduces the number of network paths to be 
analysed and hence the computational efforts compared 
to the narrow reliability bounds method. It can be con-
cluded that the proposed method can serve as a fast and 
accurate tool for project managers and project planners 
in project planning, project re-planning, and project con-
trol phases.
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