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Abstract. The present report proposes an efficient approach to solving within the framework of the classic and refined
models the stress-strain problems of shallow shells as well as the problems on free vibrations. In accordance with the ap-
proach the initial system of partial differential equations is reduced to one-dimensional problems by using approximation
of the solution in terms of basic splines in one coordinate. The boundary-value problems obtained and eigenvalue bound-
ary-value problems for systems of ordinary differential high-order equations are solved by the stable numerical method of

discrete ortogonalization.
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1. Introduction

Shallow shells made of orthotropic materials are widely
used for construction of structure elements in modern
engineering (Fig. 1). To estimate their strength under
possible conditions of service operation, it is necessary to
have the information about the stress-strain state (Cowper
et al. 1970; Gould 1988; I'puropenko m np. 1987) and
dynamic characteristics (Graff 1991; Lee et al. 1984;
Liew et al. 1997) of the mechanical objects being consi-
dered.

Currently the problems of computational mathemat-
ics, mathematical physics, and mechanics, spline-
functions are widely solved (Fan and Cheung 1983;
3aBbsiioB u ap. 1980). It is due to advantages of the
spline-approximation techniques in comparison with
others. As basic advantages, the following can be re-
ferred: stability of splines in respect to local disturbances,
i.e. behaviour of the spline near a point does not affect the
behaviour of the spline as a whole as, for instance, this
holds in the case of the polynomial approximation; fast
convergence of the spline-interpolation in contrast to
polynomial one; simplicity and convenience in realization
of algorithms for constructing and calculating splines by
personal computers. Use of spline unctions in various
variational, projective, and other discrete-continual meth-
ods makes it possible to obtain appreciable results in
comparison with those the classical apparatus of polyno-
mials would yield, to simplify essentially their numerical
realization, and to obtain the desired solution with a high-
degree accuracy (Grigorenko and Zakhariichenko 2004;
Grigorenko and Yaremchenko 2004).

Fig. 1. Shallow rectangular in plan shell

2. Basic relations and constitutive equations

2.1. Free vibrations of shallow shells in classic
formulation

According to the Mushtari—-Donnell-Vlasov’s theory of
shallow shells, the natural transverse vibrations of these
shells are described by the equations
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where x and y are the Cartesian coordinates of a point on
the mid-surface (0 <x <a, 0 <y < b), ¢ is time, w — the
shell deflection, and p — the density of the material (ro-
tary and in-plane inertia are not included there).

The normal and shear forces N,, N,, and S and the
bending and twisting moments M,, M,, and H satisfy the
following relations:
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Ei, Ey, Gy, vy, v, are the elastic and shear moduli and

Poisson’s ratios; k; and k, — the curvatures of mid-

surface, u, v, w — components of displacements vector.
The system of equations (1-2) yields 3 equivalent

differential equations for the 3 displacements u, v, and w

of the mid-surface:
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It is assumed that all points of the plate vibrate harmoni-
u(x, y,0) = u(x, y)e

v(x, )= (x, p)E, wix, 3.0 = ix, y)e' (the sym-
bol “~” is omitted hereafter).
Finally we obtain
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Boundary conditions for displacements are specified

on the boundaries x = 0, aand y = 0, b.
Clamped boundary at y = const:
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Similar conditions can also be prescribed on the bounda-
ries x = const (replacing y by x and v by u in Eqgs (6-8)).

2.2. Stress-strain state of shallow shells
in refined formulation

The equilibrium equations of refined Timoshenko-Mindlin
type shell theory (I'puropenxko u np. 1987) are
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where N, , N, , N, , and N, are the tangential forces; O
and Q, are the shearing forces; M, M,, M., and M,, are
the bending and twisting moments.

The elastic relations for orthotropic shells symmet-
ric across the thickness about the chosen coordinate sur-
face are
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where €x,€),Ey, are the tangential strains of the coordi-
nate surface; Ky Ky Ky — the flexural strains of the

coordinate surface; 9,, Sy — the angles of rotation of the
normal regardless of transverse shear; v,,y, are—angles
of rotation of the normal due to transverse shear;
Yy, ¥, — the complete angles of rotation of the rectilin-
ear element.

From (9) — (11) we obtain
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Clamped boundary at y = const:

>

+

as6

u=v=w=0, y, =y, =0;at y=0, y=5b; (13)

hinged boundary:
0
u=w=0, @=0, vy, =0, ﬂ=0,
oy y
at y=0, y=b. (14)
3. Method of solution

3.1. Free vibrations of shells

The solution of the system of equations (5) is sought in
the form

N N
u= %ui(x)(l)i(y)a V= ;O‘)i(x)Xi(y) ,

w=%m@wmm (15)

where u; (x), v; (x), and w; (x)(i = 0,..., N) are the unknown
functions; ¢;(»), ¥,;(v) — functions constructed using
cubic B-splines and ,(y) — functions constructed using

quintic B-splines (3aBbsuioB u ap. 1980) and they are
selected so as to satisfy the boundary conditions at y =
const using linear combinations of cubic and quintic
B-splines (Grigorenko and Kryukov 1995).

Substituting (15) into Eqs (5), we require that they

be satisfied at prescribed collocation points &; €[0,5],

k=0,...,N . If the mesh has an even number of nodes
(N=2n+1) and the collocation points are such that

&2 €2 vainls &1 €255 2], (i=0.n), then
the interval [y,;, 15:11] has 2 collocation points, and the
adjacent intervals [,41, V2i12] do not have such points.
Within each of the intervals [yy;, ¥»:11], collocation points
are selected as follows:
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where z| = 5—?; Zp = +? are the roots of a quad-

ratic Legendre polynomial on the interval [0, 1]. Such
collocation points are optimal and substantially increase
the accuracy of approximation. As a result, we obtain a
system of 3(N + 1) linear differential equations for u;, v;,
and w,. With the notation
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A(x,) is a square matrix of order 8(N+1)x8(N+1). The

boundary conditions for this system can be expressed as
B,Y(0)=0, B,Y(a)=0. (18)

To solve the eigenvalue problem for the system of
ordinary differential equations (17) with the boundary
conditions (18), we will combine discrete orthogonaliza-
tion with incremental search (I'puropenko u np. 1986).

3.2. Stress-strain state of shells

The solution of boundary-value problem (12)—(14) can be
represented as
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where u;,v;,w;, ;.\, are the searched functions of the
variable x (pj,-(y) (j=L5 i=0,1,..,N) are the linear
combinations of B-splines third power.

If a resolving function is equal to zero, then
-1
@0(y)=—4B3 (y)+ By ()

0100 =85 -3 Bl + B0

0;i(N=B(y) (=2, 3,...N-2).
If the derivative of a resolving function with respect to s
is equal to zero, then

9,000 =B 0, =B —%B? )+ By

0, (»)=By(y) (=2, 3,..N-2).

The functions @;1(y) and ¢,y () can be repre-
sented similarly.

Substituting (19) into Eq. (12) and boundary condi-
tions (14), we require that they be satisfied at prescribed
collocation points. We obtain a dimensional boundary prob-
lem that can be solved by the discrete orthogonalization
method. The full solving technique is described in 3.1.

The results of calculation are presented for square in
plane isotropic shell displacements wE/q at all hinged
boundaries in cross-section y = /2 (Table). The parame-
ters of shell are ¢ = 10, h» = 04, k, = 0.05, k, =0,
v=0.3, g = const.

X Spline-approximation method Fourier series
a N=9 N=17 N=21 solution
0.1 1098.8 1117.3 1119.3 1121.0
0.2 2016.7 2052.9 2056.6 2060.0
0.3 2679 2730 2735.4 2740.0
0.4 3070.9 3132.3 3138.6 3144.3
0.5 3199.8 3264.9 3271.7 32777

The results were obtained by spline-approximation
and Fourier series methods. As follows from Table, the
solution approximate to the exact one with increase in
quantity of collocation points. It can be reliability crite-
rion of the technique proposed.
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4. Numerical results

4.1. Studying the natural vibrations of shells basing on
the Mushtari-Donnell-Vlasov’s theory

We will use the proposed approach to study the spectrum
of natural vibrations of a square shallow shell with vary-
ing thickness and different boundary conditions. The
thickness of the plate varies by the formula

2
h(x) = h{a(6x—2—6f+1)+1}. (20)
a a

The material of the shell is orthotropic (Jlexnuukmnit
1957) with  Young’s moduli E; = 4.76-10* MPa,
E, =2.07-10* MPa, shear moduli G}, =0.531-10* MPa,
Gy3 =0.501-10* MPa, Gy3 =0.434-10* MPa and Pois-
son’s ratios vy =0.149, v, =0.0647, 1/k=1/k, = 12.5;
3.125; 1.5625 (there 1/k; and 1/k, are dimensionless radi-

uses of curvatures)

The following boundary conditions were used:

— the entire boundary is clamped (A);

— two adjacent sides are clamped and the other sides
are hinged (B).

Figs 2—4 show the dimensionless natural frequencies

of the shell o, :(o,-azﬂlpho /Dy, as a function of the

parameter oo for A (solid line) and B (dashed line) boun-
dary conditions.

From Figs 2-3 follows, that the first frequencies of
orthotropic shells of a variable thickness at the big radi-
uses of curvature increase, and the second frequencies
decrease practically linearly at increasing o. Under
boundary conditions B, first two frequencies increase
with increasing o . At the further reduction of the main
radiuses of curvature the first frequencies decrease, and
for the second both increasing and decreasing under cer-
tain boundary conditions is possible with increasing o
(Fig. 4). The higher frequencies, basically, increase non-
linearly, though their decreasing is possible also since
some value o . Such behaviour of frequencies is caused
by simultaneous influence both of variable thickness and
the orthotropy of material.
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Fig. 2. Dimensionless frequencies ® of vibrations of
shallow shells with different boundary conditions as
the functions of the parameter & (1/k; = 1/k, = 12.5)
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Fig. 3. Dimensionless frequencies ® of vibrations of
shallow shells with different boundary conditions as
the functions of the parameter o (1/k;=1/k, = 3.125)
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Fig. 4. Dimensionless frequencies o of vibrations of
shallow shells with different boundary conditions as the
functions of the parameter o (1/k;=1/k, = 1.5625)

4.2. Stressed state of non-thin shallow shells basing on
the Timoshenko-Mindlin’s theory

Let us analyze, as an example, the stress—strain state a
doubly curved isotropic shallow shell with square plan-
form and varying thickness under uniform normal pres-
sure g = go = const. The thickness of the shell (Fig. 1)
varies by (20). The input data: a = b = 10, k = 1/10,
k=10, hy=1, 00 =-0.4,-0.2, 0, 0.2, 0.4, Figs 5—7 show the
thickness dependence of the displacements and stresses in
the section y = a/ 2 on the lateral surfaces of the shell
clamped at 3 edges and hinged at one edge. It can be seen
that w,c,and o are distributed asymmetrically.

Fig. 5 demonstrates that the maximum displacement
is slightly shifted from the point of the rise toward the
hinged edge, the maximum increasing with o. As the
thickness increases in this zone, the deflection decreases
insignificantly. Fig. 6 shows how the stress on the outside
surface depends on the thickness. It can be seen that the
maximum of o7, is shifted from the point of therise
toward the hinged edge and increases with a.

Fig. 7 shows the stress distribution on the inside su-
rface. The stress patterns on the inside and outside sur-
faces of the shell are qualitatively close and differ by
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sign. Quantitatively, the maximum stresses ¢, are al-

most twice as great as Gy .
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Fig. 5. Distribution of displacements depend on parameter o
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Fig. 6. Distribution of stresses c; depends on parameter o
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Fig. 7. Distribution of stresses o, depends on parameter o

5. Conclusions

1. The paper proposes a numerical-analytical approach
to investigation of the stress-stain state and natural vibrations
of orthotropic varying thickness plates and shells. The ap-
proach includes 2 stages. At the first stage an initial eigen-
value or boundary problem for the systems of partial differ-
ential equations is reduced to the eigen-value (boundary)

problem for the system of high-order ordinary differential
equations by representing the desired solution in the form of
segment of series in spline-collocations and choosing collo-
cation points in the domain under consideration. The ob-
tained one-dimensional eigen-value (boundary) problems
are solved by the stable numerical method of discrete-
ortogonalization in combination with the step-by-step search
method what provides highly accurate solution.

2. The applied problems for natural vibrations (Mush-
tari-Donnell-Vlasov’s theory) and stress-strain state (Ti-
moshenko-Mindlin’s theory.) of shallow shells with varying
thickness under different boundary conditions are solved.
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LEKSTUJU ANIZOTROPINIU NEHOMOGENINIU KEVALU STATINES IR DINAMINES
ELGSENOS TYRIMAIL TAIKANT SPLAINU APROKSIMACIJOS METODA

A. Grigorenko, S. Yaremchenko
Santrauka

Nagrin¢jamas efektyvus lekstyjy kevaly jtempiy, deformacijy ir laisvyjy svyravimy nustatymo algoritmas, pagris-
tas klasikiniais ir tobulesniais skai¢iavimo modeliais. Algoritme daliniy diferencialiniy lyg€iy sistema yra trans-
formuojama | vienmatj uzdavini, sprendziama naudojant pagrindiniy splainy aproksimacija i viena koordinatg.
Gaunamas krastinis uzdavinys, kuris sprendziamas kaip krastinis savyjy reik§miy nustatymo uzdavinys. Uzda-
vinio salygas atitinka jprasty aukstesnés eilés diferencialiniy lyg€iu sistema, kuriai spresti taikomi patikimi disk-
reCiosios ortogonalizacijos skaitiniai metodai.

ReikSminiai Zodziai: 1¢kstieji kevalai, kintamasis storis, modifikuotoji ir klasikiné formuluotés, jtempiy ir defor-
macijy buvis, laisvieji svyravimai.
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