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Abstract. Modern design of reinforced concrete structural members for shear is based on the theory of plasticity. This pa-
per is written to contribute to the understanding of the inclination of the concrete strut in the inclined strut model for de-
sign of shear reinforcement in beams, which among others are used in Eurocode 2. The problem of inclination of the com-
pression strut in truss model is analysed depending on shear reinforcement ratio and effectiveness ratio of concrete 
strength for compression. Also the understanding of necessary ductility in steel reinforcing bars is discussed in the paper 
and especially the needs of tests on translation capacity of the shear failure are here analysed. To explain these problems 
the paper gives a short introduction to the theory of plasticity of reinforced concrete in shear and the background for the 
equations, which are used in shear design according to Eurocode 2. 
Keywords: RC beams, shear design, plasticity of concrete, stringer method, inclined crack width. 

 
1. Introduction 
Recent research concerning shear capacity of reinforced 
concrete members are concentrated on studying of shear 
failure mechanisms and specially on modelling the shear 
failure, see Collins et al. (2008), Lee and Kim (2008) or 
Jensen and Hoang (2009). The shear failure mechanism is 
a very complex phenomenon. Some experimental studies 
reveal that unlike flexural failures, reinforced concrete 
shear failures may be relatively brittle and for members 
without shear reinforcement it can occur without warn-
ing, Collins et al. (2008). Nevertheless, the most recent 
formulated design models for shear in reinforced concrete 
beams assume plastic effects in steel and concrete. 

The shear design method in Eurocode 2 is based on 
the inclined strut method, which is a method using the 
theory of plasticity and developed in Denmark in the late 
70s, see Nielsen (1998), where plastic design of reinforced 
concrete is treated in general and for a lot of problems. 

The modified compression field theory, originally 
developed by Vecchio and Collins (1986) is also based 
on the theory of plasticity and it fulfils equilibrium and 
compatibility conditions. To make it suitable for design 
without computers a simplified theory was proposed, 
Bentz et al. (2006). It is used for shear design in 
AASTHO’s Bridge Code (2007). 

A further development of the inclined strut method 
takes place in Denmark. It is the crack sliding theory, 
which distinguishes between the sliding (shear) failure in 
cracked and non-cracked concrete [Hoang and Nielsen 
(1998) or Jensen and Hoang (2009)]. For the latest news 
in application of the theory of plasticity to concrete, see 

Proceedings of the Morley Symposium on Concrete 
Plasticity and its Applications (2007).   

In the theory of plasticity we find values for the car-
rying capacity, which are lower than or equal to yield 
load by creating stress fields, which fulfil the equilibrium 
conditions and are safe according to the failure criterions 
for the materials, see Kwiecinski (1986). Such solutions 
are named lower bound solutions. 

We also could find solutions, which are greater than 
or equal to the yield load by creating failure mechanisms 
and using the work equation on the mechanisms. Such 
solutions are named upper bound solutions. 

In some cases it is possible to find a lower bound 
solution, which is equal to an upper bound solution and 
we have an exact solution – the yield load or the carrying 
capacity.  

Failure criterion (=yield criterion) for concrete is 
taken as the Couloms failure criterion, but in reinforced 
concrete the tensile strength of the concrete is taken as 
zero, which means that in plane stress fields, the failure 
criterion is equal to the square failure criterion (Fig. 1). 

  
  

 
 
 
 
 
 

Fig. 1. Failure criterion for concrete in plastic plane stress 
fields: a – reduction of compression strength, b – square 
criterion 
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Concrete is not an ideal plastic material, which 
means that a reduced plastic strength νfc is introduced. The reduction factor ν is called the effectiveness factor, 
as it is a measure of the effectiveness of the concrete at 
plastic design (Fig. 1a). Some informations on ν are given 
in Lapko and Jensen (2005) or Jensen and Lapko (2008). 

For the reinforcement it is supposed that only it is 
able to resist forces in the direction of the bars and the 
capacity is equal to the yield stress of the reinforcement. 

Lines of discontinuity in deformations are a useful 
method, when creating failure mechanisms for upper 
bound solutions. For such lines the dissipation (internal 
work) are developed for materials following Coulomb’s 
failure criterion (Jensen 1975), but here we will only use 
the lines of discontinuity together with the failure crite-
rion (Fig. 2). In this case, the internal work per unit 
length and thickness in the concrete is  
 ( )α−ν= sin1

2
1

cl fVW , (1) 
where V – the deformation along the line (Fig. 2), where 
part I of the concrete is moved the distance V relatively to 
part II. 
 

α Part I

Part II

V
 

Fig. 2. Deformation along a line of discontinuity  
If any reinforcement bars are crossing the line of 

discontinuity, the work from the reinforcement has to be 
added to the work from the concrete, see later. 

We will have a close look on the classical shear test 
in beams as shown in Fig. 3. The bending resistance of 
the beam is so big, that the failure will be a shear failure, 
which will be in one of the parts of the beam between the 
supports and the loads. 

First we will show, that for this load case we can 
find the exact plastic load carrying capacity and then we 
will extend the lower bound method to be a general de-
sign method. 

 
P P

l

M

V

l

 
Fig. 3. Beam in the classical shear test 

It is clearly shown, that for this load case we can 
find the exact plastic load carrying capacity and then 
extend the lower bound method to be a general design 
method. 

 
2. Solution on the basis of theory of plasticity 
2.1. A lower bound solution 
We are looking at the shear span from Fig. 3 only. In this 
area we assume the following stress distribution: 

Tension and compression areas are assumed to be 
stringers, e.g. without any height (Fig. 4). The distance 
between the stringers z = internal lever arm. 

The concrete between the stringers is in a uniaxial 
compression with the stress σc, forming an angle θ with the horizontal stringers. The distance between stirrups is 
supposed to be so small, that the force in the stirrups can 
be regarded as a distributed vertical stress σsy. (Only ver-tical stirrups are considered).  

C

T

z y σsy
σc

σc θ

x

 
Fig. 4. Stresses and forces in the shear span 
 
In the concrete the principal stresses are 0 and –σc as stresses are now positive as tensile stresses. 
In the shown coordinate system, the concrete 

stresses then are  
    θσ−=σ 2cosccx , (2) 
 θσ−=σ 2sinccy , (3) 
 θθσ=τ cossinccxy . (4) 
The forces in the stirrups are distributed as stresses and 
they are 
 0=τ=σ sxysx , (5) 
 

sb
A ss

sy
σ=σ , (6) 

where: As – the area of one stirrup, σsy – the stress in the stirrups, b – the width of the beam, s – the distance be-
tween stirrups. 

The total stress distribution between the stringers is 
found by adding the stresses from the concrete and the 
stresses from the reinforcement (stirrups) 
 θσ−=σ 2coscx , (7) 
 

sb
A ss

cy
σ+θσ−=σ 2sin , (8) 

 θθσ=τ cossincxy . (9) 
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In the beam we now have a look on a section per-
pendicular to the x-axis, as shown in Fig. 5, where the 
stringer forces, stresses and the sectional forces are 
shown. 

 
C

T
z

V

M
−σx τxy

 
Fig. 5.  Stresses and forces in the beam 

 
Vertical equilibrium means 
 

zb
V

xy =τ . (10) 
Equilibrium in moments on the tension stringer gives: 
 bzzCM x

2
2
1

σ−= . (11) 
From (9) and (7) we get 
 xxy σ−=θτ cot . (12) 
Introducing (12) and (10) into (11), we get 
 θ−= cot

2
1V

z
MC . (13) 

In a similar way we find 
 θ+= cot

2
1V

z
MT . (14) 

We note that in the shear span the tension force 
from the moment is increased by the shear and the comp-
ression force from the moment is decreased. 

For the stress distribution between the stringers (7)–
(10) we have the condition 0=σy , as we have no exter-
nal stresses on top or bottom of the beam. Introducing 

0=σ y  into (8), we find 
 θσ=τ=τ cot

sb
A ss

xy . (15) 
From (9) we get 
 ( )θ+θτ=σ cottanc . (16) 
The degree of shear reinforcement is introduced as 
 

c

ys
fsb
fA

=ψ . (17) 
A lower bound is found by putting the reinforce-

ment stress equal to the yield strength of the reinforce-
ment e.g. ys f=σ , and the concrete stress equal to the 
plastic strength, e.g. cc fν=σ . Introducing these into 
(15) and (16) and solving with respect to τ and θ, we find 
 ( )ψ−νψ=τ

cf
, (18) 

 ψ−ν
ψ=θtan . (19) 

The solution is valid as long as ν≤ψ
2
1 . For higher de-

gree of shear reinforcement, the carrying capacity is 
 1 ,2cf

τ
= ν    when   ν≥ψ

2
1 . (20) 

To explain the above given limit of ψ we can rearrange 
(18) into the form 
 

2 2 2
,2 2cf

 τ ν ν   + ψ − =           (21) 

which is the equation for a circle in a ,

cf
τ ψ – coordinate 

system with its centre in 



 ψτ

,

cf
= 


 ν

2,0 and radius 

equal to 
2
ν . The circle described by the equation (21) is 

shown in Fig. 6. When the degree of shear reinforcement 
is greater than ψ = ½ ν, it means that the shear sector of 
the beam is overreinforced. 

This above solutions have been validated by the ex-
perimental works prepared in Denmark and presented by 
Nielsen et al. (1978). The 198 shear test results conducted 
on RC simple supported T – beams showed a good appli-
cability of the plastic theory in shear design. 

 

Overreinforced

Ψ

1
2ν

fc
τ

τ fc =  Ψ(ν−Ψ)

1
2ν  

Fig. 6. The plastic solution for the case of beam shown in 
Fig. 3  

2.2. An upper bound solution 
Again we consider a beam in shear with tension and 
compression as stringers. The beam has the shear rein-
forcement degree ψ  and the geometry is shown in Fig. 7 
together with yield lines at failure. The failure mechanism 
is a vertical moving V of part I to the two parts II. The 
moving takes place in the shown straight yield lines, 
which are forming the angle β with the horizontal axis. 

As moving is vertical, the forces in the stringers do 
not contribute to the internal work in the work equation. 
This work equation for one of the yield lines gives: 

( )( )1 sin 90cot .
2sin

c
s y

V f hhPV A f Vs
ν − −ββ= + β  (22) 
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Fig. 7. Beam with shear failure mechanism  
The first term on the right-hand side is the dissipa-

tion from the stirrups crossing the yield line, and the sec-
ond term is the dissipation from the concrete using (1). 

 
The upper bound solution can be written: 
 ( ) ββ−ν+βψ=τ

sin
1cos1

2
1cot

cf
. (23) 

The lowest upper bound is found by minimizing (23) 
with respect to β, and we get 
 ( )ψ−νψ=τ

cf
,   (24) 

 ( )
ψ−
ψ−νψ=β

2
2tan
v

. (25) 
It is noted that the expression (24) is equal to (18), 

which means, that the formula gives the exact plastic 
carrying capacity. Furthermore, it is only valid when 

ν≤ψ
2
1 , see explanation in Fig. 6. For a bigger amount 

of shear reinforcement (20) is also valid for the upper 
bound solution. 

Some limitations due to the width of the shear span 
etc are not dealt with here, but more it can be found in 
(Nielsen (1998), where also some discussion on other 
load cases and comparisons with tests can be found.  

However important is, that the solution is exact, 
which means that comparisons with tests make it possible 
to investigate the effectiveness factor. This factor is sub-
ject to national determination, but in Eurocode 2 a safe 
value is recommended: 
 


 −=ν

250
16.0 ckf ,  fc in MPa. (26) 

Because we have an exact solution, it is possible to study 
the parameters influencing the effectiveness factor ν. 
Such studies show that the dominating parameter is the 
concrete strength – simply: concrete shows a decreasing 
ductility with an increasing strength. Already in the work 
of Nielsen et al. (1978) such analysis was presented 
showing  
 

200
8.0 cf−=ν ,  fc in MPa, (27) 

but a safe value was recommended to be 
 

200
7.0 cf−=ν ,  fc in MPa. (28) 

This recommended value has been used in Danish 
codes, also in the Danish National Annex to Eurocode 2 
(2007). 

 
3. A practical design method 
3.1. The distance between stirrups 
Only in special cases an exact value of the capacity can 
be found. For a general design method the lower bound 
solution is used as the basis.  

We consider a case with an end of a beam with a 
distributed load on the top of it. The compression and the 
tension again are stringer forces and the concrete between 
the stringers has a uniaxial stress σc, forming the angle θ with the horizontal axis. We make a cut parallel to the 
direction of the concrete stress (Fig. 8). No concrete 
stresses are crossing the cut, only the forces in the vertical 
stirrups with the total force N cross the line. 

 

z

R

p

x
z cot θ

N
T

Cθ

 
Fig. 8. A beam end with inclined cut along the concrete 
stresses  
From (16) the concrete stress is known and it has to 

be less than the plastic strength of the concrete, e.g.: 
 ( ) cc fν≤θ+θτ=σ cottan , (29) 
where  
 

zb
V

=τ . (30) 
Theoretically θ can be chosen arbitrarily as long as 

(29) is satisfied. However, a proper behaviour of the ser-
vice load requires limitations. The experience of the tests 
has lead to the following recommendations: 
 1 cot 2.5.≤ θ ≤  (31) 
The limitations were introduced for the first time and the 
inclined strut method was presented in a code-like edi-
tion, see Nielsen and Bach (1980). 

Vertical equilibrium of the forces shown in Fig. 8, 
presents: 
 xVxpRN =−= , (32) 
where Vx – the shear force at the distance x from the reac-tion. 

The area of a stirrup is noted Ast and the number crossing the inclined line is noted n. We can now write: 
 zbfAnN xyst τ== . (33) 
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The distance between stirrups is noted at and it is 
 

n

z
at

θ= cot . (34) 
Now the distance between stirrups with the cross 

section area Ast can be found in (33) and (34): 
 θ

τ
= cotb

fAa
x

yst
t . (35) 

It is noted that within the distance θcotz  the shear rein-
forcement is found from the smallest shear stress. 

 
3.2. Discussion 
It is important to note, that the theory of plasticity is deal-
ing with the ultimate load. The calculations are restricted 
to a situation where failure may develop. Thus the ser-
viceability of load situation is not covered by the calcula-
tions. 

Looking at the two-point loaded beam with the ex-
act solution, the situation for a growing load may be like 
this:  

After cracking in bending the increasing load will 
create some cracks in the shear span. They will be with 
inclination of about 45°, because between compression 
and tension from bending we have only shear stresses in 
the uncracked concrete, and after cracking we will have 
an inclined concrete strut with the inclination of 45°. 

An increasing load will increase the inclination of 
the concrete strut (cotθ increases) and some of the shear 
reinforcement will yieldi – but the concrete stresses in the 
strut will still be less than the plastic concrete strength. 

Further increase of the load will increase the inclina-
tion of the strut, it means that cotθ will increase more, the 
concrete stresses in the strut will increase and more of the 
shear reinforcement will yieldi. At the end we will have a 
failure, when the inclination is increased to a value, 
where the concrete stresses are equal to the plastic con-
crete strength νfc. At this state we will have a failure, with compression failure in the concrete strut and yielding in 
the shear reinforcement. 

It has to be noted that failure means yielding in 
shear reinforcement and compression failure in the in-
clined concrete strut at the same time. 

For small degrees of shear reinforcement, cotθ will 
be rather high, see formula (19). When this method for 
calculating shear was developed in Denmark in the mid 
70’s, it was noted that very high values of cotθ was fol-
lowed by big shear crack widths. The lower bound 
method was introduced in the Danish Concrete Code 
(1984), but to limit the crack width problem the value of 
cotθ was limited to 2.5. The method and the limitation on 
cotθ is introduced in Eurocode 2 (2004). 

Thus, the limit 5.2cot =θ  is a limit purely based on 
the serviceability state and is not a limit of the carrying 
capacity. Shear failure only appears when both concrete 
strut and shear reinforcement fail. With small degrees of 
shear reinforcement, the limit in design 5.2cot =θ  does  

not mean that the carrying capacity is reached, but the 
crack widths in the serviceability state will be acceptable 
normally. 

It is also to be noted, that the failure needs a good 
deal of yielding in the shear reinforcement, especially at 
low degrees of shear reinforcement. We need “translation 
capacity” of the structure, similar to “rotation capacity” 
of structures, when plastic design of beams and frames 
are used. Eurocode 2 limits the reinforcement to class B 
and class C, when beams and frames are designed accord-
ing to the theory of plasticity. For plastic design of shear 
such limitations on the use of reinforcement is not in-
cluded in Eurocode 2, but a previous research has shown 
more about necessary translation capacity; it is recom-
mended to restrict the use of shear reinforcement to class 
B and class C, as it is done in the Danish National Annex 
to Eurocode 2 (2007). Usage reinforcement in class A is 
allowed in Denmark, but only with 1cot =θ  in shear. 

To utilize higher values of cotθ for more accurate 
methods of calculation of shear crack widths are needed 
and to be more specific in translation capacity we also 
need more research work. 

 
3.3. Shear crack width design 
Prior to inclined cracking, strains in the vertical stirrups 
are equal to strains in concrete, therefore the stresses in 
stirrup legs are relatively small. Thus the stirrups cannot 
prevent the shear zone against an inclined crack appear-
ance. After inclined cracks occur, stirrups come into play 
in this region. In a flexural member with stirrups these 
cracks are noted as flexure – shear cracks. The forces in a 
beam with stirrups and in flexure – shear cracks are pre-
sented in Fig. 9 (after MacGregor and Wight 2005). 
 

sw
c

T
 

Fig. 9. Inclined shear in a beam   
The inclined crack width cannot be predicted by 

calculating the principal stresses in an uncracked beam. 
Their slope, spacing and width depend on many factors 
like flexural and shear reinforcing steel areas, shape and 
dimension of cross-section, shear stresses and mechanics 
properties of concrete and steel. For this reason the cont-
rol of inclined cracking width can be performed using 
empirical equations, based on experimental works only. 

The overview of methods useful for calculating the 
shear cracks width can be found in Godycki-Ćwirko 
(1992). On the basis of their experimental studies Placas 
and Regan (1971) proposed the following formula for 
evaluation of inclined crack width for a beam with verti-
cal stirrups: 
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w

crRSd

ckst
w

db
VV

fa
skw ,
3max

−
⋅= , (36)  

where k – an empirical coefficient; sw – spacing of stir-rups;  VSd – shear force; VR,cr – shear capacity at the mo-ment of inclined crack appearance, ast  = Asw/bw. Based on general crack analysis, Borishansky (Бо-
ришанский 1964) assumed, that the mean inclined crack 
width wm depends on strains in stirrups εsm and crack spacing λ, according to formula 
 λε= smmw .  (37) 

The mean strains in vertical stirrups were estimated 
as equal to 
 

2





=ε

Rd
Sd

s
ywk

sm V
V

E
f , (38) 

where: VSd – shear force; VRd – shear capacity in function 
of characteristic strength of steel and concrete. 

The inclined crack spacing in a beam with vertical 
stirrups with diameter φs, after Borishansky’s proposition is calculated as follows 
 





φ

τρα
=λ

ctms

msws
f

1  , (39) 

where: 
ρws – shear reinforcement ratio 

ww

sw
ws sb

A=ρ ;  
τms – mean bond stress at the contact of stirrups and concrete; 
fctm – mean tensile strength of concrete. 
 The ratio τms/fctm depends on type of steel bar surfa-ce (=1.0 for plain bars and 0.7 for ribbed bars), 
After Borishansky, the coefficient α = 4; however, 

in recent Polish Concrete Standard (2002), where the 
method is implemented, this coefficient has been stated as 
equal to 3. 

Shear capacity  VRd has been expressed as  
 

w
ywksw

wcksRd s
fAdbfV 24β= ,  (40) 

where βs – an empirical coefficient.  Final formula, applied in Polish Concrete Standard 
(2002) for a member with vertical stirrups is  
 λρ

τ=
ckssw

msm fEw
24 .  (41) 

This formula may be modified taking into account, 
instead of shear capacity given in formula (40), the 
expression derived on the basis of plastic truss model for 
shear 
 θ= cotywk

w
swRd zfs

AV , (42) 
and on this basis the inclined crack width is equal to 

 
θρ

λτ= 2

2

cotswywks
msm fE

w . (43) 

Recent studies (Khalfallah 2008) show that for the 
cracks width in RC members an important role plays the 
interaction between shear reinforcement and concrete, 
appearing from bond stress distribution.  

 
3.4. Some aspects in the practical design 
For practical design, the beam is distributed in sections 
with the length θcotz  (Fig. 10a) and in each of the sec-
tion the distance between the stirrups is determined by the 
smallest shear stress according to (35). For execution on 
the site this solution may produce too many different 
distances between stirrups. In such cases a longer length 
for the same distance between stirrups is chosen and the 
distance between stirrups is determined by the shear 
stress at the distance θcotz  from the highest value 
(Fig. 10b). These rules are only valid for distributed load 
on the top of a beam. 

 

 
Fig. 10. Beams split into sections with the same distance 
between stirrups  
Design of shear reinforcement in beams with verti-

cal stirrups and without single forces, step by step could 
be recommended as follows: 

1. Design a beam for bending. 
2. Find internal lever arm z (distance between 
compressive C and tensile T forces). 

3. Draw the shear stress envelope from the load 
and shear force, τSd = VSd/(zbw). 4. Find the value of VRd,c according to formulae given in Eurocode 2, if VSd >VRd,c calculation of stirrups is obligatory. 

5. Choose the concrete compressive strut inclina-
tion: 1 ≤ cot θ ≤ 2.5. 

6. Check the concrete stress; 
 ( ) cdSdc fν≤θ+θτ=σ tancotmax, . 

7. Find the distance aw, where the smallest shear stress can be used for design, aw = zcotθ. 8. Choose the stirrup dimension and find the 
maximum distance sw,max between stirrups be-longing to minimum shear reinforcement (Lee 
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and Kim studies, 2008). According to Euro-
code 2 (2004), provisions it is equal to: 

 




≤
ck
yk

w
sww

f
f

b
A

d
s 5.12

75.0
min, . 

9. Choose in respecting step 8 ssw,min and find the shear capacity τRd belonging to ssw,min,  
 θ=τ cotmin,

ww
ywdsw

Rd bs
fA . 

10. Find where τSd = τRd,min and the distance, where minimum reinforcement can be used; remember 
to add the distance zcotθ to the point, where 
τSd = τRd,min. 11. Find the value of τSd at the distance 1 from the support and find the belonging sw. 12. Find the value of τSd at the distance 2 from the support and find the belonging sw (and so one, until gab to the minimum reinforcement is 

closed) (Fig. 11a and 11b). 
With single forces the distance aw = zcotθ does not 

have to cross the single force (Fig. 11). 
 

 
Fig. 11. Cases of design for shear in the beam with single 
forces  

4. General shear design 
We are looking at a reinforced concrete panel with a ho-
mogeneous stress situation ( )xyyx τσσ ,,  from an external 
load. This stress situation will produce stresses in the 
concrete and the reinforcement, which is placed in the x 
and y directions. In the concrete, we only accept uniaxial 
compression stresses. In Fig. 12 such a stress field is 
shown – a compression stress σc in the concrete, forming the angle θ with the x-axis.  

 
Fig. 12. Uniaxial compression in concrete in a panel  
structure 
 
Using Mohr’s circle, the uniaxial stress field is 

transferred to stresses in the x, y- coordinate system 
 θσ−=σ 2cosccx , (44) 
 θσ−=σ 2sinccy , (45) 
 sin coscxy cτ = σ θ θ . (46) 

In the shear-panel we also have reinforcement paral-
lel to the axes. The parallel to x-axis the reinforcement 
has the cross section area Asx at a length zy and parallel to the y-axis is Asy at a length zx. The thickness of the panel is b. The stress in the reinforcement is σs. The forces in the reinforcement are equivalent to distributed stresses in 
the panel, and in the x direction we get 
 

y

ssx

y

x
sx zb

A
zb
F σ

==σ . (47) 
And it is similar in the y direction 
 

x

ssy
sy zb

A σ
=σ . (48) 

Then the sum of stresses in concrete and steel bars is: 
 

y

ssx
cx zb

A σ+θσ−=σ 2cos , (49) 

 
x

ssy
cy zb

A σ
+θσ−=σ 2sin , (50) 

 θθσ=τ cossincxy . (51) 
From (50) we get the concrete stresses which have 

to be less or equal to the plastic strength νfc of the con-crete or 
 cc fν≤




θ+θτ=σ
cot
1cot . (52) 

The capacity of the reinforcement is the yielding 
strength fy. In (49) and (50) we put ys f=σ , for σc we 
introduce (52). Doing this, we get the necessary rein-
forcement in each direction: 
 θτ+σ=σ= cotxyxsx

y

ysx

bz
fA , (53) 
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θ

τ+σ=σ=
cot
1

xyysy
x

ysy
bz

fA . (54) 
It is noted, that these formulas are given in Annex F 

to Eurocode 2 (2004). It is also noted that the angle θ may 
be chosen arbitrarily as long as (52) is fulfilled. It makes 
it possible to optimise the amount of reinforcement.  

A paper on the complete set of formulas were pre-
sented in Warsaw by Nielsen (1963) and the work includ-
ing works on the optimisation was performed by Nielsen 
in his thesis (1969). Also, the formulas for optimum rein-
forcement are given in annex F to Eurocode 2 (2004). 

And finally it is noted that in the shear span of a 
beam (Figs 4, 5) we have only vertical reinforcement 
which means 0=sxA  in (49) and (53), thus formulae 
(49), (50) and (51) are equal to (7), (8) and (9). 

 
5. Summary and conclusions 
It has been shown that the inclined strut method for cal-
culating shear in beams is a method based on the lower 
bound plastic solution, which in some cases are an exact 
solution. It is also shown that the equations may be found 
using the general shear design equations as presented in 
Eurocode 2 (2004).  

The angle of the compression concrete strut may be 
chosen arbitrarily, as long as the concrete stresses are less 
than or equal to the plastic concrete strength. 

It has to be noted, that the failure of reinforced con-
crete beams needs a good deal of yielding in the shear 
reinforcement and inclined crack widths, especially at 
low degrees of shear reinforcement. We need to recog-
nize “translation capacity” of the structure, similar to 
“rotation capacity” of structures, when plastic design of 
beams and frames are used. Eurocode 2 limits the rein-
forcement due to ductility to class B and C steel, when 
beams and frames are designed using the theory of plas-
ticity. In the plastic design of shear, such limitations in 
the use of reinforcement is not included in Eurocode 2, 
but in Denmark the use of reinforcement in class A is 
limited to 0.1cot =θ . To understand the upper limit of 
cotθ more accurate methods of calculation of shear crack 
widths are needed and to realise, if the ductility of class A 
steel is sufficient for the plastic design of shear, we also 
need research work on “translation capacity”.  

The proposed shear crack width design in beams 
could be a method to find a more rational limitation in 
inclination of the compression strut. 
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GELŽBETONIO SIJŲ SKERSINĖS ARMATŪROS SKAIČIAVIMAS, TAIKANT PLASTIŠKUMO TEORIJOS PRINCIPUS 
B. Ch. Jensen, A. Lapko 
S a n t r a u k a 
Šiuolaikinis gelžbetonio elementų skersinės armatūros skaičiavimas pagrįstas plastiškumo teorijos principais. Straipsnyje 
pateikti sijų skersinės armatūros skaičiavimo ypatumai, taikant įstrižojo statramsčio modelį, kuris taikomas ir Eurokode 2. 
Išnagrinėtas gniuždomojo strypo pavertimas santvaros modelyje, atsižvelgiant į skersinės armatūros ir efektyvaus 
gniuždomojo betono stiprio santykį. Aptartas armatūrinio plieno strypų stamantrumas, akcentuota sijų laikomosios galios 
šlyčiai eksperimentinių tyrimų būtinybė. Pateiktas gelžbetoninių sijų šlyties skaičiavimas, taikant plastiškumo teorijos 
principus. Aptartas Eurokode 2 šlyties skaičiavimams taikomų priklausomybių teorinis pagrindas. 
Reikšminiai žodžiai: gelžbetoninės sijos, projektavimas šlyčiai, betono plastiškumas, ilginio metodas, įstrižojo plyšio 
plotis. 
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