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Abstract. This paper presents the calculation of the cross-section of an RC rod element strength under the quasistatic low-
cyclic loadings, considering the non-linear stress-strain relations of materials without cracks. Some mathematical models
of the limit and shakedown analysis proposed by the authors involve the technique of calculating the cross-section under
one-path loadings, considering the non-uniqueness of problem solutions. The plasticity conditions for the materials of the
cross-section are formulated either in stress or in strain space. Simple solutions of two types, direct and inverse, corre-
sponding to the limit states for alternating plasticity or progressive failure, are considered for the non-linear optimization

problems obtained.
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1. Introduction

Load-carrying structures of buildings and constructions
are exposed to actions (static, thermal, kinematical etc.)
which may vary in random manner during the period of
their lifetime. As a result, there are repeated alternating
cross-sectional forces, which change arbitrarily within the
specified area.

At present, only separate design combinations of
loads and actions are usually taken into account in the
analysis and design procedures. In this case, the cross-
section strength is considered to be guaranteed if all pos-
sible forces are situated within or on the boundary of the
domain of the section carrying capacity. However, com-
binations of loads causing the residual stress and strain
accumulation, that are directly left out of the design ac-
count, occur iteratively during the lifetime of the con-
struction.

The strength of the RC rod element cross-sections,
maintained within a certain history of variations of re-
peated loads, was investigated in a number of works
(CEB 1996; TTaBnmunoB 1999; Korentz 2005). It was as-
certained that the strength criteria of the element essen-
tially depend on the repeated force interaction.

Another way to analyze a whole class of loads in-
fluencing a construction at once is the method, described
in the theory of shakedown. In that case, the strength
analysis is guaranteed and does not depend on the possi-
ble sequence of forces that are not very perilous. Strength
conditions in generalized forces for the cross-sections
under different load cycles were stated in investigations
of Guralnick and Yala (1998), Alyavdin and Simbirkin
(1999), Rizzo et al. (2000), Aliawdin (Axseaua 2005);

for the similar structures see the approach of Gawecki
and Kruger (1995).

This paper presents the strength conditions for the
cross-section of the RC elements obtained on the basis of
the shakedown theory. Low-cyclic repeated loads when
material strength parameters insignificantly vary during
the maintenance period are discussed. It is assumed that
concrete works anywhere without cracks.

The mathematical model of the limit analysis under
repeated loads includes a technique for calculating the
cross-section strength under one-path loadings. At that, the
known deformation model was complemented and im-
proved. Calculations are made in accordance with the rigid
centroid of the cross-section, the technique of obtaining all
solutions of the convex non-smooth problem is proposed,
regions with more than one solution are analyzed.

2. The mathematical model of the limit analysis of
a cross-section under low-cyclic loadings

2.1. The plasticity conditions formulated in the stress
space

In this sub-chapter the plasticity conditions of a rein-
forced concrete cross-section are formulated in stress
space. The mathematical model suggested here is a modi-
fied variant of the existing one (Alyavdin, Simbirkin
1999).

Let’s consider the cross-section of a RC rod element
of an arbitrary form with given physical and geometric
characteristics (Fig. 1). Internal forces are imposed to-
wards the principal central axises of the section XOY (see
Chapter 3).
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Fig. 1. RC rod cross-section

Reinforced steel is presumed to be a hardening elas-
tic-plastic material. The behaviour of the compressed and
tensioned concrete is also non-linear and the elastic-
plastic material is harderning or softening. Materials of
the element are assumed to be cyclically stable.

Let the cross-section of the reinforced concrete ele-
ment (Fig. 1) be subjected to the vector of variable re-
peated forces S =(N My M,,LT, Vx,Vy) which change
arbitrarily within the given domain Qg . This domain can
be simulated by the polyhedron

ng(SeR(’ S=YoS, Ya, =1, 0 20, leLj, (1)
leL leL

where §; is the vector of design combinations of the
cross-section forces due to the /-th combination of the
external loadings (static, thermal and kinematic); a; is a
component of the barycentric coordinate vector, /€ L ; L
is a set of loadings or force combinations. Note that the
null-vector or origin of force space $=0¢€ R® belongs
to the domain Qg, 0 c Qg .

The stresses 6 = c:,r:x,r:y) appear in surfaces d4
of the concrete area A, with coordinates x =(x,y); the
stresses Gy, Oy, Ty, are neglected; normal stresses . in the
reinforcing steel of the area A, are only considered. Sub-
script “z” for stresses o is omitted and subscripts “c” and
“s” for the concrete and steel respectively are used below,
if necessary.

To check the plasticity of the concrete in compres-
sion and the strength of the concrete in tension, a general
Balandin-Geniev criterion (Alyavdin, Simbirkin 1999;
Anseaun 2005) in terms of principal stresses for the
three-dimensional stress state is adopted. It can be written
as follows:

012+G%+G§—(01'02 +0, 'G3+62'G3+G3'Gl)+
+( c _fct)'(cl +03 +G3)—fc ot £0,Vx € A,

where f. and f_, are the ultimate compressive and tensi-

(@)

le stresses in the concrete respectively. The other possible

plasticity theory for concrete is presented, for instance, in
books of Zyczkowski (1981), Yu Mao-Hong (2005).

For a state of plane stress (Fig. 1), the quadratic ine-
quality (2) may be substituted by linear inequalities for
concrete in compression and for concrete in tension re-
spectively:

-0+ R <0, Vxe A, 3
3

G-R/ <0, Vxed.,

where Rf and R] are the radicals of functions located on
the left side of (3), which depend on shear stresses 1.y, ).
They are given by

Rf =(fo = fo - Dy)/2,
Rl =(fu - 1o+ Dy)/2, &)
Dy z\/(fct +fc)2 —12'(‘5; +T_% )

Their absolute values are the equivalent strengths of con-
crete; A5 and A. are the concrete areas in compression
and tension respectively, 4. = 45U 4.

The total strains in concrete are presented as a sum
of elastic €° and residual & components (the case of
cracks in the RC element is not taken into account here):

e=¢°(S)+e", Vxed,. (5)

The dependence between strains and normal stresses
in concrete is known

e=fs (G), (©)
and reversible (it’s not of necessity in sub-chapter 2.2 and
SO on)

o=fole) fo=/fo %)

Furthermore, the residual shear stresses and strains
in concrete are neglected, i.e. 12, =17, =0.

The total strains in reinforcing steel are also pre-
sented as a sum of elastic €° and residual " components,
similarly to Eq (5), for x € 4.

The stress-strain relationship for steel in elastic
stage is given by Hooke’s law o¢=E; ¢, and condi-
tions of ideal plasticity are given by

—fsy 05 < [y X€ A, ®)
where f, is the steel stress at yield.

General case of non-ideal and elastic-plastic re-
sponse of materials (with strain hardening or softening)
can be considered using approach (Amssaua 2005).

It is obvious that both inequalities (8) may be active
at the same point x of the steel area of the cross-section.
Then, after transformations, we obtain the inequality

oy —0y —2- fy, <0, )

which confines the cross-section ultimate capacity by the
condition of the alternating steel yielding. Subscript “+”
and “—” for the ultimate tension and ultimate compression
respectively are used below, if necessary.

The plasticity conditions (3) and (9) for all /-th
combinations may be written in the following forms:
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mm( (8)) +R[) <0, xed,
(c R,)<0 xe A,
(10)
mln( S[ +fsy) xXe A,
mln(cs(S[)—fsy)s 0, xe AL
leL

Besides, the following equilibrium equations must
be satisfied:

[of (8,’ )dA =0,
A4

i o; (e,* )-(ynz—y,-)dA=0, (11)

14 o
A

where (x,;, y,;) are the parameters of the neutral axis (see
sub-chapter 2.2).

It is assumed that the strength of the reinforced con-
crete element cross-section is ensured if there are fields of
residual strains €/(x), xe 4,, and €5(x), xe 4, pro-
vided that inequalities (10) and equalities (11) hold. This
assertion is equivalent per se to the shakedown theorem
for the above-mentioned problem.

The mathematical problem for the ultimate carrying
capacity of the element cross-section can be formulated,
when the vectors §; of the section force combinations
depend only on one parameter of the load Fy:

Sl:FO'Svla lel.

—x;)dA=0,

(12)

Thus, the following infinite-dimensional non-linear
programming problem of the cross-section limit analysis
is derived: the parameter of the load should be maxi-
mized,

Fy — max

(13)
while constraints (10—-12) dependent on F, are satisfied.

The variables of this problem are the fields of the
optimal control variables €.(x), xe 4., €i(x), xe 4,
and parameter Fj.

2.2. The plasticity conditions formulated
in the strain space

In this sub-chapter the strength conditions of the rein-
forced concrete cross-section are formulated in the strain
space, as it was proposed by Bykovcev and Ivlev in 1970
(BuixoBuen, MBnes 1998), and then analysed by Zycz-
kowski (1981). The vector of variable repeated forces S
contains only 3 components here, §=(N,M,,M, Je R
the criteria of the optimization problem are stlll a b1t
complicated.

The vector § is arbitrarily changed within the given
domain Qg (1) as before, when § € R>.

The limit analysis problem of the RC cross-section
is the maximization of the linear function of vectors §; of
all /-th loadings
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Y. T§,$; — max, (14)
leL
under the conditions:
f1(01)=s>
G =f2(8i)> g =€ +&,
€ =8 +0y- yO_yl)"'(Py'(xO_xi)’ (15)
¢;les N, K ;)<0,

220, @ Xy =0, & =ap-1,,
S eQq(s),leL),

where T, 5[[ are the vectors of the weighting coefficients in
accordance with the vectors of /-th loadings Sj;

g;, €, € are total, elastic and residual strains for
materials; i€ (c,s) are subscripts; ¢ and s refer to the
concrete and reinforced steel respectively;

fi(c;) =S8 in (15), are the equilibrium conditions,
in vector form, of the cross-section under one-path load
(for more details see chapter 3);

G; = f>(g;) are the material stress-strain relation-
ships, initial or modified under quasi-static low-cyclic
loadings;

A;, K. are Lagrangian (plastic) multipliers and the
vector of yield strains for the RC element materials; this
vector contains the values of the ultimate compressive
and tensile strains Ky; = (g7,,€5,);

©;, ¢, are the functions of yielding and plastic po-
tentials for concrete and steel.

Eqs (14)—(15) present an alternative to the limit
analysis (10)—(13) infinite-dimensional problem of
nonlinear mathematical programming. The variables of
this problem are the fields of optimal control variables
el(x) xed,, ¢€i(x). xed,, and the vectors

s_.,(px,(py),, S;, lel.

Mathematical models of the limit state problems
(14)~(15), so as (10)—~(13), could be also formulated using
the energy principles. For example, the first model (14)—
(15) will be written as follows: find the minimum of RC
cross-section energy

€
WE=[dd Y |[fr(e)08,-¢" S »>min, (15a)
A i€(e,s) 0

under the conditions (14), (15),.9, where ¢ is the vector of
strains, q = (s:,(px,(py)e R,

The problem (14)—(15) for the repeated alternating
loading, which depends on one parameter F; (see the

sub-chapter 2.1), allows for simple solutions of 2 types,
direct and inverse, that correspond to the condition of
alternating plasticity or progressive failure of the rod
cross-section. These two mentioned cases allow for an
analytical solution. In the first case, the plastic failure
occurs not simultaneously (isochronously) in the whole
section or in one of its parts, changing it into a plastic
hinge. In the second case, the cross-section remains in-
convertible and collapsing starts in the finite set of points
or regions. The alternating plasticity occurs in each of
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these points or regions, when more than one external
action influences it.

An inverse method is applied for the progressive
section failure. The full cross-section area A4 is divided
into a tensioned area A° and compressed area A" by the
neutral axis with parameters (x,, y,, o); o is the axis
angle of slope. For these areas the only actual inequality
(15), is true:

i
cu» ( l 6)

- e, ot
&gy SEgt+E; SEg,.

- e r
€oy <€ +EL SE

Let us exclude the residual strains & from each
area A’, A° in Egs (16), €/ =&, —&%, and then substi-
tute it in the equilibrium condition (11) for residual
stresses of the cross-section.

As a result, we can form a system of 3 non-linear
algebraic equations to determine the relations between the
variables of this problem.

The solving procedure for the inverse problem is an
iterative determination process of the neutral axes posi-
tion with correcting the parameter F, and further check-
ing, if the result obtained agrees with conditions (15).

The final domain of interaction of the generalized
forces is formed by intersection of the regions that corre-
spond to the considered cases, i.e. a domain Qg of the
guaranteed cross-section carrying capacity under all pos-
sible design combinations of repeated low-cyclic loadings
is created.

However, for the case of alternating plasticity, both
inequalities (16) for concrete and/or steel are not active
here and, therefore, the second kind of the collapse for
the RC section is not realized.

3. The mathematical model of the limit analysis of
the cross-section under one-path loadings

The technique for calculation of the cross-section strength
described in this chapter is influenced by the monoto-
nously increasing one-path loading. It is similar to Bich
(Biu 1991), Zvezdov et al. (3Be3n0B u ap. 2002), Bonet et
al. (2004), Zupan and Saje (2005), but at the same time
contains some differences, which are necessary to apply
this technique, as the basis to the mathematical model for
the repeated loadings.

The mathematical model for the RC section (Fig. 1)
under one-path live and long duration forces
(N MM y) consists of the following equations set:

[G;d4—N =0,

A

[oi(vo—y)dd-M, =0,

A

[o:(xg—x)dd-M, =0, (17)
A

€, =€, +Q, -(yo _yi)+(Py '(xo—xi)’
G; :fi(gi)’

g; <€

>

where (17); is the stress equilibrium equation; (17), is the
relative strain compatibility equation in accordance with
the plane cross-section hypothesis V(x;,y;) € 4,,i€(c,s);
(17); are constitutive laws, which define the relation be-
tween stress and strain for concrete and steel in the form
of stress-strain diagrams; (17), are inequalities for the
limits of maximum relative axial strains, which define the
area of permissible solution of the equation set; G,y
are normal stresses along the Z-axis; 4> 4, U A4, is the
cross-sectional area; €. is the unit axial strain at the stiff-
ness centre (centroid) in point O (Fig. 1); ¢, ¢, are curva-
tures about the appropriate axes; €;, are the limit values
of the unit longitudinal deformation of concrete and steel.

Any internal forces and strains are calculated with
regard to the principal centroidal axes X, Y, Z, which pass
through the section stiffness centroid ”0”. The location
of the principal axes does not depend on the section in-
ternal forces. In the general case for non-linearly defor-
med materials, the axes X, ¥ can be defined as neutral
lines (xp, o) of the section in the absence of the axial
force N and infinitesimal of the bending moments M,, M,

{N =0, My 0., &(xg,v9)=0}= X =(xg,¥).

18
{N=0, My—>0J_,, S(xo,y0)=0}3Y=(xO,yO), ( )

where symbol — 0. means vanishing of the moment
value M to zero in “+” or “—” region. Then, the stiffness
centroid of the cross-section with the coordinates (xq, o)
is situated on the intersection of X, Y axes.

In the case of smooth relations (17); the approach
(18) leads us to the known formulas with the initial tan-
gent modulus of elasticity (for example, in Bia (1991)).
The set of stiffness centroid points in the cross-section
forms a rod (element) axis.

The problem (17) is equivalent to the system of non-
linear equations, which are written in the vector form:

a.8)=0. (19)

They include a three-dimensional vector of un-
known section strains q = (8_.,(px,(py)6 R® and the force
vector § = (N Mo M y)e R’ corresponding to it energy-
wise, so the degree of kinematical indetermination is

three.

The equation set (19) describes all possible states of
the RC element section until its collapse. These equations
contain non-convex and non-smooth relations, forming
the vector function f(-)e R (Alyavdin, Simbirkin
1999). The RC cross-section strength of a rod element is
safe, if there is at least one solution to the equation set
(19), when the conditions (17), are satisfied.

4. Methods of solution

The linear iterative technique (Biu 1991; Bonet ef al.
2004; Typ, Pak 2003; Zupan, Saje 2005;) is commonly
used to solve the non-linear equation system (17) or (19).
During its calculation the secant or tangent elasticity
modulus of materials are corrected taking into considera-
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tion the changing properties of the section till the collapse
of concrete or steel.

A disadvantage of the iteration method is its ineffi-
ciency for a non-monotonous function. This method does
not allow to find the whole set of solutions for Eq. (19). It
is suitable only for the analysis of the section design
strength. An additional simplification and algorithm mo-
dification are required to analyze the cross-section state at
all levels of loadings of the construction by the iteration
methods.

The most suitable method for solving these pro-
blems is the one which allows to find the set of all possib-
le solutions. If the system has a potential, then the global
extremums of all the local ones of an objective function
will be searched for

o (q, S ) — min, (20)

where fo(-) is the potential of the equation set (19), fy €
R (see also function W(*), (15a), in sub-chapter 2.2). The
function f; can also be taken up as:

3
folg. 8)= afiz(‘b s). @1)

The objective function f; (21) is non-smooth and
non-differentiable and can have several local minimums
within an accessible region.

The necessary (first-order) condition for the strict
local minimum of the non-smooth function fy(q, S) in
point ¢ is:

fo@)>o, (22)

where the left part is “the quickest descent speed”
(Anssoua 2005) of function f; in point ¢.

A set of solutions for the problem (19) and for the
global minimum in (20) should be found using random
search methods and the straight enumerative technique.
In reference to Aliawdin (Amsssour 2005), a modified
Newton-Raphson method with specific choice of initial
points and genetic algorithm (GA) are proposed for fin-
ding the non-unique solutions of non-smooth problems
for the reinforced concrete structures.

This modified Newton-Raphson method with a
proper initial approximation has more rapid convergence
than GA. But such method in its usual form does not
permit to find possible solutions and is not applied to the
non-monotonic functions f(-) in the equations (19).

The genetic algorithm convergence has non-
uniform, but stable behaviour. The algorithm allows to
find all local and global extremums of the objective func-
tion, which may be non-convex and non-smooth. But the
accuracy of the solution obtained by the simple genetic
algorithm is lower than in case, when iteration numeric
methods are applied.

To solve the non-linear equations (19) in this paper,
the following hybrid algorithms combining the standard
GA and gradient methods are offered below:

— Hybrid algorithm. An initial approximation locali-
zed in the extremum area is performed by the standard
GA, and then the result is defined more precisely using
numeric methods.
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— A genetic algorithm with additional training of the
leader (Tenenes, ITakmuna 2003). The feature of the algo-
rithm is the best individual leader created by the GA,
which is trained using the gradient method and selected
from the population (or from a random set of possible
solutions). After that, the operation of gradient and ge-
netic methods is realized in the parallel mode. The algo-
rithm sequence is next:

1) k£ =0. Population, which consists of m individu-
als {Cs,s = l,m}k, is generated by the GA. Number one
took up an individual C" with the best index (minimum
value of function (20)), which corresponds to q,",C and
q“=qf.

2) k=k+1. Using the gradient method, next, the
approximation of vector qk is calculated. With the GA,

next, the population \C*,s =1,m( is created and the best

individual is searched out, corresponding to the next vec-
tor qllf .
k k k k
3) If fo(‘lb)< fo(q ), then ¢" =¢qp .

4)If fo(q,’;)z fo(qk), then C! =¢~.

5) If the stop condition is met, then end, else go to
item 2.

During the equations solving, a more suitable way is
to divide the force-strain relation into main parts. Then,
it is better to use gradient methods for monotonic parts
and hybrid methods described above as non-monotonic
parts.

5. Features of calculating the cross-section under
one-path loadings

The rectangle sections of the RC rod element, subjected
to the forces (N, M,), are considered for the strength
analysis of the section under one-path loadings.

The calculations were made, for example, for the
cross-sections with the following properties: the section
with the dimension 400x400 mm, made from concrete
with f, = 28 MPa, f;, =2.2 MPa, E, = 37 GPa, ¢,; =
—3.5%0, &5 =-2.0%0, &y =0.4%o0, and from steel
40288500 (f,= 500 MPa, E;= 200 GPa, &g,= 10%o).

The stress-strain diagram with limited descending
branch of the concrete (Typ, Pak 2003) and bilinear stress-
strain relation for the bar reinforcement were used (Fig. 2).

For the construction of the domain of the admissible
internal forces in the cross-section (Fig. 4a) it is necessary
to define the acceptable strains set (Fig. 4b), and to deter-
mine the corresponding strength condition of this problem.

The required strains domain is bounded by linear
functions (17), for the characteristic point of the cross-
section. For this example such functions are:
Eeul =E- + @y - (o — k) for the most compressed concrete

fibre (Fig. 4.2c), and &g, =€, + ¢, -(yy —a) for tensile

reinforcement (Fig. 4. 1s), where / is a cross-sectional
height and a — a value of concrete cover. Other borders
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are similarly evaluated for the main parts of the concrete
and reinforcement work in the next characteristic point of
the cross-section: cracking in tensile concrete for up and
bottom fibre (Figs. 4. 3, 4), steel strain at yield stress
(Fig. 4. 6), concrete strain corresponds to peak stress
(Fig. 4. 5). Strains borders for maximal carrying strength
(where two solutions exist) were computed by solving the
optimization problem (20) for Eq. (19).

The domains of the admissible strength of the cross-
section under one-path loadings for the internal forces
(Fig. 4a) were computed by the substitution values of the
boundary strain (Fig.4b) in the stress equilibrium
equation (17);.

The following features stipulated by non-monotonic
stress-strain relations for materials are determined.

1) Non-uniqueness of solution. A typical diagram of
the relation ,,M-@” for one of the cross-sections is presen-
ted in Fig. 3. There are 2 regions, where the function is
non-monotonic and has more than one solution for (20):
one is in the part of concrete cracking (points 3 and 3%,
Fig. 3) and the other is in the part of maximum (points 2
and 2*, Fig. 3), i.e. in the main parts of the function
which characterize the section behaviour.

2) Two solutions exist in the part of the maximum
value of the function through the whole length of the

3 T b) 1,10,
f(-r =
Eont S(f' € ,f\' i
! 1eu € :
i E.HJ S.\l' E 8\
E 1 €y €
i /] 7. |

Fig. 2. Stress-strain relationships for concrete (a) and
reinforced steel (b)

a) . . 1
4228 \
o 8500

400

bearing capacity boundary. At that, the deviation between
the collapse point and the maximum strength point is
increasing at M—min, and |NV|—max. The region with 2
solutions for (20) is shaded in Fig. 4.

In approaches Bich (Biu 1991), Zvezdov et al
(3Be3moB m np. 2002), the strength calculation by the
deformation model is made using the iteration method
until the section achieves the limit strains (collapse) of
compressed concrete or tensioned steel. Otherwise, the
conditions (17), serve as a criterion for the RC section
strength. In this case, the maximum strength of the sec-
tion for certain initial secants can be up to 1...25%
(maximum with M = 0) larger than the strength of the
section under collapse (see the shaded area in Fig. 4a).
Though the deviation between the maximum and collapse
strength is less than 1% for the considerable part of
length of the carrying capacity boundary, the presence of
non-monotonic part of the function significantly worsens
the convergence of the iteration method.

M
MJ’”’(M.' l
M, 3 2% 2
6
-_J('-J:f - Srrn'_
O
e = gy
s ; ks '§
,/‘5
N 2%
N 2
NS
3 Os NN
M, 3% 1 A e
0,
0l

Fig. 3. Unified moment—curvature relation y = M(¢,) with
N+#0 and section stress and strain distribution in the
points with 2 solutions

Fig. 4. Domains of carrying strength of the cross-section under one-path loadings for internal forces (a) corresponding to
strains (b) (domains are symmetrical relatively abscissa): 1 — maximal carrying strength, 1s — ultimate strength (strain) for ten-
sile reinforcement, 2¢ — ultimate strength (strain) for compressed concrete, 2* and 2c on (b) corresponding to 2¢ on (b) — bor-
ders of the region with 2 solutions, 3 — cracking in tensile concrete, 4 — tensile collaps of the whole concrete, 5 — concrete strain

at a peak stress, 6 — steel strain at yield stress



Journal of Civil Engineering and Management, 2009, 15(1): 59-66

Each solution of the set of Eq (19) is necessary for
calculating the single cross-section strength in the general
case for a statically indeterminate structure. However, for
such a structure and for the whole element displacements
we may take into account only the values of extreme
(minimum) strains in the cross-section.

3) It was determined, that there are additional “fal-
se” solutions of Eq (19) due to a large size of the elemen-
tal area of the b) section which appears in the process of
numerical evaluating of the integrals from the Eq (19).

4) There are more than 2 solutions for the set of
equations (19), when |N|—max and M—0; from the point a
(Fig. 4) solutions like (g;, @ # 0) and (g, ¢ # 0) exist. One
solution (g, @) may have 2 couples of forces. In the part of
cracking, up to 3 solutions of the equations set (19) are
possible.

The results of the analytical model (17) proposed for
calculating the strength of the element cross-section un-
der one-path loads coincide with the ones realized in the
commercial software created on the bases of normative
documents. However, this model (17) allows to use the
standardized relations ,,06-¢” without iteration for the sec-
tion stiffness whose coefficients depend on general, not
standardized relation ,,E-£”.

6. Examples of shakedown analysis for the RC section

As an example for limit and shakedown analysis (on the
basis of sub-chapter 2.2), we examine a square section of the
statically determinated element described in the section 5.

Steel is presumed to be a cyclically stable material.
For this example we assumed, firstly, that the stress-strain
relationships for concrete under repeated loads are similar
to the ones under monotonic loads, taking into account
certain conditions (CEB 1996; ITaBnuHOB 1999; Korentz
2005) and that the cracks do not appear in the concrete
under cyclic loading.

The RC element cross-section is influenced by the
compression (tension) force N and the bending moment
M in one of the principal planes. The values of the load-
ings are unknown at any specific time moment, but they
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vary within the limits N <N<N, M <M <M ; for the
strains it looks like: eV~ <e<eV™, oM <p<oMT,
where € and ¢ belong to the domain of the allowed strains
under one-path loading (Fig. 4b). The case of the sym-
metric cyclic loadings is analyzed, when the maximal
strain in compression and tension parts of the section is
realized for the same combination of the axial force and
the bending moment.

The final domain Qg of the cross-section carrying
capacity under repeated low-cyclic loadings is obtained
as a region corresponding exactly to the progressive failu-
re conditions (Fig. 5).

The example of a fictitious limit strain distribution,
residual strain distribution and residual normal stresses
for the case of the cross-section progressive failure in one
of the points for vector § is given in Fig. 6.

400 ML
L] L]
§ 4728
. o] $300

Fig. 5. Domain Qg of the RC cross-section carrying
strength under different loading conditions (domain is
symmetrical relatively abscissa): 1 — low-cyclic loadings,
progressive failure; 2 — one-path characteristic strength;
3 — the boundary of cracking in tensile concrete
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Fig. 6. Example of fictitious limit strain distribution (a), residual strain distribution (b) and residual normal stresses (c) for

the cross-section progressive failure
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The low-cyclic loads effect, for certain zero-to-
compression or zero-to-tension cycle, reduces the cross-
section strength degradation up to 25...30% of the section
strength for one-path loading (Fig. 5, boundary 2), defined
by the deformation model with the full stress-strain diag-
ram (Fig. 2). The percentage area ratio for the section low-
cyclic strength Q S, and characteristic one-path section

strength domain (Fig. 5, bound 2) amounts to 58%.

7. Conclusions

An analytical model used to predict the ultimate strength of
the RC element cross-sections under repeatedly alternating
low-cyclic loadings are proposed in this study. The essen-
tial effect of the variable forces interaction on the values of
the elements carrying capacity is determined.

The offered mathematical model also allows for the
strength evaluating of the element cross-section under
one-path loading. To obtain more than one solution of
this non-smooth optimization problem it is advisable to
apply the hybrid method combining the standard genetic
algorithms and the gradient algorithms.
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GELZBETONINIO STRYPO SKERSPJUVIU RIBINE PUSIAUSVYRA IR PRISITAIKYMAS

P. Aliawdin, S. Kasabutski
Santrauka

Nagrinéjamas neplei$éjancio gelzbetoninio elemento skerspjiivio stiprio skaic¢iavimas veikiant mazaciklei apkrovai. Naudojama
netiesiné medziagos jtempiy-deformacijy priklausomybe. Pateikiami ribinés pusiausvyros ir prisitaikomumo analizavimo uzda-
viniy matematiniai modeliai. Naudojama metodika skerspjuvio parinkimui vienos trajektorijos apkrovimo atvejais, nagrinéja-
mas uzdavinio sprendiniy nevieninteliSkumas. Medziagos plastiskumo salygos formuluojamos jtempiais arba deformacijomis.
Sprendziant netiesinio optimizavimo uzdavinius gaunami paprasti dviejy tipy sprendiniai: tiesioginis ir atvirkstinis, atitinkantys
progresuojancio arba kintamo plastiSkumo ribinius plastinio suirimo atvejus.

Reik$miniai Zodziai: gelzbetonis, skerspjuvis, strypas, mazaciklis apkrovimas, ribinio buvio analize, prisitaikymas, optimizacija.

Piotr ALIAWDIN. Professor in the Department of Structure Theory at West Pomeranian University of Technology in
Szczecin (Poland), chief scientist of “Institute BeINIIS”, Minsk (Belarus). His research interests include non-smooth mechan-
ics, shakedown theory and identification of load-carrying systems, the limit analysis and limit states of structures.

Sergei KASABUTSKI. Research assistant in Laboratory of Space Enclosing Structures of Research State Enterprise for Con-
struction “Institute BeINIIS” (Minsk, Republic of Belarus). His research interests include the behaviour of reinforced concrete

members under monotonic and low-cyclic actions.



