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Abstract. It is the purpose of this paper to analyse the possibility of reducing the vibrations of frame building structures
with the help of multiple tuned mass dampers. Structures exposed to strong winds are considered. Excitation forces, which
are functions of wind velocity fluctuations, are treated as random forces. The spectral density functions of wind velocity
fluctuations are assumed as proposed by Davenport. The correlation theory of random vibration is used and the root mean
squares of displacements and accelerations are determined. Several remarks, concerning the effectiveness of multiple
tuned or mass dampers, are formulated from the results of calculation.
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1. Introduction

Mass dampers have been used for reducing the vibrations
of structures for many years (McNamara 1977). They
have been successfully used in reducing the vibrations of
building structures subjected to strong winds and seismic
excitations (Xu et al. 1992). Principally, tuned mass
dampers (TMD) installed on top floors have been studied.
They have been designed in such a way that they are
tuned to the fundamental mode of vibration. In the paper
by Warburton (1982), a method for optimization of vari-
ous types of excitation forces was presented. The formu-
lae given by him there have often been used to design
TMD parameters, when reduction of dynamical dis-
placements and/or accelerations is required. Reduction of
accelerations is important due to undesired influences,
exerted not only upon the building structure, but also on
people inside. The problems of TMD analysis and de-
signing are still present in scientific papers. For example,
in his excellent paper Krenk (2005) derived a new for-
mula for the TMD optimal damping coefficient. More-
over, in paper (Leung et al. 2008) used the particle swarm
optimization method to optimise the TDM parameters in
the case of non-stationary excited structures. Optimiza-
tion of TMD parameters is also the subject of paper
(Singh et al. 2002).

In the 90’s, studies on the application of multiple
tuned mass dampers (MTMD) for one-degree of freedom
systems were started (Xu, Igusa 1992; Igusa, Xu 1994). It
has been proved that MTMD with distributed natural fre-
quencies are more effective than TMD. The studies of
MTMD were also developed in (Kareem, Klime 1995;
Jangid 1995). Later on, structures subjected to seismic
loads, treated as a multi degree of freedom structures and
with the MTMD on them were analysed in (Chen, Wu

2001). The MTMD were designed in such a way that they
are tuned to several modes of structure vibration. The
number of dampers depends on the number of vibration
modes for which dampers are tuned. The performance of
multiple mass dampers under both wind and seismic exci-
tation is analysed by Kareem and Kline (1995).

The effectiveness and robustness of a particular ver-
sion of MTMD, called “the multiple dual tuned mass
dampers”, is analysed in the paper (Han, Li 2006). The
problem of determination of optimum properties of
MTMD is considered in the papers (Li, Qu 2006; Li
2002). Spatial structures with MTMD are analysed in
(Guo, Chen 2007).

Moreover, the possibilities of using the so-called ac-
tive and semi-active versions of TMD are also considered
in a number of papers (Han, Li 2006; Li, Han 2007; Li,
Zhu 2007; Lin et al. 2005).

The practical application of TMD on an extremely
high telecommunication tower is described in a paper
(Ghorbani-Tanha et al. 2008).

Up to now, reduction of vibration of structures with
MTMD caused by earthquake forces are mainly investi-
gated. The analysis of such type of structures under wind
loads are rare (Kareem, Kline 1995) and the dynamic
behaviour of structures with MTMD are not fully under-
stand. For this reasons, in the present paper, the possibil-
ity to reduce the vibration of a frame structure with the
help of MTMD is analysed. The presented description of
the structure with MTMD exploits a particular form of
the motion equations to simplify the numerical algorithm
of the applied method of solution. The structure is under
the effect of dynamic forces caused by wind pressure.
Wind velocities are treated as random and ergodic proc-
esses. The spectral density functions of wind velocity
fluctuations are assumed as proposed by Davenport.

JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT
http:/www.jcem.vgtu.lt

ISSN 1392-3730 print / ISSN 1822-3605 online 77
DOI: 10.3846/1392-3730.2009.15.77-86



78 R. Lewandowski, J. Grzymistawska. Dynamic analysis of structures with multiple tuned mass dampers

Some calculations were made for a 20-story building and
on this basis the effectiveness of MTMD was estimated.
The effects of detuning of structure parameters are also
presented. In this case, the reduction of accelerations of
structures with MTMD is noticeably greater than the
structure without or with TMD.

2. Designing of multiple tuned mass dampers (MTMD)

The aim of designing MTMD is to tune damper parame-
ters to the modal parameters of selected modes of vibra-
tion. It means that the natural damper frequency (or a
group of dampers) w,; must be close to the natural fre-
quency of a selected vibration mode of structure o
((nd ~ (ns). Moreover, the damping factor of the damper
must be appropriately chosen.

The optimal parameters of such a damper (or group
of dampers) can be determined from the formulae given
in a paper (Warburton 1982). The optimal frequency ratio
is determined from:

coczi_ 2+4+pu |
2 - 2a ()
oy 2(1+p)
where
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Here M, and K is the modal mass of the structure and the

modal stiffness of the s-th mode of vibration, respectively.

If only a single damper is tuned to the s-th mode of
vibration with frequency g, then m, is the mass of the
damper, and %, is the stiffness coefficient of the damper.
However, if a group of dampers are designed to tune to
the frequency o,, then m, and k; denote the mass and
the stiffness coefficients of the selected damper of this
group, respectively.

Assuming that the mass ratio p is known, the dam-
per frequency w, and the damper stiffness coefficient
k,; can be obtained from the above formulae.

If excitation forces acting on a structure, have a ran-
dom character and can be treated as white-noise excita-
tion, the optimal value of non-dimensional damping coef-
ficient is determined from the formula (McNamara 1977,
Warburton 1982):

S TCEE)
PN+ p)2 )
The value of the damping coefficient ¢, can be cal-
culated from the relation
Cad =2V op gy . )

Using the above formulae, the parameters of
MTMD can be determined.

3

3. Equation of motion

The building structure is treated as a discrete, linear elas-
tic system. The frame in Fig. 1 is the model of the build-
ing structure. The mass of it is concentrated at the level of
building floors and the beams of the frame are infinitely
stiff. Horizontal displacements of floors are the dynamic

degrees of freedom. The fluctuations of wind velocity
forces are a load to the frame, and these forces are ap-
plied at the building floor levels (Fig. 1).
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Fig. 1. The model of structure with MTMD

A set of mass dampers are mounted on the structure.
A model configuration of dampers is also shown in Fig. 1,
while in Fig. 2 the scheme of a typical mass damper is
presented. The concept of a group of dampers is introduced
in this paper. Each group of dampers consists of a few
dampers. Each damper in a particular group of dampers
can be installed on different floors and may have different
mass, stiffness and damping parameters. However, all
dampers in the group are designed in such a way that they
are tuned to a particular mode of vibration. A special nota-
tion described below and concerning dampers is introdu-
ced. The symbols x;(¢), m; , k; and c¢; denote, respec-
tively, the damper displacement, damper mass, stiffness
and damping factor of the damper which belongs to the j-th
group and is located on the i-th floor (Fig. 2).

The equation of motion of the system shown in
Fig. 1 and briefly described above can be written in the
following form:

Mij(r)+Ca(r)+Ka() = P(), ®)
where 1\7[, 6, K are the global matrices of mass, damp-
ing and stiffness of the considered system (i.e. the struc-
ture and MTMD), respectively, q(¢) = col(y(?), x(¢)) is
the vector of displacements of the system, y(f) — the

vector of horizontal displacements of frame, and x(¢) —
the vector of horizontal displacements of dampers. More-



Journal of Civil Engineering and Management, 2009, 15(1): 77-86

over, lN’(t) =col(P(¢), 0) and P(¢) is the vector of exci-
tation forces acting upon the structure.

x(t)

Fig. 2. Diagram of damper

The theory presented below could be applied to the
non-proportionally damped structures. However, in the
paper we assume that the structure is proportionally dam-
ped, i.e. the damping matrix of the structure is in the fol-
lowing form: C=aM+xK .

The M matrix of the system is in the following
form (Fig. 1):

M=[M 0}={M11 0 } (6a)
0 m 0 M,

M = diag[M .M, ,M5,...M ],

where

m= a’iag[m1 1M, Mg, My, mzz,...

...mZK,m31,m32,...m3K,...mN1,mNz,...mNK].

In the above formula, M is the mass matrix of the
structure and m — the mass matrix of the dampers. The
symbol m;; denotes the mass damper of the j -th group
located on the i -th floor.

The stiffness matrix K of the considered system
can also be shown in the block form written below:

k:{Kt;(l k*}z{Kn K12:|’ (6b)
k k Ky Ky
where K is the stiffness matrix of the structure
K, +K, -K, 0 0
k| K2 KitKy -Ky o0
0 —-K, Ky
0 0 -k, K,

The block matrices k; and k" are in the following form:

kl =diag[k11 +k12 +...+k1K,k21 +k22 +...+k2K,
k31 +k32 +...+k3K,...,kN1 +kN2 +....+kNK]

—ky —kyp o —kx 0 0 0 0
0 0 0 0 —ky —ky .. kyg

K'=| 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
—ky —ksp k3 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 —ky —kyo — kg
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As mentioned above, the symbol k;; denotes the stiffness

coefficient of a damper of the j-th group which is located
on the i-th floor (Fig. 2). ~

The k block of the matrix K is the diagonal matrix
and in the following form:

k= diag[kl19k129"'9k1K7k219k22,'"
"'k2K9k319k329"'k3K9"'
"'kNlﬂszﬂ’”kNK]’

The damping matrix of the systemNE is in a form
similar to that of the stiffness matrix K. The specific
blocks of this matrix are defined below:

C- C+c¢ ¢ _ C, Cp (60)
C*T c C, Cyp

¢, +C, -G, 0 0

c-| —C C,+Cy; -Cy 0
0 -G, -Cy
0 0 -Cy Cy

¢ = diag[cll +C12 +...+C1K,C21 +C22 +...+C2K,

C31 +C32 +"'+C3K geees CN] +CN2 +....

et e ]
-¢, —¢5 . —cx O 0 0 0
0 0 0 0 —cy —cyp oo COpp
=0 0 0 0 0 0 0 0
0 0o 0 o0 0 0 0 0
0 0o 0 o0 0 0 0 0
0 0o 0 o0 o0 O 0 o0 0
0 0o 0 o0 o0 O 0o 0 0
—c¢3 —C3 .. —c3x 0 0 0 0 0
0 0 0 0 0 0o o0 0
0 0 0 0 0 —cy —cp2 —Cg

where C_’, =a M, +x K, and C;, =x K.

In the above formulae the symbol c¢; denotes the
damping coefficient of the damper of the j-th group
which is located on the i-th floor (Fig. 2). The block ¢
of the C matrix is the diagonal matrix and has the fol-
lowing form:

¢ =diag[cyy,Cpss Clg > C15Coa e
O 5C315C3) 5:0.C3 5een

e CN1sCN2se-CNE ]

Taking into account that the matrices of mass, stiff-
ness and damping are in the form (6), the equation of
motion (5) can be rewritten in the following block matrix
form:

M 1¥(0) +C; 1y (0) + Cpox(1) + K1y (0)

+Kox(0) =P(), (72)

M, X(1) + Co 1y (1) + Copx(1) +

(7b)
Koy (@) + Kyox(#) = 0.
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4. Modelling of wind loads

Wind speed acting on a structure consists of along-wind
and cross-wind components, and it varies randomly in
time and space (Simiu, Scanlan 1996; Dyrbye, Hansen
1999; Holmes 1997). A complete wind velocity field
should be modelled as a two-dimensional, multivariate
stochastic process. Usually, the wind speed is treated as a
stationary Gaussian stochastic process (Simiu, Scanlan
1996; Dyrbye, Hansen 1999). The wind speed U(z,?) is
assumed to be the sum of a steady part U(z) and a super-
imposed random fluctuation of wind velocities u(z,?) , i.e.

U(z,t) =U(z)+u(z,t) .

The random fluctuation of wind velocity u(z,f) is a
zero-mean stationary Gaussian process with a known
correlation function.

The along wind speed described above is a stochas-
tic process that is continuous in space and time. When
high buildings are considered it is necessary to introduce
some simplifications, to replace the continuous space and
time random function u(z,f) with a set of functions
u;(t) which depend on time only. The building is divided
into N section along its height. It is assumed that the wind
speed does not vary along the section. The typical mid-
point of the section is chosen at a structure storey level. It
means that wind velocity fluctuations u(z,7) can be re-
placed by a set of zero-mean stationary processes u;(f),
where i=1, 2, ..., N . Thus, the wind force in the midpoint
of an arbitrarily chosen structure section can be described
in the following way:

Fi(t) = C4ApU, X 2u; (1) , (8)

where C, is the aerodynamic drag coefficient, 4 — the
wind-exposed area and the p symbol denotes the air
density.

The admittance function X describes the influence
of the building on wind pressure forces and it is always
that X <1. According to Holmes (1997), the admittance
function is connected with a correlation coefficient @,
which is used to determine the matrix elements of the
spectral density function. It is troublesome to determine
the admittance function. Moreover, this value is unknown
in many cases. Therefore, quite often, and also in this
paper, it is assumed that X =1.

For multi-degree-of-freedom systems the correlation
matrix of the fluctuations of wind velocities is formulated
as:

R, (1) = E[uu’], ©9)

where u = col{u (1), uy (1),..., 1, (1),....,uy ()} is the vector
of the fluctuations of wind velocity and the symbol E[-]
denotes the expected value of [].

Using the Fourier transform, the following expres-
sion of the spectral density function of wind velocity
fluctuations is obtained:

1 +o0 "
8.0 =5~ [R, (e e, (10)

—00

In this paper, the spectral density function proposed
by Davenport (Simiu, Scanlan 1996; Dyrbye, Hansen
1999; Holmes 1997) is used. The elements of the matrix
S, (L) are calculated from the formula:

Sik =S ()Sie = 8. (28,00 2) e (1)

where S,(A,z;) and S,(A,z;) are the elements taken
from the main diagonal of the S, (A) matrix. They are
calculated with the help of the spectral density function
for the particular stories.

The diagonal elements of the matrix spectral density
function of wind velocity fluctuations S,(A,z;) are cal-
culated using the spectral density function as proposed by
Davenport (Simiu, Scanlan 1996; Dtrbye, Hansen 1999;
Holmes 1997)

4u*2f2(n)
S L ) 12
LTI (2
where
1200n
f(n)= m, (13)

and »n denotes frequency in Hz.
The mean wind velocity acting at the level of the
i-th floor can be calculated from formula:

U,(z,) = 2.5u, h{ij , (14)
20

where

us = U(10)k. (15)
In relationships (14) and (15), U(10) is the mean wind
velocity at the altitude of 10 m, & — the coefficient de-
pended on type of area, z, — the roughness length and
the symbol z, denotes the altitude of the i-th floor over
ground.

The @ symbol denotes the correlation coefficient,
which takes into consideration spatial correlations of the
fluctuations of wind velocity. According to monographs
(Li, Zhu 2007; Dyrbye, Hansen 1999), this coefficient
can be determined from the formula:

20C_ |z — 24
=————", (16)
Uz)+U(zy)
where A is the force frequency, whereas C, is the em-

pirical constant. The symbol U(z;) is the mean wind
velocity at the level of the /-th story. If it is assumed that
the fluctuations of wind velocity are totally correlated,
then e ® =1 while, if the correlation is disregarded, the
matrix S, (A) is the diagonal one.

The correlation matrix of the forces excited by the
wind pressure can be written in the following form:

R,(1)=E[PP'], a7

where P = col{P(t),P;(t),..., P(t),....., Py (t)} is the vec-
tor of wind forces acting upon the structure.

Using relationships (8) and (9), the elements Ry, »
of the R, (1) matrix can be written as
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Rpp, (@ =(Cydp X)?UU Ry (@ . (18)

The spectral density matrix of excitation forces
S, (%) and the correlation matrix R,(t) are interre-
lated in such a way that
S ()= LTR (t)e ™ dr
p om P ’
which means that the element Spp of the S (%) ma-
trix can be written in the following f/orm:

Spp,(0=(Cydp X)’UUS,, @. (19

This is the relationship between the spectral density
matrix of wind loads acting upon the structure and the
spectral density matrix of the fluctuations of wind velocity.

5. Solution to equation of motion

A solution to the equation of motion (5) that fulfills the
precondition: =0, ¢(r)=0, q(r)=0, can be written in
the following form:

t
a0 =[h(t -0 P0) dr,
0
where the symbol h(f —t) denotes the matrix of impulse
transfer function and 13(1:) =col(P(1), 0) is the vector of
excitation forces appearing in Eq (5).

Because random loads acting upon the structure are
stationary processes, then also dynamic responses of the
system are a stationary process. Thus, the correlation
matrix of the structure responses can be written as:

(20)

R, (11.1) = E[q(1).q" ()] 21
By substituting (20) into (21), we obtain:
R, (t1.1,)=
1% 5w T
| [ =) E[P(t))P" (12)]h" (1 —75)dnydr; . (22)
00
Taking into account that
+00 .
R;()= [S;(M) e dh, (23)
E[P(),P(t-D)]= [S5 ()™ dr. (24)
Eq (22) can be rewritten in the form:
+o0_ ~ )
R, (1)= JHQO)S;WH W™, (25

where H is the matrix conjugate to the H matrix de-
fined below

H(M) = (12 ~2*M + ixéfl : (26)
Moreover,
PN Sp(x) 0
SPO\)—{ 0 0}, (27)
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where the Sp(A) is a matrix of which the elements are
given by formula (19).

After inserting 1=0 into Eq (25) the correlation
matrix of displacements R, (O) is obtained and, on this
basis, the root mean square of displacements can be de-
termined from

R, (0)= fOSq(k)dk, (28)

where

Syy S
Sq(M) |:Sxy N

The integral appearing in Eq (29) can be calculated
numerically.

The calculation of the S, (A) matrix is substantially
simplified if we take into account the structure of the
S5(%) and H(A) matrices.

After writing the H(A) matrix in the following
block form:

1 —HO)S;(WH' (). (29)

H, (M) Hy (M)
and introducing Eq (27) and (30) into (29) we obtain:
S,y () =H; (VS ,(WH[; (M), G1)
So(M) =Hy (VS ,(WHL (1), (32)
S,:(0) = Hy (WS ,(WHL (M), (33)
S5 (M) =Hy (LS ,(WH]; (V). (34)

It is easy to observe that the root mean square of
structure displacements and the root mean square of
dampers displacements can be calculated from the fol-
lowing relationships:

R, (0)= [S,,(A)an , (35)

R,(0)= Sy () .

—00

(36)

respectively. It means that, in fact, only the S, (A) and
S (L) matrices must be calculated.

Now, the matrices H;;(A) and H, (), which are
blocks of matrix I?I()\), must be determined. This can be
done by assuming the excitation and the solution to
Eq (7) in the form:

P(1) = Lexp(iLt) (37)
y() =H (M) exp(iM) , (38)
X(£) = Hy (V) exp(iht) . (39)

where I denotes the identity matrix.
After introducing Eq (37-39) into Eq (7) we obtain:

(Kj; —A*M; +Cy ) Hy | +

(Kj2 +iACjp) Hyy =1, (40)
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20
(Kyy ~A*Mpy +ihCy) Hy + 19 -
(K, +iACy)H; =0 (41 :g
From Eq (41) it follows that 16 -
I 5 4
H, =G(\) (Ky; +iACy)) Hyj, (42) i
where the matrix 13
5 1 o 12
G=—(Kp-A"Mypy+ikCyp) , (43) é 1
is easy to calculate because the matrices K,,, M,, and g 12 i
C,, are diagonal. 8 |
After introducing Eq (42) into (40) we obtain ; T
H11=I(K11—}~2M11+i7vc11)+ (44) 5 -
4 -
(Kiz +C12)GO) (Ko +Cy] 3
2 -
6. Results of exemplary calculations ; il

In this section, the results of dynamic analysis of the ex-

. . o 20
emplary structure with MTMD are discussed. Addition- 5
ally, for comparison, results for the structure with only 18
one tuned mass damper (TMD), which is tuned to the 17
first vibration mode of structure will be presented. The 16
above-mentioned TMD is located on the top floor of the 15 -
structure. 14
The building parameters were calculated on the ba- 13
sis of paper (Spencer et al.) and they are given in Table 1. é 124
11
5
Table 1. Main parameters of structure g 1:
Story Mass [kg] Stiffness [N/m] 8 1
7 -
1 2.83x10° 3.31x10® 6
2-4 2.76x10° 1.06x10° B
4 -
4-7 2.76x10° 6.79x10® .
8-10 2.76x10° 6.79x10° 21
1 -
11-13 2.76x10° 5.84x10° 0
14-16 2.76x10° 3.86x10° -
17-19 2.76x10° 3.47x10° 19
20 2.92+10° 2.29+10° -
. . 16 |
Damper parameters were designed using Formulae 15
(1-4) and assuming that these parameters tune dampers to 14
the structure’s first three modes of vibration. The shapes of 13
the first, second and third mode of vibration are shown in = 12
Fig. 3. In this case, it has been assumed that 3 groups of 7 M
dampers are installed on the structure. Each group of S 10-
dampers consists of one damper only. All dampers are £ o
) 2 5.
located on the top floor. The damper parameters and their
locations on the structures are given in Table 2. The total Ve
mass of MTMD is nearly equal (by 4.4% smaller) to the :
mass of TMD. 4
Moreover, the values of non-dimensional damping 5 |
coefficients of the first and second vibration modes are 2
equal to 1% of critical damping. 14
0

Fig. 3. First 3 vibration modes of structure
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The following values of parameters appearing in
Relationships  (25-28) are  chosen: zy, =03,
p=1226 kg/m>, U10)=30 m/s, k=12-1073.

Table 2. Parameters of dampers

Number of mode/ placement | Mass [kg] | Stiffness [N/m]
TMD
1/20 | 36214 | 472468
MTMD
1/20 18107 238870
2/20 7956 722685
3/20 8550 2182386

Because the dynamic response of the structure is a
stationary and ergodic random process, the root mean
square of freely chosen displacement ¢, and acceleration
q, could be calculated from the following formulae:

+00 +o0
o, = [ SiWadv. of = [WSTO)dL,  (43)

—o0
where S is the diagonal element of the S, (A) matrix.

Using the above formulae, an analysis of the struc-
ture without dampers, with installed conventional TMD
and with MTMD was made. The results of the analysis
are shown in Figs 4 and 5. In Fig. 4 the root mean square
of structure displacements is shown. It has been observed
that displacements reduction with MTMD installed is a
little smaller than in the case of TMD installed on the
structure. Compared with the structure without dampers,
the maximum reduction of root mean square of structure
displacements (top floor) is 30% for TMD and 25% for
MTMD, respectively.

20
19
18
17
16
15
14 -

number of story

srucire without dampers |

siructure with TMD!

= —  structure with MTMD

0 T T T

00E+0 S0E-2 1.0E1 15E1 20E41
root mean squares of displacements [m]

Fig. 4. Root mean squares of displacements
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As it was mentioned previously, the results concern-
ing accelerations were elaborated (Fig. 5). It has been
observed that, when using MTMD acceleration, reduction
is bigger only below the 11th floor than when using
TMD. Above the 11th floor, the observed reduction of
accelerations is smaller, compared with TMD. The
maximum root mean squares of acceleration (top floor)
are almost equal. The total sum of root mean square of
acceleration is 38% for MTMD and 40% for TMD, com-
pared with the structure without dampers.

The sensitivity of both TMD and MTDM with re-
spect to change of structure parameters is also investi-
gated. Calculations are made for a structure for which the
values of all masses and all stiffness coefficients change
by £10%, but the parameters of TMD and MTMD are
kept constant. The above-mentioned changes of structure
parameters reflect some possible uncertainties connected,
for example, with determining the properties of structural
material and/or with errors which are introduced when
the theoretical model of structure is chosen. All these
irregularities lead to the so-called detuning of dampers.

20
19
18 -
17 /i
16 /
15 i
14 - ]
3 !
12 '
11 4
10 |
g

number of story

snuchure wihout dampers

sincture with TMD

sincture with MTMD

0 T T T

00E+0 50E-1 1.0EH0 15EH) 20E+C
root mean squares of accelerations [m/s?]

Fig. 5. Root mean squares of accelerations

Figs 6-8 illustrate the effects of such detuning of
dampers for structures of which the stiffness increases by
10% . In Fig. 6, the resonance curves are presented. The
thin solid line shows results for structures without damp-
ers, the dashed line shows the response curve for the
structure with TMD, while the thick line presents results
for structures with MTMD. In a similar way, in Figs 7, 8,
the root mean squares of displacements and accelerations
are presented, respectively. It is obvious that now MTMD
reduce both displacements and accelerations to a greater
extent than TMD. Similar trends are observed when the
structure stiffness decreases and when the mass of struc-
tures increases or decreases. The quantitative information
concerning the effectiveness of TMD and MTMD con-
cerning the effects of detuning of structure parameters is
given in Table 3.
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Table 3. Reduction effects for structures with changed
parameters

Reduction of top displacement — mass changes

Original structure | +10% Mg | —10% Mg

TMD 18 % 20% 24%
MTMD 16 % 26% 27%
Reduction of top displacement — stiffness changes
Original structure | +10% Kg -10% Kg
TMD 18% 24% 20%
MTMD 16% 27% 26%
Reduction of top acceleration — mass changes
Original structure | +10% Mg | —10% Mg
TMD 28% 26% 37%
MTMD 23% 32% 45%

Reduction of top acceleration — stiftness changes

Original structure | +10%Kg | —10% Kg

TMD 28% 37% 33%
MTMD 23% 43% 42%
008
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——— sncirewih TMD
007 4 |[—— structrewthMTMD
006

o
&

amplitude of the top floor [m]
o o
8 g
1 1
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frequency [rad/s]

Fig. 6. The response curve of top of structure — structure
with changed stiffness

7. Concluding remarks

The analysis of vibrations of a building structure with
MTMD installed, which are tuned to selected modes of
vibration, has been studied in this paper. The root mean
squares of displacement and accelerations of a structure
with MTMD were determined. These calculations were
compared with the root mean squares of displacement
and acceleration of the same structure with conventional

TMD installed.
The following conclusions could be formulated

from the results of calculations:
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Fig. 7. Root mean squares of displacements — structures
with changed stiffness
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Fig. 8. Root mean squares of accelerations — structure
with changed stiffness

In the case where parameters of structures are not
exactly known, MTMD reduce better both dynamics
displacements and accelerations of structures than
do TMD. This is the main advantage of MTMD.

e MTMD reduce both displacements and accelera-

tions of structures to a similar extent.

e MTMD reduce accelerations on lower floors of

structures to a greater extent, compared with TMD.
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These are the first results of calculation and, there-
fore, the above conclusions cannot be treated as defini-
tive. Generally speaking, the effectiveness of MTMD and
TMD are similar. However, MTMD are smaller than
conventional TMD and they occupy a much smaller spa-
ce for installation.

Moreover, the acceleration reduction of structures
with MTMD is noticeably greater in comparison with
structures without or with TMD and when the values of
structure parameters are not exactly known. The problem
of detuning the dampers parameters needs further investi-
gations. In particular, parameters of structures must be
regarded as the random quantities.

Acknowledgments

The authors acknowledge the financial support received
from the Poznan University of Technology (Grant
No. BW. 11-008/08) is connection with this work.

References

Chen, G.; Wu, J. 2001. Optimal placement of multiple tune
mass dampers for seismic structures, Journal of Structural
Engineering 127: 1054—-1062.

Chmielewski, T. 1982. Metody probabilistyczne w dynamice
konstrukcji. Wyd. Wyzszej Szkoty Inzynierskiej w Opolu.

Dyrbye, C.; Hansen, S. O. 1999. Wind Loads on Structures. 31
edition. John Wiley and Sons, Inc.

Ghorbani-Tanha, A. K.; Noorzad, A.; Rahimian, M. 2008. Miti-
gation of wind-induced motion of Milad Tower by tuned
mass damper, The Structural Design of Tall and Special
Buildings (in press).

Guo, Y. Q.; Chen, W. Q. 2007. Dynamic analysis of space
structures with multiple tuned mass dampers, Engineering
Structures 29: 3390-3403.

Han, B. K.; Li, C. X. 2006. Evaluation of multiple dual tuned
mass dampers for structures under harmonic ground exci-
tation, International Journal of Structural Stability and
Dynamics 6: 59-75.

Han, B.; Li, C. 2006. Seismic response of controlled structures
with active multiple tuned mass dampers, Earthquake En-
gineering and Engineering Vibration 5: 205-213.

Holmes, J. D. 1997. Equivalent time averaging in wind engi-
neering, Journal of Wind Engineering and Industrial
Aerodynamics 72: 411-419.

Igusa, T.; Xu, K. 1994. Vibration control using multiple tuned
mass damper, Journal of Sound and Vibration 175: 491—
503.

Jangid, R. S. 1995. Dynamic characteristic of structures with
multiple tuned mass dampers, Structural Engineering Me-
chanics 3: 497-509.

85

Kareem, A.; Kline, S. 1995. Performance of multiple tuned
mass dampers under random loading, Journal of Struc-
tural Engineering 121: 348-361.

Krenk, K. 2005. Frequency analysis of the tuned mass dampers,
Journal of Applied Mechanics, Transactions of ASME 72:
936-942.

Leung, A. Y. T.; Zhang, H.; Cheng, C. C.; Lee, Y. Y. 2008.
Particle swarm optimization of TMD by non-stationary
base excitation during earthquake, Earthquake Engineer-
ing and Structural Dynamics (in press).

Li, C.; Han, B. 2007. Control strategy of the lever-type active
multiple mass dampers for structures, Wind and Struc-
tures 10:301-314.

Li, C.; Zhu, B. 2007. Investigation of response of systems with
active multiple tuned mass dampers, Structural Control
and Health Monitoring 14: 1138-1154

Lin, P. Y.; Chung, L. L.; Loh, Ch. 2005. Semiactive control of
building structures with semiactive tuned mass dampers,
Computer-Aided Civil and Infrastructure Engineering 20:
35-51.

Li, C.; Qu, W. 2006. Optimum properties of multiple tuned
mass dampers for reduction of translational and torsional
response of structures subject to ground acceleration, En-
gineering Structures 28: 472—494.

Li, C. 2002. Optimum multiple tuned mass dampers for struc-
tures under the ground acceleration based on DDMF and
ADMF, Earthquake Engineering and Structural Dynam-
ics 31: 897-919.

McNamara, R. J. 1977. Tuned mass dampers for buildings,
Journal of the Structural Engineering. Division Proc.,
ASCE 105: 1785-1798.

Singh, M. P.; Singh, S.; Moreschi, L. M. 2002. Tuned mass
dampers for response control of torsional buildings,
Earthquake Engineering and Structural Dynamics 31:
749-769.

Spencer, B. F. Jr.; Christenson, R. E.; Dyke, S. J. 1999. Next
Generation Benchmark Problem for Seismically Excited
Buildings. Available from Internet: <http:/cee.uiuc.edu/
sstl/papers/NGbench.pdf>.

Simiu, E.; Scanlan, R. 1996. Wind effects on structures, Fun-
damentals and applications to design. John Wiley and
Sons, Inc.

Warburton, G. B. 1982. Optimum absorber parameters for vari-
ous combinations of response and excitation parameters,
Earthquake Engineering and Structural Dynamics 10:
381-401.

Xu, Y. L.; Kwok, K. C. S.; Samali, B. 1992. Control of wind-
induced tall building vibration by tuned mass dampers,
Journal of Wind Engineering and Industrial Aerodynam-
ics 22: 833-854.

Xu, K.; Igusa, T. 1992. Dynamic characteristic of multiple
substructures with closely-spaced frequencies, Earth-

quake Engineering and Structural Dynamics 21: 1059—
1070.



86

R. Lewandowski, J. Grzymistawska. Dynamic analysis of structures with multiple tuned mass dampers

KONSTRUKCIJU SU KELIAIS MASES SLOPINTUVAIS DINAMINE ANALIZE
R. Lewandowski, J. Grzymistawska
Santrauka

Nagrin¢jama galimybé sumazinti stipraus véjo veikiamy réminiy pastaty konstrukcijy svyravimus, taikant masés
slopintuvy sistema. Vibracijas sukeliancios jégos, priklausancios nuo véjo greicio svyravimy, laikomos atsitik-
tiniais dydziais. Véjo greicio svyravimo spektro tankio funkcijos nagrinéjamos Davenport metodu. Atlikus atsitik-
tiniy vibracijy regresing analizg, nustatytos poslinkiy ir pagrei¢iy vidutinés kvadratinés paklaidos. Remiantis
skaiCiavimo rezultatais, padarytos mases slopintuvy efektyvumo isvados.

ReikS§miniai ZodZiai: svyravimy mazinimas, atsitiktiniai svyravimai, masés slopintuvai.
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