
 

JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT  ISSN 1392–3730 print / ISSN 1822–3605 online 
http:/www.jcem.vgtu.lt   DOI: 10.3846/1392-3730.2009.15.35-46 35 

    

JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT 
2009 

15(1): 35–46 

 
 
 

HILLTOP BUCKLING AS THE Α  AND Ω  IN SENSITIVITY ANALYSIS OF THE 
INITIAL POSTBUCKLING BEHAVIOR OF ELASTIC STRUCTURES 

Herbert A. Mang1, Xin Jia2, Gerhard Hoefinger3 
Institute for Mechanics of Materials and Structures, Vienna University of Technology, 

Karlsplatz 13/202, 1040 Vienna, Austria, e-mail: 1herbert.mang@tuwien.ac.at 
Received 22 Aug 2008, accepted 23 Jan 2009 

Abstract. The coincidence of a bifurcation point with a snap-through point is called hilltop buckling. In this paper, it ei-
ther serves as the starting point – the Α – or as the end – the Ω – in sensitivity analysis of the initial postbuckling behav-
ior of elastic structures. It is shown that hilltop buckling is imperfection sensitive. In sensitivity analyses with hilltop 
buckling as the starting point (end), the bifurcation point and the snap-through point are diverging from (converging to) 
each other. Two classes of sensitivity analyses are identified by means of the consistently linearized eigenproblem. They 
determine the more (or less) effective mode of conversion of an originally imperfection-sensitive into an imperfection-
insensitive structure. The results from the numerical investigation corroborate the theoretical findings. The present study is 
viewed as a step in the direction of better understanding the reasons for different modes of the initial postbuckling behav-
ior of elastic structures and its interplay with the prebuckling behavior. 
Keywords: consistently linearized eigenproblem, hilltop buckling, imperfection (in)sensitivity, Koiter’s initial postbuck-
ling analysis, sensitivity analysis, symmetric bifurcation, zero-stiffness postbuckling. 

 
1. Introduction 
The coincidence of a bifurcation point with a snap-
through point is called hilltop buckling (Fujii, Nogushi 
2002). It can be realized by appropriately tuning a set of 
design parameters of a structure (Steinboeck et al. 
2008a).  

Assuming that hilltop buckling is imperfection sen-
sitive, it may serve as the starting point – the Alpha – for 
sensitivity analysis of the buckling load and the initial 
postbuckling behavior by means of variation of a design 
parameter. The motivation for such an analysis may be 
improvement of this behavior through conversion of an 
originally imperfection-sensitive into an imperfection- 
insensitive structure (Mang et al. 2006; Schranz et al. 
2006). In the course of this analysis, the stability limit, 
represented by the bifurcation point, is increasing less 
strongly than the load corresponding to the snap-through 
point. Hence, the two points are diverging from each 
other. 

Conversely, in sensitivity analysis the stability limit 
may be increasing more strongly than the snap-through 
load. In this case, the two load points are converging to 
each other. Their coincidence represents the end – the 
Omega – of sensitivity analysis of the buckling load and 
the initial postbuckling behavior because snap-through 
would otherwise replace bifurcation buckling as the rele-
vant mode of loss of stability. 

The purpose of this paper is to examine these two 
forms of sensitivity analyses of the buckling load and the 
initial postbuckling behavior. Examination tools include 

Koiter’s initial postbuckling analysis (Koiter 1967) and 
the Finite Element Method (FEM). 

It will be shown that hilltop buckling is imperfection 
sensitive. As a special form of transition from imperfec-
tion sensitivity to imperfection insensitivity, zero- stif-
fness postbuckling (Steinboeck et al. 2008b) will be men-
tioned. 

The investigation is restricted to static, conservative, 
perfect systems with a finite number N  of degrees of free-
dom as conforms to the FEM. The material behavior is 
assumed to be either rigid or linear elastic. Only symmetric 
bifurcation behavior with respect to a scalar variable η  
will be considered (Steinboeck et al. 2008b). Multiple 
bifurcation will be excluded, especially multiple hilltop 
buckling will not be discussed in this analysis, i.e. there is 
only one single secondary path will be considered. For a 
discussion on multiple hilltop branching phenomena and 
their influence on imperfection sensitivity refer to (Fujii, 
Noguchi 2002; Ohsaki, Ikeda 2006). The numerical results 
of examples presented there corroborate the following 
theoretical findings. Sensitivity analysis will be restricted 
to variation of one design parameter at a time. 

 
2. Derivation of polynomials 
2.1. Koiter’s initial postbuckling analysis 
Fig. 1 shows a projection of load-displacement paths of a 
system bifurcating at point C . The solid line represents 
the primary path, whereas the dashed line is a secondary 
path. The latter is parameterized by ,η∈R  defined as
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zero at C . Herein, the subscript C•  means evaluation of a 
quantity at .C  The reference load P  is scaled by a di-
mensionless load factor λ , and u  denotes the vector of 
generalized displacement coordinates. 

In Mang, Schranz (2006) and Steinboeck et al. 
(2008b) Koiter’s initial postbuckling analysis (Koiter 
1967) was used to expand the out-of-balance force 
 ( ) ( ), : ,Nλ = −λ ∈IG u F u P R  (1) 
where ( )IF u  denotes the internal forces, into an asymp-
totic series at C . For a static, conservative system, G  
can be derived from the potential energy function V as 
 V∂=

∂
G

u
. (2) 

G  vanishes along equilibrium paths in the −λu  space. 
( )λ η  is the load level at the point of the secondary path 

associated with ,η  as outlined in Fig. 1. The point on the 
primary path characterized by the same load is described 
by the displacement vector ( )( ).λ η%u  Quantities evalu-
ated along the primary path are labeled by an upper tilde. 
The displacement at the corresponding point of the sec-
ondary path can be expressed as ( ) ( )( ) ( )η = λ η + η%u u v  
where v  is the displacement offset which vanishes trivi-
ally at .C  Hence, 
 ( ) ( )( ) ( ) ( )( ): ,η = λ η + η λ η = 0%G G u v  (3) 
must hold along the secondary path. Insertion of the as-
ymptotic series expansions 
 ( ) ( )2 3 4

1 2 3C Oλ η = λ + λ η+ λ η + λ η + η , (4) 

 ( ) ( )2 3 4
1 2 3         Oη = η+ η + η + ηv v v v  (5) 

into (3) and expanding the resulting expressions into a 
series in terms of η  yields 
 ( )2 3 4

0 1 2 3C C C C O= + η+ η + η + ηG G G G G  (6) 
with 

 ,

  ,!
nC

nC n
n

η= ∀ ∈
G

G N  (7) 
where N  denotes the set of natural numbers including 
zero. Details of computation of nCG  are given in (Stein-
boeck et al. 2008b). 

 
 

u
Cu ( ( ))λ ηu% ( ( )) ( )λ η + ηu v%

CλC

( )λ η

λ

1 1 , 1[ , ]λλ λ +T T T
%u v
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[ , ]η η λ ηλ λ +u vT T T
%( )ηv
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%

η
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,

[1, ( )]λ λT T
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Fig. 1. On Koiter’s initial postbuckling analysis  
(Steinboeck et al. 2008) 

Since (3) must hold for any point along the seconda-
ry path, i.e. for arbitrary values of η , each coefficient 

nCG  of the series must vanish. This condition paves the 
way for successive calculation of the pairs of unknowns 

1 1 2 2( ,  ),  ( ,  ),λ λv v etc. described in (Mang, Schranz 
2006). 

 
2.2. Coefficients of the asymptotic series expansion of 
( ) Cλ η −λ   
For the present investigation only the first four coeffi-
cients of the series expansion of ( )λ η  need to be known. 
They are given as follows (Mang, Schranz 2006): 
1 0 ,dλ =   (8) 

2
2 1 1 1 1 1,a b dλ = λ + λ +   (9) 

3 2* * *3 1 1 1 1 1 1 1 2 2 ,a b c b dλ = λ + λ + λ + λ +  (10) 
4 3 2 2

4 1 1 1 1 1 1 1 1 1 2 2 2 1 3 3ˆ ˆˆ ˆ ,a b c d a b b dλ = λ + λ + λ + λ + λ + λ + λ +  
  (11) 
where 
 *1 1 2 22 ,c a b= λ +  (12) 
 * *1 1 2 2

1ˆ 3 ,2c a b= λ +  (13) 

 *
1 1 2 1 3 3ˆ 2 2 ,d b a b= λ + λ +  (14) 

whereas none of the other coefficients in the expressions for 
3λ  and 4λ  depends on 2 ,λ  and 2λ  and 3,λ  respectively. 
To get an idea of the structure of the coefficients in 

(8)–(11), the expressions for 0d ( 0b  in (Mang et al. 
2006), 1,a  1,b  1,d  and *1a  are listed in the following 
(Mang, Schranz 2006): 

 1 , 1 1
0

1 , 1

:1 ,2
T

T u
T

T

v
d

λ

⋅ ⊗
= −

⋅ ⋅%

v K v

v K v
 (15) 

 1 , 1
1

1 , 1

1 ,2
T

T
T

T
a

λλ

λ

⋅ ⋅
= −

⋅ ⋅

%

%

v K v

v K v
 (16) 

 1 , 2 1 , 1 1
1

1 , 1

1 :2 ,
T T

T T u

T
T

b
λ λ

λ

⋅ ⋅ + ⋅ ⊗
= −

⋅ ⋅

%

%

v K v v K v v

v K v
 (17) 

1 , 1 2 1 , 1 1 1
1

1 , 1

1: 6 ,
T T

T u T uu

T
T

v
d

λ

⋅ ⊗ + ⋅ ⊗ ⊗
= −

⋅ ⋅

M

%

v K v v K v v v

v K v
 (18) 

 1 , 1*1
1 , 1

1 .
6

T
T

T
T

a
λλλ

λ

⋅ ⋅
= −

⋅ ⋅

%

%

v K v

v K v
 (19) 

( )
,T u=K u G  is the tangent stiffness matrix which gener-

ally refers to out-of-balance states, whereas 
 ( ) ( )( ):T Tλ = λ% %K K u  (20) 
is the one that refers to the special case of equilibrium 
states on the primary path. ( )

,λ•  indicates the special 
differentiation with respect to λ  along a direction parallel 
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to the primary path (Mang, Schranz 2006). Most of the 
coefficients in (8)–(11) are given in (Mang, Schranz 
2006). The remaining coefficients can be deduced from 
Appendix B in (Mang, Schranz 2006). 
 
3. Specialization of the expressions for 1 4,,λ … λ  for 
symmetric bifurcation 
3.1. Conditions for symmetric bifurcation 
Bifurcation is qualified as symmetric with respect to the 
parameter η  if it obeys the definitions (Steinboeck et al. 
2008b): 
 ( ) ( )λ η = λ −η ∧  (21) 
 ( ) ( )( )Tη = −η ∧v v  (22) 
 ( )( ) ( )( )( ) ,Tλ η = λ η% %u u  (23) 
where the linear mapping : N NT →R R  is an element 
of a symmetry group. Insertion of (4) into (21) yields 
 1 3 .... 0λ = λ = = . (24) 

 
3.2. Specialization of (8)–(11) for symmetric  
bifurcation 
Substitution of (24) into (8)–(11) gives 
 00 d= , (25) 
 2 1dλ = , (26) 
 1 2 20 b d= λ + , (27) 
 2

4 1 2 2 2 3a b dλ = λ + λ + . (28) 
According to (Steinboeck et al. 2008b), symmetric bifur-
cation requires  
 0 2 .... 0.d d= = =  (29) 
Hence, following from (27), 
 1 0.b =  (30) 
This corresponds with the result of a proof in (Steinboeck 
et al. 2008b) according to which *

1 1 1 1ˆ ˆ,  ,  , , ,b b b d… …  
must vanish for symmetric bifurcation. Hence, following 
from (14), also 
 3 0.b =  (31) 

 
4. Conditions for imperfection insensitivity 
A necessary condition for imperfection insensitivity is 
given as (Bochenek 2003) 
 1 0λ = , (32) 
which is automatically satisfied for symmetric bifurca-
tion. Sufficient conditions for imperfection sensitivity are 
(Bochenek 2003): 
 1 20,  0.λ = λ >  (33) 
Hence, symmetric bifurcation is not necessary for imper- 
fection insensitivity (Helnwein 1997). If 1 20 0,λ = ∧λ =  
 3 0λ =  (34) 

is a necessary condition for imperfection insensitivity 
which is automatically satisfied for symmetric bifurca-
tion. Sufficient conditions for imperfection insensitivity 
in this case are 
 3 40,  0.λ = λ >  (35) 
Thus, for imperfection insensitivity the first non-
vanishing coefficient in the asymptotic series expansion 
(4) must have an even subscript which is automatically 
the case for symmetric bifurcation, and must be positive. 

 
5. Hilltop buckling 
In the following it will be proved that hilltop buckling is 
imperfection sensitive. Introducing the parameter ,ξ  
which refers to the primary path, into (16), gives 

 1 , 1 ,
1

, ,1 , 1

1 ,2
T

T
T

T
C

a
ξξ ξξ

ξ ξξ ξ=ξ

 ⋅ ⋅ λ = − − λ λ⋅ ⋅ 
%

%

v K v

v K v
 (36) 

with Cξ = ξ  indicating the stability limit Cλ = λ . 
At the snap-through point, ( )λ ξ  has a local maxi-

mum: 
 

, ,
0,  0ξ ξξλ = λ < . (37) 

Because of  
 1 , 1 0,T

T ξ⋅ ⋅ ≠%v K v  1 , 1 ,
T

T ξξ⋅ ⋅ ≠ ∞%v K v  (38) 
the first term in parentheses of (36) is negligible. Thus 
 1 .a = −∞  (39) 
Because of 2

, ,ξξ ξλ λ  with (37), 1a  has a pole of 2nd or-
der. 

Alternatively, the path parameter η , referring to the 
secondary path, is inserted into (16), which gives 

 1 , 1 ,
1

, ,1 , 1 0

1 ,2
T

T
T

T
a

ηη ηη

η ηη η=

 ⋅ ⋅ λ = − − λ λ⋅ ⋅ 
%

%

v K v

v K v
 (40) 

with 0η = , indicating the stability limit .Cλ = λ   
Equating the right-hand side of (40) to the one of (36) gives 

0 0
0

0

2 2
, ,

, ,
, ,

1 , 1 1 , 1
,

, ,
1 1 1 1

, ,

, 0,
· ·

C C

C

T T
T T

T TT T

η= η=
η=

ξ=ξ ξ=ξ

ξ=ξ η=

η η
ηη ξξ

ξ ξ

ξξ ηη
ξ

ξ η
ξ η

   λ λ   λ = λ −   λ λ      

⋅ ⋅ ⋅ ⋅+ λ >
⋅ ⋅λ λ

% %

% %

v K v v K v
K K

v v v v

 (41) 

where, for the time being, hilltop buckling is excluded. 
Inserting 
 

0, 1η=η
λ = λ   and  

0, 22 ,
η=ηηλ = λ  (42) 

which follows from (4), and 

0

, ,
1 1 1 1 1 , 1

, ,
· ·

C
C

T TT T
T

T
λ=λ

η= ξ=ξ

ξη
λ

η ξ
⋅ ⋅ = ⋅ ⋅ =
λ λ

% %

%
K K

v v v v v K v (43) 
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into (41) yields 

0

,

1 , 1

2
1 , 112 ,

, 1 1

1 , 1

1
2

1
2 ,

C
C

C C

C

T

T
T

T

T

T

T

T

ξ=ξ
ξ=ξ

ξ=ξ λ=λ

η=

λ=λ

ξξ
ξξ

ξ λ

ηη

λ

     = − +    
⋅ ⋅λ

 
λ λλ  

⋅ ⋅
⋅ ⋅

⋅ ⋅+

%

%

%

%

v K v

v K v

v K v

v K v

  

where (Mang et al. 2006) 
 1 , 1 0.

C
T

T ξ=ξξ∞ < ⋅ ⋅ <− %v K v  (45) 
In order not to a priori dismiss the antithesis, i.e. the 
possibility of imperfection insensitivity for hilltop buck-
ling, the special case of  
 

0, 1 0
η=η

= λ =λ  (46) 
will be considered, resulting in  

 01 , 1

1 , 1
2

1 ,2
C

T
T

T
T

η=

λ=λ

ηη

λ

⋅ ⋅
=

⋅ ⋅
λ

%

%

v K v

v K v
 (47) 

where  
 ,1 10 · · .T

T ηη≤ < ∞%Kv v  (48) 
Following from (45), (47) and (48), 2 0λ =  requires 
 

01 , 1 0.T
T η=ηη⋅ ⋅ =%v K v  (49) 

Extending now the validity of (47) to hilltop buckling, i.e. 
replacing (41.2) by  
 

,
0,ξλ ≥  (50) 

requires extending the range in (45) from 0)( ,−∞  to 
0)[ ,−∞  and in (48) from )[0, ∞  to ][0, ∞ . Hence, for 

hilltop buckling 2 0λ =  represents an indeterminate ex-
pression with 

01 , 1 1 , 1 .
C

T T
T Tλ=λ η=λ ηη⋅ ⋅ = −∞ ∧ ⋅ ⋅ = ∞% %v K v v K v  (51) 

To show that hilltop buckling is necessarily imperfection 
sensitive, a design parameter κ  is increased. Initially, 
 ( ) ( )0 2 0 2, 00, 0, 0.κκ = κ ≥ λ κ < >λ κ  (52) 

The purpose of this sensitivity study is conversion of an 
originally imperfection sensitive into an imperfection 
insensitive structure. As follows from (45) and its exten-
sion to (51.1), and from (47) and (51.2), 
 

0
01 , 10 .T

T η κ=κ=ηη< ⋅ ⋅ ≤ ∞%v K v  (53) 

If hilltop buckling occurs for 0 ,κ = κ  
 

0
0

1 , 1 .

T
T η= κ=κ
ηη⋅ ⋅ = ∞%v K v  (54) 

Fig. 2a refers to this situation. It shows that hilltop buck-
ling is imperfection sensitive. 

If hilltop buckling occurs for 0 ,Hκ = κ = κ  
 

0
0

1 , 10 ,T
T η= κ=κ
ηη< ⋅ ∞⋅ <%v K v  (55) 

 
01 , 1 ,

H

T
T η= κ=κ
ηη⋅ ⋅ = ∞%v K v  (56) 

(56) follows from the fact that for both cases 
( )0 ,,

1 , 1 1 , 10, .0
C

T T
T Tλ=λ η= κκκκ
λ ηη ⋅ ⋅ < ⋅ ⋅ >  

% %v K v v K v  (57) 

Fig. 2(b) refers to 0.Hκ = κ > κ  It shows that also for 
this case hilltop buckling is imperfection sensitive. 

Information about 4λ  is obtained from specializa-
tion of (28) for 2

1a = −∞  and 2 0λ <  and consideration 
of the following scheme: 

 

2
4 1 2 3 2 2

2 2

1 1

0

 +

+  

.

a d bλ = λ + + λ
− ∞ ∞

∞ − ∞
− ∞

 (58) 

In this scheme, “ 2∞ ”, “ 1∞ ”, and “ 0∞ ” denote a pole of 
2nd, 1st, and 0th order (with respect to a variable design 
parameter κ ), noting that the latter is a positive, finite 
number. The scheme is based on the hypothesis that (58) 
cannot disintegrate at hilltop buckling. Numerical results 
have validated the scheme according to which 

 

 

,1 1
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T
Tv K vλ λ λ=
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,1 1C

T
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⋅ ⋅%

κ
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κ
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T
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Fig. 2. Hilltop buckling as (a) the Α  and (b) the Ω of sensitivity analysis 

(44) 
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 1 2
3 42 0.,   ,   db ∞ = ∞ −∞ < λ <=  (59) 

Eq. (59) corroborates the conjecture that for symmetric 
bifurcation at the hilltop all coefficients with an even 
subscript in the asymptotic series expansion (4) must be 
negative, finite numbers. 
 
6. Classification of sensitivity analyses of the initial 
postbuckling behavior 
6.1. Consistently linearized eigenvalue problem 
With the help of the consistently linearized eigenvalue 
problem, sensitivity analyses of the initial postbuckling 
behavior can be categorized in two classes. For a specific 
value of κ , this eigenproblem is defined as (Helnwein 
1997; Mang, Helnwein 1995): 
 *

,
*) .·( TT λ + = λ − λ  0% %K K v  (60) 

In (60), *( )λ −λ ∈R  is the eigenvalue corresponding to 
the eigenvector * N

∈v R . Because of (20), *λ and *v  are 
functions of λ . If *λ = λ , T

%K  is singular. Thus, a candi-
date for the stability limit is found (Helnwein 1997). The 
first eigenpair of (60) is ( )* *

1 1,  λ v . At the stability limit, 
 * *

1 1 1, .Cλ = λ = λ =v v  (61) 
(Recall that Cλ  and 1v  appear on the right-hand side of 
(4) and (5), respectively.)  

Furthermore, at the stability limit (Mang et al. 
2006), 

 

*
1, 1 1aλ = ∧v v  

( ) * , 1* 2 * *
1, 1 1 1 * *1 *2 ,*

· ·
)

 
( · )

3 .
( ·

TN j T
jTj j T jj

a a
=

λλ
λλ

λλ −λ
= + + ∑

%

%

v K v
v v v

v K v
(62) 

Equating (47) to (16) gives 
 12 1 , 1

1 , 1
· ·

· ·

T
TT

T

a
ηη

λλ
λ = − %

%
v K v

v K v
, (63) 

where (Mang et al. 2006) 
 1 1, .1

2 C
a

λ=λ
∗
λλ= − λ  (64) 

Because 1 , 1
T

T λ⋅ ⋅%v K v  does not vanish (Mang et al. 2006), 
the same applies to 11 1 ,/ ,T

Ta λλ⋅ ⋅%v K v  as follows from 
(16). Consequently, 1 0a =  requires 1 , 1 0.T

T λλ⋅ ⋅ =%v K v  It 
follows that 

( )

( )

*1,1
* *1 , 11 , 1

*

* * * *1 , 1, 1 , 1

*

1 , 1

1,

1

1 0
2 0

1
2 2

3 0,

CC

C

TT TT

T T
T T

T
T

a

a

λ=λλ=λ

λ=λ

λλ

λλ

λλλλ

λ

λλ λ λλλ

λλλ

λ
= − =

⋅ ⋅⋅ ⋅

= − =
⋅ ⋅ + ⋅ ⋅

= ≠
⋅

=

λ

⋅

%%

% %

%

v K vv K v

v K v v K v

v K v

(65) 

where use of (19), (61.1) and (62.1) with 1 0a =  was 
made and, following from (65), 

 1,1 .1
6 C

a
λ=λ

∗ ∗
λλλλ= −  (66) 

For class II, in contrast to class I, 1 0a =  implies 
 1 0a∗ =  (67) 
which requires  
 1 , 1 0,T

T λλλ⋅ ⋅ =%v K v  (68) 
as follows from (65). Thus 

( )

(
)

* * * *
1 , 1, 1, 1 ,1 1

**1

*1,
* * * *
1, , 1, 1 , 1,

* * * *
1 , 1, 1 , 1

*1,
* * *1 , 1,

,

1

1
2

0 1
0 6

1

2 4

6

2

2

T T
T T

C

T

C

T

T T
T T

T T
T T

T
T

a

λ λλ λ λλλ
λ=λ

λ λ

λ=λ

λ

λλλλ

λ λλ λ λλλ λ

λλ λλ λλλλ

λλλλ

λλ λλ

λ λ

⋅ ⋅ +⋅ ⋅⋅ ⋅

λ
=

+

=

λ
= = − …

⋅ ⋅ ⋅ ⋅

… =
⋅ ⋅ ⋅+ ⋅

⋅ ⋅

+

+

λ
= −

% % %

% %

% %

%

v K v v K v v K v

v K v v K v

v K v v K v

v K v v( )*, 1
0.

C

T
T

λ=λ
λλλλ

≠
⋅ ⋅%K v

For the special case of  
 , 1· ,T λλ = 0% vK  (70) 

** 1,1
* *1 , 1 1 , 1

1 0.
6

C
T T

T T

a

λ=λ

λλλλ

λλ λλλλλ

λ
⋅ ⋅

= −
⋅ ⋅

≠
% %v K v v K v

 (71) 

The joint vanishing of 1a  and 1a∗  represents a limiting 
case insofar as it correlates with a limiting value of 
2 1( 0).aλ =  (See Sections 6.2. and 6.3.) 

 
6.2. Class I 

This class is characterized by  
 *

, 1 0      {2,3· , ,· , }Tj T Njλλ = ∀ ∈ …%v K v  (72) 
resulting in 
 * 2 *

1, 1 1 13( ) .a aλλ = +v v  (73) 
This remarkable orthogonality relation represents the 
special case that the curve described by the vector func-
tion ( )*

1 λv  degenerates into a straight line. 
For  
 2 0,λ =  (74) 
 1 4 320,    0,    .da b λ =< >  (75) 
The signs of 1a  and 2b  are the same as for hilltop buck-
ling. The sign of 4 3dλ =  which follows from (28) is 
indeterminate. For  
 1 0a = , (76) 
 2 0.λ >  (77) 
For class I, (76) requires (Steinboeck et al. 2008a) 
 , 1· .T λλ = 0%K v  (78) 

(69) 
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( ) ( )1 2, a bκ κ

1a

2 b

κ

 hilltop buckling

02λ =
κ

( )a

( ) ( ) ( )2 3 4, , dλ κ κ λ κ

4λ
3 d

κ

2λ

2 0λ < 2 0λ ≥
imperfection
sensitive

imperfection
insensitive

 hilltop buckling

02λ =
κ

( )b  
 

Fig. 3. Sensitivity analysis (class I, hilltop buckling as the starting point): 
( ) ( )1 2( ) , a a bκ κ ; ( ) ( ) ( )2 3 4( ) , , b dλ κ κ λ κ  

Fig. 3a, b shows qualitative plots of 1a  and 2b  
( 2 3,  dλ , and 4λ ) as functions of κ  which denotes the 
stiffness of an elastic spring attached to the structure, 
details of which will be given in Chapter 7 (Numerical 
investigation).  

Fig. 3 refers to a situation where hilltop buckling 
represents the starting point of sensitivity analysis, cha-
racterized by  
 0.κ =  (79) 
In Fig. 3b,  
 3 2 4 2( 0) ( 0) 0d λ = = λ λ = > , (80) 
indicating that at 2 0λ =  the structure is already imper-
fection insensitive. For 3 2( 0) 0,d λ = <  the structure 
would still be imperfection sensitive at 2 0λ = . For 
3 2( 0) 0d λ = = , the sign of 6 2 4( 0, 0)λ λ = λ =  would 
determine the initial postbuckling state of the structure. 
The linear dependence of 2λ  and 4λ  on κ  represents a 
special situation. 
 
6.3. Class II 

In this class, (72) does not hold. Furthermore, contrary to 
class I, 
 2 0λ =  (81) 
jointly occurs with 
 , 11 0 (with ·  )Ta λλ= ≠ ∨ =0 0%K v  (82) 
and 
 ,*1 10 (with ·  )Ta λλλ= ≠ 0%K v . (83) 
Substitution of (82) into (62.1) and of (82) and (83) into 
(62.2) gives 
 *

1,λ = ∧0v  

( ) ( )2

, 1 , 1
1,

1 ,

· ·
·

if
else

N

j

Tj T T
jTj j T j=

∗
∗ ∗

∗ ∗
λλ λλ

λ ∗
λ

∗λ
= == ≠λ −λ 

∑ 0 0
0

% %

%

v ·K v K v
v v

v ·K v
  

  (84) 

indicating a singular point 1
*
1 )( Cλ =v v  in the form of a 

cusp on the curve described by the vector function *
1 )(λv . 

Fig. 4a(b) shows qualitative plots of 1a  and 2b  
( 2 3,  dλ , and 4λ ) as functions of κ  which denotes the 
stiffness of an elastic spring attached to the structure, 
details of which will be given in Chapter 7 (Numerical 
investigation). Fig. 4 refers to a situation where hilltop 
buckling represents the starting point of sensitivity analy-
sis, characterized by  
 0κ = . (85) 
Substitution of (81) into (28) and into its first derivative 
with respect to κ  gives, 
2 2, 2, 2, 3 ,4( ) 02 db bκκ κ κ κκλ + λ −λ =+ , (86) 

2 2, 3 42 2, , ,)( 02b db κκκ κ κκλ + + −λ =λ . (87) 
Because of (82) and, contrary to Figure 3(a), of 

1lim 0aκ→∞ ≠  (Fig. 4a), 
 ( )2 3 4 ,0 0db

κ
= ∧ − =λ  (88) 

(Fig. 4, 5). According to Fig. 4b, 
 3 2 4 20) 0) 0( (d λ = = λ λ = < , (89) 
indicating that for 2 0λ =  the structure is still imperfec-
tion sensitive. 

Following from (88.2) 
 3, 2 4, 20( ) 0( )d κ κλ = = λ λ =  (90) 
(Fig. 4b, and 5b). Fig. 4 is based on *1, .λλ ≠ 0v  

Fig. 5a(b) shows qualitative plots of 1a  and 2b  
( 2 3,  dλ , and 4λ ) as functions of κ  standing for the 
thickness of the structure, details of which will be given 
in Chapter 7 (Numerical investigation). The initial value 
of κ  is denoted as 0κ . The curves illustrate a situation 
where hilltop buckling represents the end of sensitivity 
analysis because snap-through would become relevant to 
loss of stability if κ  was further increased. 

If *1, ,λλ = 0v  then also (Fig. 5b) 
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( ) ( )1 2, a bκ κ

1a

2 b

κ

 hilltop buckling

02λ =
κ

( )a

( ) ( ) ( )2 3 4, , dλ κ κ λ κ

4λ

3 d

κ

2λ

2 0λ ≤ 2 0λ >
imperfection
sensitive

imperfection
insensitive

 hilltop buckling

3 d

02λ =
κ

( )b  
 

Fig. 4. Sensitivity analysis (class II, hilltop buckling as the starting point): 
( ) ( )1 2( ) , a a bκ κ ; ( ) ( ) ( )2 3 4( ) , , b dλ κ κ λ κ  

      

( ) ( )1 2, a bκ κ

1a

2 b

κ
0κ

 hilltop buckling

02λ =
κ

( )a        

( ) ( ) ( )2 3 4, , dλ κ κ λ κ

κ
02λ =

κ

imperfection
sensitive

 hilltop buckling

0κ

2λ

3 d

4λ

3 d
4λ

2λ

( )b  
 

Fig. 5. Sensitivity analysis (class II, hilltop buckling as the end): 
( ) ( )1 2( ) , a a bκ κ ; ( ) ( ) ( )2 3 4( ) , , b dλ κ κ λ κ  

 2, 2 0( ) 0.κλ λ = =  (91) 
Furthermore, (86) and (88.2) disintegrate into (Fig. 5b) 
 3 2 4 2( (0) 0) 0    d λ = = λ λ = = ∧  
 3, 2 4, 20) 0) 0( ( .d κ κλ = = λ λ = =  (92) 
Substitution of (81), (82), (88.1), and (91) into the second 
derivative of (28) with respect to κ  yields (Fig. 5b) 
 3, 2 4, 20) 0( ( ) 0.d κκ κκλ = = λ λ = =  (93) 
At 2 0λ = , there is no conversion from imperfection 
sensitivity into imperfection insensitivity. 2 0λ =  marks 
the starting point of deterioration of the initial postbuck-
ling behavior accompanied by continued improvement of 
the prebuckling behavior.  

 
7. Numerical examples 
The numerical investigation consists of one example each 
for the two classes of sensitivity analyses of the initial 
postbuckling behavior. In the example for class I (II), 
hilltop buckling is chosen as the starting point (end) of 

such sensitivity analysis. The example for class I (II) is 
solved analytically (numerically by the FEM). 

 
7.1. Example for class I 
Fig. 6 shows a planar, static, conservative system with 
two degrees of freedom. The description of this system 
closely follows (Steinboeck et al. 2008a) where addi-
tional details can be found. Both rigid bars, 1 and 2 
have the same length L and in the non-buckled state they 
are in-line. The bars are linked at one end and supported 
by turning-and-sliding joints at their other ends. A hori-
zontal linear elastic spring of stiffness k  and a vertical 
linear elastic spring of stiffness kκ  are attached to turn-
ing-and-sliding joints. A spring of stiffness kµ  “pulls” 
the two bars back into their in-line position. The system 
is loaded by a vertical load Pλ  at the vertical turning-
and-sliding joint. The two displacement coordinates are 
the angles 1u  and 2 ,u  summarized in the vector 

1 2[ , ] .Tu u=u  In order to write the out-of-balance force 
G  in the structure as defined in (1), other coordinates 
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would have to be chosen. In fact, the angle 1u  would 
have to be replaced by the vertical position of the upper 
turning-and-sliding joint. This would only require a sim-
ple coordinate transformation. For convenience, however, 
the angle 1u  was chosen as a coordinate. The unloaded 
position, delineated in gray, is defined by 10[ ,0] .T=u u  
This system was first investigated in (Schranz et al. 2006) 
and later on in (Steinboeck et al. 2008). 

The potential energy expression follows as 
( )

( )
( )

22
10 1 2

2 2
2

22
10 1 2

10 1 2

( , ) 2 sin( ) sin( )cos( )
sin ( )2

 2 cos( ) cos( )cos( )
2 sin( ) sin( ) cos( ) .

V k L u u u
k L u

k L u u u
P L u u u

λ = κ −
µ+

+ −
−λ −

u

 (94) 

The equilibrium equations , 1 0uV =  and , 2 0uV =  are 
satisfied for the primary path 

( )
2

1 10 1 10

0,
2 (1 )sin( ) cos( ) tan( ) sin( ) ,

u
Lk u u u u
P

=

λ = − κ − + κ
(95) 

and for the secondary path 

 
10

2
1

10 1 10

cos( )4arccos ,4 cos( )
2 4 cos( ) tan( ) sin( ) .4

uu
u

Lk u u u
P

 = ±  −µ 
µ − κ λ = + κ −µ 

 (96) 

Since a perfect system is assumed, the sign of 2u  is 
indeterminate, i.e. it is not known into which direction the 
two bars will buckle. The tangent-stiffness matrix follows as 

( )

( )

2
10 1 1

2 2
10 1 1

1

2
10 1 1

2
10 1 1

1

1 sin( )sin( ) 2sin ( )
4 1 cos( )cos( ) 2cos ( )

sin( );2

sin( )sin( ) sin ( )
cos( )cos( ) cos ( ) .

sin( )2

T

u u u
kL diag u u u

P ukL

u u u
u u u
P ukL

κ + −= + + −−λ
κ − + − −λ 

%K

 (97) 

Its derivative with respect to λ can be computed by 
 ,

, , ,
,T

V
Vλ λ

∂
= ⋅ +

∂λ
% %

uu
uuuK u  (98) 

where 
,λ%u  is the derivative of the displacement vector 

along the primary path, which can be determined from 
the linear equation 
 

, ,
.Tλ λ

∂= ⋅ + =
∂λ

0
%

% % %
GG K u  (99) 

The expression for ,T λ%K  looks similar to (97). For the 
sake of conciseness, it has been omitted. Hence, all terms 
necessary for solving the eigenproblem (60) are available. 
 

L

Pλ
L

1u 2u 1
2

k
kµ

kκ

 
 

Fig. 6. Pin-jointed two-bar system  
(Steinboeck et al. 2008a) 
 
10 ( /2, /2),u ∈ −π π  +µ∈R  and +κ∈R  are para-

meters that can be varied in order to achieve qualitative 
changes of the system. However, in this work, only κ  
was modified. The remaining two parameters were taken 
as 3/5µ =  and 10 0.67026,u =  in which case hilltop 
buckling occurs for 0κ =  representing the starting point 
of sensitivity analysis of the buckling load and the initial 
postbuckling behavior. The load-displacement path for 
hilltop buckling and its projection onto the plane 2 0u =  
are shown in Figs 7a and 7b, respectively. S  labels the 
unloaded state. As the load is increased, the state will 
move up along the primary path until C D=  is reached. 
In case of a load-controlled system, snap-through will 
occur. However, a displacement-controlled system would 
bifurcate and the state would traverse one branch of the 
secondary path. 

If 2 ,uη =  the relevant coefficients of the series 
expansion (4) generally follow as 

 1 2 2
10

2

( / 4)0, ,
cos ( )1
(1 / 4)

k L
P u

κ −µλ = λ =
−

−µ

  

 

2
10

2
2

3 4 2
10

2

cos ( )1 4
(1 / 4)0, .12 cos ( )1
(1 / 4)

u

u

−λ −µλ = λ = −
−

−µ

 (100) 

Thus, 4 2.λ ∝λ  For 0κ =  (hilltop buckling), this system 
is imperfection sensitive 2( 0),λ <  and Cλ  exceeds the 
ultimate load of any imperfect system. Increasing the 
parameter ,κ  i.e. the stiffness of the vertical spring, im-
proves the postbuckling behavior insofar as 2λ  eventu-
ally begins increasing monotonically. The system is im-
perfection insensitive for /4.κ>µ  Fig. 7c refers to the 
transition case / 4.κ = µ  Remarkably, Cλ=λ  holds 
along the whole postbuckling path, which requires 
 {0}0iλ ∀∈= �N . (101) 
This situation is referred to as zero-stiffness postbuckling. 
In contrast to the present example, where zero-stiffness 
postbuckling is a special case of symmetric bifurcation, it 
may  also be  a  special  case of  antisymmetric  bifurcation 
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a)     
 

b)     
 

c)     
 

d)     
 

Fig. 7. Selected results from sensitivity analysis of the ini-
tial postbuckling behavior of the pin-jointed two-bar sys-
tem shown in Fig. 5: (a) load-displacement path for hilltop 
buckling; (b), (c), (d) projections of load-displacement 
paths onto the plane 2 0u =  for hilltop buckling, zero-
stiffness postbuckling, and the beginning of monotoni-
cally increasing prebuckling paths 

(Steinboeck et al. 2008). However, this special case is of 
little practical interest because it does not represent a  
transition from imperfection sensitivity to imperfection 
insensitivity.  

As κ  is further increased, the critical displacement 
at the beginning of monotonically increasing prebuckling 
paths approaches 0. Eventually, at 101 cos( ),uκ= −  the 
two turning points meet at ,=0u  where the primary path 
exhibits a saddle point .D  This situation is shown in 
Fig. 7d. A comparison of Fig. 7b, c, d shows that the 
bifurcation point C  is increasing less strongly with inc-
reasing κ  than the snap-through point .D  Hence, the two 
points are diverging from each other. 

 
7.2. Example for class II 
Fig. 8 shows a shallow cylindrical shell subjected to a 
point load at the center. It contains the geometric data as 
well as values for the modulus of elasticity E  and the 
shear modulus .G  The reference load 1000 kNP =  is 
scaled by a dimensionless load factor .λ  The descrip- 
tion of sensitivity analysis of the initial postbuckling 
behavior of the shell is based on (Schranz et al. 2006) 
where this structure was previously investigated and 
where additional details can be found.  

In contrast to the first example, Koiter’s initial po-
stbuckling analysis was not used to compute post- buck-
ling paths for this example. Instead of it, prebuckling and 
postbuckling analyses were performed by means of the 
FEM, using the finite element program MSC.Marc 
(MCS.MARC 2005 ). 

The parameter κ  that is varied in the course of sen-
sitivity analysis of the initial postbuckling behavior of the 
shell is the thickness. The initial value 0κ  was chosen as 
5.35 cm.  Load-displacement paths for 5.35 cm,κ =  
6.35 cm,  7.35 cm,  and 8.10 cm  are shown in the left 
part of Fig. 9 where u  denotes the displacement of the 
load point. The right part of Fig. 9 contains details of 
corresponding plots of the left part. 

For each one of the four values of κ  considered, the 
structure is imperfection sensitive. For the thinnest shell 
( 5.35 cmκ = ), the slope of the postbuckling path at the 
stability limit is negative whereas the curvature is positi-
ve. The postbuckling path has a minimum followed by a 
maximum. For the second thinnest shell ( 6.35 cmκ = ), 
the slope of the postbuckling path at the stability limit is 
approximately zero, i.e. 2 0λ ≈ . 

According to Fig. 5b, for 2 0,λ =  also 2, 0,κλ =  
4 4, 4,0,  0,  and 0.κ κκλ = λ = λ =  Because of the negative 

curvature of the postbuckling path at the stability limit, 
the first non-vanishing coefficient of (4), which because 
of symmetric bifurcation must have an even subscript, is 
negative. For the second thickest shell ( 7.35 cmκ = ) and 
the thickest shell ( 8.10 cmκ = ), both the slope and the 
curvature of the postbuckling path are negative at the 
stability limit. For the thickest shell, hilltop buckling 
occurs. It represents the end of sensitivity analysis of the 
initial postbuckling behavior of the shell, because loss of 
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Fig. 8. Shallow cylindrical shell subjected to a point load at the center (Schranz et al. 2006) 

stability would occur by snap-through if the thickness of 
the structure was further increased. 

A comparison of the plots in Fig. 9 shows that the 
bifurcation point C  is increasing more strongly with 
increasing κ  than the snap-through point D . Hence, the 
two points are converging to each other. This comparison 
also shows that 2 0λ =  marks the starting point of dete-
rioration of the initial postbuckling behavior accompa-
nied by continued improvement of the pre- buckling be-
havior, characterized by  
 2 0    0d dλ < ∧ κ > . (102) 
Fig. 9 elucidates that the increase of the thickness of the 
shell does not result in a transition from imperfection 
sensitivity to imperfection insensitivity. 

 
8. Conclusions 

• It was shown that hilltop buckling is imperfection 
sensitive.  

• It is conjectured that for symmetric bifurcation all 
non-vanishing coefficients in the asymptotic series 
expansion for the load level at an arbitrary point of 
the secondary path (see (4)) are negative, i.e. 
2 0 \{0}.k kλ ∀ ∈< N �  This conjecture is based on a 

hypothesis representing the generalization of a 
scheme that was validated numerically for the spe-
cial case of 4λ  (see (58)). Verification of this con-
jecture is planned. 

• Hilltop buckling as the starting point – the Α  – of 
sensitivity analysis of the initial postbuckling behav-
ior of elastic structures is characterized by 2, 0,κλ >  
with 2 0d0 ,dλ > ∧ κ >  where κ  is a design pa-
rameter that is increased in the course of the analy-
sis. It marks the starting point of an improvement of 
the initial postbuckling behavior of the structure, ac-
companied by an improvement of the prebuckling 
behavior. The bifurcation point and the snap-
through point are diverging from each other.  

• Hilltop buckling as the end – the Ω  – of such sensi-
tivity analysis is characterized by 2, 0,κλ <  with 

2 0 0.d dλ < ∧ κ >  It is preceded by a deterioration 
of the initial postbuckling behavior of the structure, 
accompanied by an improvement of the prebuckling 
behavior. Hilltop buckling represents the end of  
 

sensitivity analysis because snap-through would be-
come relevant to loss of stability if κ  was further 
increased. The bifurcation point and the snap-
through point are converging to each other. 

• Two classes of sensitivity analyses of the initial post-
buckling behavior of elastic structures were identified. 
Class I is characterized by a remarkable orthogonality 
condition derived from the so-called consistently lin-
earized eigenproblem (see (60)). It may be viewed as a 
special case of class II for which this condition does 
not hold. In mechanical terms, for the first class the de-
cisive eigenvector of the eigenproblem, ( )1 ,

∗ λv  de-
scribes a rectilinear motion, with λ  representing the 
time. For class II, however, ( )1

∗ λv  describes a general 
motion. Hence, it is conjectured that class I is restricted 
to relatively simple problems. 

• The two classes of sensitivity analyses determine 
the mode of conversion of an originally imperfec-
tion-sensitive into an imperfection-insensitive struc-
ture. Such a conversion is the true motivation for 
this type of sensitivity analyses. 

• For class I, there is no restriction on the sign of 
( )4 2 0 .λ λ =  Hence, for 2 0λ = , the structure may 

either be already imperfection insensitive or still 
imperfection sensitive. As a special case, zero- stiff-
ness postbuckling may occur (Fig. 7b). 

• For class II, if ( )*1, ,Cλλ λ ≠ 0v  then ( )2, 2 0 0,κλ λ = >  
and ( )4 2 0 0λ λ = <  (see Fig. 4(b)), but if 

( )*1, ,Cλλ λ = 0v  then 2, 2 0( ) 0,κλ λ = =  4 2 )( 0 0,= =λ λ  
and 4, 2 0( ) 0,κ = =λ λ  4, 2 0)( 0κκ λ = =λ  (Fig. 5b). 
For the second case there is no transition from im-
perfection sensitivity into imperfection insensitivity. 
Thus, the increase of the thickness of a structure, 
while improving its prebuckling behavior, does not 
result in such a transition. For class II, 2 0λ =  cor-
relates with a singular point in form of a cusp on the 
curve described by the vector function ( )1

∗ λv  at the 
point ( )*

1 1Cλ =v v  (see (84)). The type of the cusp 
depends on whether or not ( )*1, Cλλ λv  is zero.  

• The present investigation is viewed as a step in the 
direction of better understanding the reasons for the 
initial postbuckling behavior of a particular elastic 
structure and of its interplay with the prebuckling 
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 (a)  (b) 

 Fig. 9. Selected results from sensitivity analysis of the initial postbuckling behavior of the shallow cylindrical shell shown in 
Fig. 7: (a) Load-displacement paths for different values of the thickness of the shell, with the largest value referring to hilltop 
buckling; (b) details of load-displacement paths 
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behavior. Such understanding will help to avoid the 
design of structures with unfavorable postbuckling 
characteristics. In this sense, the present study is 
aimed at changing the widespread opinion about 
postbuckling as a structural feature that can hardly 
be influenced. 
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AUKŠTESNYSIS KLUPUMAS, KAIP A IR Ω TAMPRIŲJŲ KONSTRUKCIJŲ ELGSENOS UŽ PRADINIO KLUPUMO RIBOS JAUTRUMO ANALIZĖJE 
H. A. Mang, X. Jia, G. Hoefinger 
S a n t r a u k a  
Nagrinėjant apkraunamos konstrukcijos elgseną, bifurkacijos taško sutapdinimas su staigaus pasikeitimo tašku vadinamas 
aukštesniuoju klupumu. Šiame straipsnyje šis taškas yra arba pradžios taškas A, arba proceso pabaigos taškas Ω. Šie 
taškai imami atliekant tampriųjų konstrukcijų elgsenos jautrumo analizę už pradinio suklupimo ribos. Parodyta, kad 
aukštesnysis konstrukcijos klupumas priklauso nuo jos geometrinių netikslumų. Kai aukštesniojo klupumo jautrumo ana-
lizė sutapdinama su pradiniu tašku, bifurkacijos taškas ir staigaus pasikeitimo taškas artėja vienas prie kito. Identifikuo-
jamos dvi jautrumo analizės klasės sprendžiant nuoseklaus linearizavimo savųjų reikšmių uždavinį. Uždavinio sprendinys 
lemia daugiau ar mažiau efektyvią klupumo formą, kuri leidžia pakeisti pradinę netikslumams jautrią konstrukciją į kon-
strukciją, nejautrią jiems. Skaitiniai tyrimai patvirtina teorinius rezultatus. Šie tyrimai padeda nustatant įvairias klupumo 
formas, nagrinėjant tampriųjų konstrukcijų elgseną už pradinio klupumo ribos ir ryšį su jos elgsena prieš šią ribą. 
Reikšminiai žodžiai: nuoseklaus linearizavimo savųjų reikšmių uždavinys, aukštesnysis klupumas, (ne)jautrumas ne-
tikslumams, Koiterio analizė už pradinės klupumo ribos, simetrinė bifurkacija, nulinio standumo elgsena už klupumo ribos. 
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