
JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT
ISSN 1392-3730 / eISSN 1822-3605

2017 Volume 23(1): 28–36

https://doi.org/doi:10.3846/13923730.2014.948911

OPTIMAL SCHEDULING OF WATER NETWORK REPAIR CREWS 
CONSIDERING MULTIPLE OBJECTIVES

Hesham OSMAN, Marwan AMMAR, Moheeb EL-SAID
Department of Structural Engineering, Cairo University, Giza 12316, Egypt

Received 06 Dec 2013; accepted 04 Jun 2014

Abstract. Water main breaks disrupt water services and impact traffic flow along congested city roads. Dispatching 
water pipe repair crews needs to consider several factors that include: 1) the priority of repair site; 2) the suitability and 
efficiency of the construction crew in repairing a particular break type; and 3) the time required for crews to travel be-
tween break sites. This paper presents a simulation-based multi-objective optimization model to schedule repair crews 
across water network break sites in an urban setting. Discrete-event simulation models for the water pipe repair process 
are developed to account for various repair methods. These models are subsequently integrated within a GA-based multi-
objective optimization model that considers the following objectives: 1) minimizing the total repair time required to 
complete all breaks; 2) minimizing the total cost to complete the breaks; and 3) minimizing the cumulative impact of all 
breaks incident on road users and water customers. A case study for the water network on the City of Damietta, Egypt 
is used to demonstrate the capabilities of the model. Results show a 21% reduction in repair time and 50% reduction in 
user impact compared to heuristic crew allocation methods used by the water utility.
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Introduction 

The deteriorating state of infrastructure systems will 
continue to have a significant impact on the public for 
years to come. A recent study by the American Water 
Works Association (AWWA) estimates that more than 
one million miles of water pipes are nearing the end of 
useful life and approaching the age at which they need 
to be replaced (AWWA 2012). These replacement costs 
combined with projected expansion costs will cost more 
than $1 trillion over the next couple of decades. Water 
pipe infrastructure poses unique asset management chal-
lenges because there is no cost-effective and standardized 
mechanism to determine their condition. In many cases 
a run-to-failure or reactive management approached is 
utilized for non-critical water pipes which translates into 
a large number of water main breaks. It is estimated that 
in North America 850 major water main breaks occur on 
a daily basis (Folkman 2012). 

In addition to the direct costs associated with the 
repair work that is needed to repair broken pipe, there are 
several indirect impacts that can be quite severe. Water 
main breaks are known to cause service disruption to wa-
ter customers. Depending on where the break occurred, 
this disruption may range from a drop in pressure deliv-
ered to customers to a total interruption in service. For 
some water customers this disruption can have significant 

consequences (e.g. hospitals, industrial production facil-
ities, etc.). In congested urban areas water main breaks 
also lead to significant disruption to traffic along already 
congested urban roadways. Depending on the depth and 
diameter of the pipe, the repair operations may require 
significant time and equipment to complete which have a 
direct impact on the extent of traffic disruption. 

With the expected aging of water pipes, water utility 
companies will be required to respond to an increasing 
number of water main breaks. In order to deliver high 
levels of service to their customers and minimize im-
pacts to communities by these breaks, utility companies 
need to improve their response plans to break events. The 
development of an optimal water break response plan is 
complicated by a large number of factors that include: 
1) The geographical extent of service areas (especially 
in large cities); 2) The unpredictability of a break event 
occurrence; 3) The availability of different types of repair 
methods and equipment that may not be well-suited to all 
types of breaks; 4) The uncertainty in repair time; and  
5) The uncertainty in transit time of a repair break be-
tween break sites.

As such, this paper develops a comprehensive 
framework and working prototype for optimal allocation 
of water pipe break repair crews that consider these chal-
lenges.



1. Background

Previous work on scheduling and allocation of repair 
crews has spanned several domains. Hegazy et al. (2004) 
proposed an approach for scheduling, resource planning, 
and cost optimization of large construction and/or mainte-
nance programs that involve distributed sites. The model 
was applied to known school maintenance sites spanning 
a large urban area. The model was subsequently extended 
(Hegazy 2006) to consider the option of outsourcing the 
maintenance/repair operation instead of only depending 
on in-house resources. Orabi et al. (2009) developed an 
approach to deal with the challenge of the limited avail-
ability of the reconstruction resources that confront post-
disaster recovery of damaged transportation networks. 
The model capabilities include: 1) optimizing the alloca-
tion of limited reconstruction resources to competing re-
covery projects; 2) assessing and quantifying the overall 
functional loss of damaged transportation networks dur-
ing the recovery efforts; 3) evaluating the impact of lim-
ited availability of resources on the reconstruction cost; 
and 4) minimizing the performance loss of transportation 
networks and reconstruction cost. In the field of electrical 
utility repair, Weintraub et al. (1999) developed a system 
to support the dispatching of emergency services vehicles 
to support unplanned electrical problems. Their approach 
considered the following aspects: 1) service priorities: 
various service problems have different importance (e.g. 
dangerous fallen cable versus domestic loss of power); 
2) travel time and transportation costs; and 3) probability 
of new requests as it is considered important to include 
information about possible breakdowns in the near future 
to avoid the assignment of vehicles which could leave an 
area with possible future breakdowns unprotected.

Van Hentenryck et al. (2010) proposed an approach 
which considers the single commodity allocation prob-
lem (SCAP) for disaster recovery. SCAPs are complex 
stochastic optimization problems that combine the prob-
lems of: 1) resource allocation; 2) parallel fleet routing; 
and 3) warehouse routing. The challenge in solving these 
complex problems is their computational complexity that 
collides with the need be solved under tight runtime con-
straints to be practical in real-world disaster situation. 
Their work introduced a novel multi-stage hybrid-opti-
mization algorithm that utilizes the strengths of mixed 
integer programming, constraint programming, and large 
neighbourhood search to overcome this problem.

Xu et al. (2007) proposed an approach for strategic 
integer program to determine how to schedule inspection, 
damage assessment, and repair tasks so as to optimize the 
post-earthquake restoration of the electric power system. 
The objective of the optimization is to minimize the av-
erage time each customer is without power. Variables, 
such as damage state and functionality status of the enti-
ties, collectively define the system status. As events take 
place, the values of variables are updated, modifying the 
overall system status.

Researches into operational repair optimization for 
water networks have generally not considered all factors 

and constraints that impact the repair process. Simão 
et al. (2004) developed a multiobjective optimization al-
gorithm to locate the best set of isolation valves to close 
in case of a pipe break event such that user impact is 
minimized. Alfonso et al. (2010) utilized genetic algo-
rithms to find sets of optimal operational interventions in 
a water supply network for flushing a contaminant that 
may occur in the network. The optimization model con-
sidered both minimization to adverse public health due 
to the contaminant and operational costs needed for the 
flushing operation. 

Based on the literature review several gaps were 
identified in the literature that required a tailored approach 
to consider the problem of dispatching water network 
repair crews. These gaps/needs can be summarized as:

 – Considering the impact on traffic due to the infra-
structure failure itself, and due to the need to occupy 
any portion of the right-of-way during the repair op-
eration. 

 – Including the disruption time (time from infrastruc-
ture failure occurrence till start/end of the repair) 
with the other objectives of time and cost. 

 – Considering different methods of infrastructure re-
pair and their impact on time and cost of the whole 
repair operation. 

 – Including uncertainty in repair and travel times in 
the optimization problem. 

 – Lack of models that specifically address the recur-
ring problem of water pipe breaks and their emer-
gency repair needs.
As such, the objective of this paper is to build and 

extend these models through: 1) the consideration of 
multiple objectives (namely repair time, repair cost, and 
break impacts on water users/traffic); 2) capturing the 
various repair construction methods and equipment that 
are required for various break types considering factors 
like pipe burial depth, material and available right-of-
way; and 3) consideration of the uncertain nature of the 
repair process by the development of stochastic simula-
tion models for the crew repair and relocation process.

2. System framework

The proposed system framework relies on several related 
components as shown in Figure 1 and explained in sub-
sequent sections.

2.1. The pipe criticality model 
This is a network-level assessment tool for water distri-
bution networks. Pipe criticality is calculated based on 
the concept of “consequence of failure” which is a com-
mon driver of work planning and scheduling within in-
frastructure asset management guidelines (NAMS 2011). 
Criticality considers several possible impacts of pipe fail-
ure, and is considered in the prioritization of pipe repair 
crews. An analytical hierarchy process (AHP) was used 
to better define the concept and drivers of pipe criticality. 
A series of workshops were held with water utility staff 
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to develop a pipe criticality model that can be used to 
prioritize pipe break repair. Workshop attendees includ-
ed participants from operations and maintenance, capital 
planning, and engineering departments. 

The model considers three main criticality impacts: 
1) direct economic consequence of failure; 2) impact on 
water system users; and 3) impact on road users. The 
model relies on a series of 9 criticality variables shown 
in Table 1. All variables are readily available from the 
GIS or hydraulic model for the water network. AHP was 
used to identify the relative weights for each criticality 
category and variable through pair-wise comparison dur-
ing the workshops with utility staff. Resulting weights 
are shown in Table 2.

The model produces an overall Pipe Criticality In-
dex (PCI) that ranges from 0–100. The PCI can be con-
sidered an overall proxy for the impact a pipe break has 
the water utility, water customers and road users. In the 
developed model it is considered that it is in the utility’s 
best interest to give the highest priority in pipe break 
repairs to pipes with the highest PCI values. 

2.2. Repair estimation model 
This module allows the deterministic and stochastic esti-
mation of repair time and cost. Time estimation considers 
the following aspects: 1) type of crew (and associated 
repair method); 2) pipe burial depth (deeper pipes will 
require more excavation and requirements for excavation 
support will be more stringent); 3) pipe material type and 
diameter (heavy pipes like large diameter concrete may 
require specialized lifting equipment). The typical pipe 
repair process proceeds as follows:
1. Site investigation and clearing: involves identifying the 

exact location of the break, valve isolation and shut-
off, designation of any other buried utilities that may 
be adjacent to the break site, placing public warning 
signals, and clearing any obstacles that may be present 
on site (e.g. parked vehicles, tress, vegetation, etc.).

2. Excavation: involves removing the paved surface, ex-
cavation, installation of any needed side-support sys-
tems, and dewatering the excavation site. 

Fig. 1. Proposed system framework

Table 1. Criticality variables 

Criticality 
Variable Rationale 

Diameter
Larger pipe failures create more surface dam-
age, are more costly and time consuming to 
repair, and have a more significant impact on 
traffic.

Pipe 
Material

Some pipe materials consume more time and 
money to fix. Also some pipes are known to fail 
catastrophically causing severe surface damage. 
The most notable example is pre-stressed con-
crete pipe. 

Road Type Reflects the relative importance of the road 
within the overall transportation network. 

Number of 
road lanes

Used as a proxy for expected traffic volume as 
traffic count data was not available on all road 
segments. Roads with heavier traffic volumes 
will cause more disruption to traffic operations 
in case of a pipe breaks.

Land Use

Pipe breaks in certain types of land uses are 
known to contribute to more severe social im-
pacts. Examples include dense commercial, 
downtown CBD and high density residential 
areas.

Serving 
Critical 
Customer

Water utility staff identified hospitals, schools, 
industrial facilities, and large commercial cus-
tomers as critical customers. The hydraulic 
model was used to flag pipe segments that 
would cause service disruption to these custom-
ers in case of breakage. 

Service 
Impact

Hydraulic model was used to identify the num-
ber of customers that was have disruption in 
service in the event of a pipe breakage. Disrup-
tion was defined as any drop in pressure below 
the minimum allowable service level (15 bar). 

Operational 
Flag

In collaboration with the operations department, 
flag any pipes that are known to be difficult to 
repair. This factor was used to “override” any 
specific problem areas that were not directly 
captured through the criticality variables.

Pipe 
crossings

Failures of pipe crossing waterways, railroads, 
highways, cause much more damage, disrup-
tion and are more costly and time consuming 
to repair.

Table 2. Relative weights for criticality categories  
and variable

Criticality 
Category

Category 
Weight Criticality Variable Variable 

Weight

Direct 
Economic 
Impact

40%

Diameter 11%
Pipe Material 5%
Type of Pipe 21%
Type of Soil 21%
Pipe crossings 42%

Impact 
on Water 
Users

30%

Type of Pipe 14%
Serve Critical Customer 29%
Service Impact 29%
Operational Flag 29%

Impact 
on Road 
Users

30%
Road Type 54%
# of road lanes 30%
Diameter 16%
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3. Pipe repair: two main methods are used for pipe repair 
depending on the extent of pipe damage. Clamp instal-
lation is used for minor breaks/holes that are found in 
the pipe wall and is effective for cast iron and ductile 
iron pipes. Clamps allow repair to occur without the 
full depressurization of the water main. In the case 
where a pipe segment is severely damaged a segment 
replacement must occur. In this case a partial/full pipe 
segment is removed and a new segment installed in its 
place. This technique is usually more time consuming 
and requires the full depressurization and disinfection 
of the line after repair (AWWA 2012). Repair time is 
usually influenced by pipe diameter and the type of 
repair. A total of five interviews with operations and 
maintenance staff from the Cairo Water Company were 
undertaken. Respondents were asked estimate the typi-
cal ranges for repair times based on diameter and re-
pair method for different pipe types. An example is 
shown in Table 3. 

It should be noted that the core contribution of the 
paper is not collecting the repair time duration but rather 
developing a comprehensive framework for optimizing 
the repair process across the network. The developed sys-
tem allows the user to modify actual repair times based 
local conditions and constraints.

Table 3. Pipe repair times (hr)

Diameter (mm) 100–200 200–400 400–600 >600
Clamp method 0.5–1.5 1–2 1.5–2.5 2–3
Segment replacement 
method 1–3 2–4 2.5–5 4–8

4. Site backfill and restoration: this involves hydrant 
flushing to remove any debris, reopening valves, back-
filling with appropriate fill material, compaction and 
surface restoration activities. Impacts on water system 
users seize to exist once valves are reopened while 
impacts on road users will continue until surface res-
toration works are completed. 

Generally speaking, the water pipe repair process 
can be characterized by the following: 1) large number of 
activities taking place by different work crews; 2) signifi-
cant uncertainty in the durations of many activities and 
tasks; 3) duration of overall repair job impacted by sev-
eral external factors that cannot be completely foreseen. 
Hence, the use of a fully deterministic model to estimate 
total repair duration may not be suitable for optimal crew 
allocation. As such, the overall repair process is modeled 
using discrete event simulation via the STROBOSCOPE 
construction simulation package (Martinez, Ioannou 
1994). STROBOSCOPE has been successfully used 
to model a wide range of construction operations like 
bridge construction (Marzouk et al. 2007), road paving 
operations (Nassar et al. 2003), and tunnel construction 
(Ioannou, Likhitruangsilp 2005).

The simulation models were created using standard 
repair sequencing and assuming no interruption of work 

occurs. The result of the simulation runs are probabilistic 
repair times that take into account various factors that 
are known to impact repair duration. Figure 2 shows re-
pair times for a segment replacement in shallow depth 
for 5,000 simulation runs. In order to allow for real-time 
support for crew allocation problems, results of the sim-
ulation runs covering all cases of pipe diameter, burial 
depth and repair method were used to populate a data-
base. During real time crew allocation, the optimization 
model matches the existing break case to the database 
to obtain the repair duration (both deterministic and sto-
chastic). 

2.3. Crew relocation estimation model
This module embeds the capabilities of the Google Maps 
API within ESRIs ArcGIS software. This enables lever-
aging the following capabilities: 1) site routing and de-
termination of the shortest time between any two sites 
and 2) calculation of the travel times between pipe break 
sites. In some cities, Google maps enable adjustment of 
travel times to include expected traffic conditions which 
is a vital influence in congested urban areas. This module 
is able to calculate the relocation time and cost between 
pipes’ break sites. Output from the aforementioned mod-
ules is fed into the multi-objective optimization module. 
The following section describes details of this module.

3. Optimization model

The optimization model takes into consideration three 
conflicting objectives: 1) total time to complete all break 
repairs; 2) total cost to complete all break repairs; and 
3) total impact to system users caused by the breaks as 
measured by the pipe criticality index. In many cases 
assigning crews based on only one objective may sig-
nificantly impact other objectives. For example in or-
der to minimize costs and time, critical breaks may be 
scheduled later in the day in order to repair breaks in a 
geographically sequential order. In some instances repair 
time and cost can conflict. This occurs when repair crews 
that are equipped with large equipment that is typically 

Fig. 2. Results of pipe repair simulation models
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used for large breaks get assigned to smaller breaks. In 
this case, repair time will be minimized but costs will 
be excessive. As such, any comprehensive optimization 
module needs to consider all objectives simultaneously.

The optimization model is capable of performing 
both deterministic and stochastic optimization. In the 
case of stochastic optimization, the results of the discrete 
event simulation of the pipe repair estimation module are 
fed into the optimization. When stochastic optimization 
is undertaken, a distinct optimization is solved for each 
simulation run separately and the overall dominating 
solution in all optimization trials is considered the pre-
ferred solution. 

The time objective considers the total time taken by 
all repair crews to complete all breaks reported during 
the day. This time includes both repair and relocation 
times for all crews combined. The optimization model 
is built on a series of binary decision variables. The first 
binary variable is Xi,j,k which takes on a value of 1 when 
crew ‘i’ is assigned to site ‘j’ utilizing repair method ‘k’ 
and takes a value of zero otherwise. As such the total 
repair time (TRT) can be calculated as follows:
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where RTi,j,k is the repair time for crew ‘i’ at site ‘j’ using 
repair method ‘k’ and is calculated via the repair estima-
tion module. CN is the number of available crews, SN is 
the number of repair sites and MN is the available num-
ber of repair methods.

In building the optimization model, the concept of 
“repair steps” is utilized. A repair step is the order in 
which a break site is repaired by a crew. The possible 
number of repair steps ranges from SN/CN (crews evenly 
distributed across repair sites) to SN (only one crew as-
signed to fix all sites and other crews idled). The actual 
number of repair steps O ranges from SN/CN ≤ O ≤ SN. 

The second decision variable is ,
n

i jY  which is a bi-
nary decision variables that takes the value of 1 when 
crew i as assigned to work site j during time step n. This 
decision variable is used to calculate the relocation time 
and cost. This variable is used to track the movement of 
crews between sites. As such the total relocation time 
(TLT) can be calculated as follows: 
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where LTj,k is the relocation time between sites j and k as 
calculated from the crew relocation estimation module. 
The total time to complete all repairs by all crews (TT) 
is the sum of total repair and relocation time:

 TT = TRT + TLT. (3)
Similarly the total repair cost (TRC) and total relo-

cation cost (TLC) can be calculated in a similar manner:
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where RCi,j,k is the repair cost for crew “i” at site “j” 
using repair method “k” and is calculated via the repair 
estimation module and LCj,k is the relocation cost be-
tween sites j and k as calculated from the crew relocation 
estimation module. The total cost to complete all repairs 
by all crews (TC) is the sum of total repair and reloca-
tion costs:
 TC = TRC + TLC. (6)

In order to include the objective of pipe criticality, 
the Cumulative Criticality Index (CCI) is calculated as 
product of a pipe criticality index and the time between 
breakage and completion of repair:

 
1

* ,
SN

j j
j

CCI SRT PCI
=

= ∑   (7)

where SRTj is the total time needed to complete all breaks 
and crew relocations prior to reaching site j and PCIj is 
the pipe criticality index for the broken pipe at repair site 
j as calculated by the pipe criticality model. 

3.1. Multi-objective optimization
The approach utilizes a goal-optimization based multi-
objective optimization procedure for solving the problem 
at hand. Rather than utilizing the concepts of pareto op-
timal dominating solutions (e.g. Non-dominated Sorted 
Genetic Algorithms) that yield a large number of parteo 
optimal solutions, the goal optimization based approach 
is utilized. This has two main advantages: 1) does not 
require a psteriori intervention by the decision maker 
after the pareto optimal solutions are generated in or-
der to select the final optimal solution; 2) decrease the 
computational complexity of the optimization problem 
allowing real-time optimization of repair plans which is 
vital when dealing with emergency infrastructure repair 
that is constantly being updated throughout the day like 
water main breaks.

Goal optimization principles are used to structure 
the optimization problem such that it is sought to min-
imize deviations from set goals. The goal optimization 
formulation is able to consider multiple, conflicting and 
incommensurable objectives, which is the case with 
the time, cost and criticality objectives (Schniederjans 
1995). Goal optimization, sometimes referred to as goal 
programming (GP) is a mathematical optimization tech-
nique, quite similar to linear programming, although it 
has the capability to handle several conflicting goals. In 
GP terminology, a set of goals, Gi, where i =1, 2, 3, …, n, 
need to be achieved simultaneously. The objective func-
tion is then formulated to minimize the sum of deviations 
from these prescribed goal values (Atef et al. 2012).

The optimization process proceeds in a two-stage 
process. First three distinct single-objective optimization 
problems are solved considering each objective sepa-
rately followed by a multi-objective optimization where 
all objectives are considered simultaneously. For the sin-
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gle-objective optimization each solution is different and 
yields a time, cost and criticality goal (TG, CG and RG). 
TG is the least possible total time that can be achieved 
and is calculated by minimizing TT in Eqn (3). CG is 
the least possible total cost that can be achieved and is 
calculated by minimizing TC in Eqn (6). RG is the least 
possible cumulative criticality that can be achieved and is 
calculated by minimizing CCI in Eqn (7). TG, CG and RG 
are considered the best possible objectives that can be at-
tained. In essence they are the “goal” the multi-objective 
optimization formulation seeks to meet. The objective 
function is formulated such that normalized deviations 
from goals are minimized as per the following equation:

 
( ) .G G G

G G G

TT T TC C CCI R
Min Z

T C R
− − −

= + +
 

(8)

Due to the computational complexity of optimiza-
tion problem and in order to allow for the tool to be 
easily accessible to operations crews the aforementioned 
optimization model is implemented in a programmable 
spreadsheet environment. The structure of the chro-
mosome for each solution and the interaction between 
the genetic optimization algorithm and other models in 
the system is shown in Figure 3. The model starts by 
generating N random solutions based on the number of 
repair sites (SN) and repair crews (CN). Each solution 
represents a particular crew allocation order. For each 
solution the total repair time (TT), total repair cost (TC) 
and cumulative criticality index (CCI) is calculated using 
the modules described in the previous section. Based on 
these calculated fitness values, the solutions are sorted 
and given a rank that represents the fitness of each solu-
tion compared to other solutions. The best solutions are 
then selected to undergo the genetic operators of cross-
over and mutation in order to generate a new population 
of solutions. These steps are repeated until a set conver-
gence criteria is reached. This approach has been adapted 
from that used by Orabi et al. (2009).

4. Case study

The model was tested on a portion of the water distribu-
tion network for the City of Damietta in Egypt. The total 
network length is 220 km and is composed of 1,250 pipe 
segments in GIS. Diameters ranged from 100 to 800 mm 
and material types included steel, PVC and ductile iron. 
The portion of the City that was studied had good varia-
tion in land use and road types so offered good variability 
in overall pipe criticality. 

The case study area includes older areas of the City 
where aging water pipes have been known to break at 
increasingly high rates. The study areas also included 2 
major arterial roads and a busy downtown area. As such 
the studied area offered a good sample to test how emer-
gency repairs, and their impact on the water network and 
roadway should be addressed when multiple conflicting 
objectives of time, cost and community impact are con-
sidered. 

In order to speed up the travel time calculations, 
the City was divided into 8 zones as shown in Figure 4. 
Travel times between each zone were calculated based on 
the Google Maps API. The case study assumed 13 breaks 
were reported and only 3 repair crews were available to 
address them. These figures were suggested by the City’s 
water utility to mimic their maximum encountered break 
rate and minimum available crews. This constitutes a 
worst-case scenario and was used as the test case. As 
shown in Table 4, four out of the 13 break sites had rela-
tively high criticality (pipe id 295, 24, 43, and 386). This 
was mainly due to the fact that they were located in high 
density areas, major roads, or were large diameter pipes.

Four different optimization problems were solved. 
First, single objective optimization was conducted for 
time, cost and criticality. For each optimization problem 
the resulting time, cost and cumulative criticality index 
were calculated. Following establishing the time, cost 
and criticality goals (TG, CG and RG) the multi-objective 
optimization problem was solved as per Eqn (8). Each 
pipe break site was assigned a crew and a step (order) 
as shown in Table 4. The following observations can be 
made regarding these results:

 – Large variations were observed between crew as-
signments across different optimization problems. Fig. 3. Chromosome structure and genetic optimization

Fig. 4. Water pipe network and zones – City of Damietta



Table 4. Crew allocation results

Pipe 
ID PCI

Repair Step

Time Cost Criticality Multi-Objective

295 75.5 4 11 1 2
24 63.3 2 6 1 1
43 58 5 10 1 1
386 44.7 3 7 2 2
15 17.1 1 5 2 5
1 3.8 1 1 3 1
19 3.6 3 12 4 3
591 3.6 4 13 2 4
117 3.4 2 2 3 2
118 3.4 2 9 4 4
149 3.4 1 3 3 3
207 3.4 4 8 4 3
800 3.4 3 4 5 4

 – When only cost was considered, crew 3 was select-
ed to do all repairs due to its lowest unit cost rate 
and other crews were idled. This resulted in a huge 
total time for repair and network criticality index. 

 – Making decisions based solely on time and cost op-
timization can have significant impact on the con-
sequences of the pipe break. For example pipe #295 
was considered the most critical piece of infrastruc-
ture in the case study network. When considering 
the cost objective only it was scheduled for repair 
in step 11 (after more than 40 hours since the break 
occurred). When considering time objective only it 
was the last site to repair for crew 1 (more than 15 
hours after break occurrence). Both cases are unac-
ceptable. 

 – Making crew allocation decisions based solely on 
criticality tended to have an unfavourable impact on 
total time. This can be explained by the fact that 
crews may not have been allocated based on their 
suitability to address the type of break nor their 
proximity to the break site but rather to fix the most 
critical break first.

 – The multi-objective optimization resulted in a 2.5% 
deviation from the total time target, a 5% deviation 
from the total cost target and a 50% deviation from 
the criticality target (Table 5). This suggested that 
the optimization problem will be highly sensitive to 
the weights assigned for each objective.

Table 5. Optimization results

Objective 
Function Time Cost Criticality Multi-Objective

Time (Hours) 19.1 69.6 37.3 19.6

Cost  
(x 1000 LE) 42.2 40.1 41.2 42.2

Criticality 
(CCI) 2,653 7,997 677 1,055

 – The optimization model run time was within the or-
der of 1–3 minutes for each of the four optimization 
models running on a 2.30 GHz computer. This per-
formance would allow a water utility to obtain re-
al-time optimal crew allocation plans to respond to 
break events. In the case of new break being reported 
during the day, the optimization model can be re-run 
with real-time crew location and the plan adjusted if 
necessary. Scalability of the optimization model to 
address larger urban areas is still being studied.

4.2. Evaluation 
In order to evaluate the results of the model, it is com-
pared to system repair heuristics that are used by some 
water utilities. The Damietta Water Company utilized a 
break prioritization rule based on pipe diameter such that 
crews would always fix pipes in decreasing size. The ra-
tionale behind this heuristic is that pipe diameter plays 
an important role in determining the criticality of a pipe. 

Using this heuristic, total time, cost and cumulative 
criticality were calculated for the case study that was dis-
cussed in the preceding section. The optimization model 
showed significant improvement over the commonly 
used heuristic with regards to total repair time and im-
pact on system users (as measured by the criticality in-
dex). Improvements in cost were marginal as shown in 
Table 6. Based on the case study data, utilizing a more 
comprehensive approach to assign repair crews has the 
potential to improve crew utilization and reduce commu-
nity impacts of water main breaks.

In comparison to other models related to optimal 
resource allocation for infrastructure repair the developed 
model offers several advantages: 

 – Captures infrastructure interdependencies that occur 
due to the failure event and repair process as mani-
fested in traffic impacts. Although this impact does 
not directly affect the water utility, the livelihood of 
congested urban areas can be severely impacted by 
water main break events and should be considered in 
the decision making process. 

 – Model considers different infrastructure repair meth-
ods and their consequential cost and time impacts. 
By conducting this trade-off, the model is able to 
allocate resources in a manner that considers both 
the impact on water customers (repair time) and the 
cost of repair. This set improves the ability of the 
utility to better develop level of service standards 
within the context of service affordability.

Table 6. Comparison between water utility heuristic  
and optimization model

Criterion Heuristic 
Approach

Optimization 
Model Improvement

Time (hours) 25 19.6 21.7%
Cost (x 1,000LE) 42.5 42.2 0.78%
Criticality (CCI) 2,127 1,055 50.42%
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 – Developed model is fully implemented within com-
mercial software technology (MS-Excel) that is 
readily available to most water utilities, hence in-
creasing the practicality of the developed model. 

 – The model is capable of undertaking stochastic es-
timates of the repair process and including this in-
formation in the optimization process. The highly 
uncertain nature of emergency repair of buried in-
frastructure systems is captured and included in the 
subsequent decision making process.

Summary and conclusions

Water utilities that are faced with limited capital replace-
ment budgets and aging infrastructure are expected to 
deal with an increasing number of water pipe breaks. 
Developing adequate response plans for these events is 
needed in order to minimize maintenance costs and con-
tinue to deliver the highest possible service to its custom-
ers. As such, this paper presented an optimization-based 
framework for allocating limited repair crews to break 
sites that can be scattered across large areas within cities. 
When compared to allocation heuristics commonly used 
by water utilities, the framework was shown to decrease 
cost, time and impact on users as measured by a critical-
ity index. 

The proposed model has several limitations and fu-
ture work is required to address these issues. First of all 
for critical pipe infrastructure, the water utility’s man-
agement approach should be reactive rather than proac-
tive. Failures should not be allowed to occur and hence 
the model developed in this paper is more applicable to 
medium – low criticality pipe infrastructure. Secondly, 
the criticality model that was used relies on a simpli-
fied weighting system rather than a more comprehensive 
analysis of consequences of failure. Future work should 
integrate the capabilities of water network hydraulic 
modelling and traffic simulation models to provide a 
more reliable assessment of the true impacts of pipe fail-
ure on these larger systems. Also, integrating this work 
with pipe deterioration models can allow water utilities 
to forecast where their breaks are most likely to occur 
and hence provide a more strategic planning tool for re-
pair crew allocation. Other future enhancements include 
enhancing the exiting optimization model to be a pare-
to-optimal multi-objective scheduling model. 
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