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Abstract. Vision-based action recognition of construction workers has attracted increasing attention for its diverse applica-
tions. Though state-of-the-art performances have been achieved using spatial-temporal features in previous studies, con-
siderable challenges remain in the context of cluttered and dynamic construction sites. Considering that workers actions 
are closely related to various construction entities, this paper proposes a novel system on enhancing action recognition us-
ing semantic information. A data-driven scene parsing method, named label transfer, is adopted to recognize construction 
entities in the entire scene. A probabilistic model of actions with context is established. Worker actions are first classified 
using dense trajectories, and then improved by construction object recognition. The experimental results on a comprehen-
sive dataset show that the proposed system outperforms the baseline algorithm by 10.5%. The paper provides a new solu-
tion to integrate semantic information globally, other than conventional object detection, which can only depict local con-
text. The proposed system is especially suitable for construction sites, where semantic information is rich from local objects 
to global surroundings. As compared to other methods using object detection to integrate context information, it is easy 
to implement, requiring no tedious training or parameter tuning, and is scalable to the number of recognizable objects. 
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Introduction 

Effective and timely analysis of workforce activity is es-
sential for productivity measurement, progress evaluation, 
safety monitoring, and labor force training (Gouett et al. 
2011; Gerek et al. 2014; Akhavian, Behzadan 2016; Han 
et al. 2014). Current efforts typically lean on visual obser-
vation and manual analysis, including an array of project-
level information systems, direct observation methods, 
and survey/interview-based methods (Kim, Caldas 2013). 
This is usually a tedious and high cost task because valu-
able visual observations at a high confidence level usually 
require hours of continuous observation (CII 2010), in ad-
dition to the very considerable amount of time required 
for data analysis.  Furthermore, workers may alter their 
behavior when being noticeably observed. Construction 
activities will then unintentionally diverge from the norm. 

There is an urgent need for automated activity analysis. 
In the past decade, information technology has been ap-
plied in research field to collect operation data and analyze 
construction activity automatically. Some methods are 
based on tracking locations of construction entities (Nav-
on, Goldschmidt 2010; Cho et al. 2014). They use various 

sensor systems, such as ultra-wide band (UWB) (Cheng 
et al. 2011), global positioning (GPS) (Pradhananga, Teiz-
er 2013), or radio frequency identification (RFID) (Costin 
et al. 2012), to track workers or equipment and interpret 
their activities using prior knowledge of the site layout. 
Other methods are based on recognizing gestures of con-
struction entities. They capture the body movements of 
construction workers by means of wearable accelerome-
ters (Joshua, Varghese 2011, 2013), embedded smartphone 
sensors (Akhavian, Behzadan 2015, 2016) or motion cap-
ture system (Han et al. 2014) and then recognize activities 
by machine learning. 

Compared to the aforementioned technologies, video 
cameras capture wide range information non-intrusively 
in a relatively low cost. With the aid of computer vision 
technology, both construction activities (Yang et al. 2015) 
and as-built infrastructures (Fathi et al. 2015) can be ana-
lyzed automatically. Vision-based action recognition is the 
first step of activity analysis. Recent years, several research-
ers have studied spatial-temporal feature based worker ac-
tion recognition. The state-of-art recognition rate report-
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ed for 11 action types was merely 59% (Yang et al. 2016), 
which is not satisfying for further analysis in real applica-
tion. Video cameras record vivid content in construction 
sites, including workers, equipment, tools, materials, and 
temporary facilities or structures. All these semantic infor-
mation naturally offers supplementary evidence for action 
recognition. However, existing action recognition meth-
ods mainly rely on analyzing workers movement without 
considering semantic information. 

To address this issue, we propose utilizing semantic 
information to enhance worker action recognition. Con-
ventional approach of obtaining semantic information is 
object detection (Kim, Caldas 2013; Gupta et al. 2009; Yao, 
Fei-Fei 2010a, 2010b). It detects only a small and fixed 
set of objects, while abandoning other semantically valu-
able information. Scene parsing is able to depict the entire 
scene non-parametrically. Compared to object detection, 
they require considerably less time for training and system 
tuning, but supply more semantic information (Liu et al. 
2011a). So we adopt a scene parsing method to obtain se-
mantic information from construction site. Our system 
comprises four modules: (1) taxonomy of construction ob-
jects is established to describe the trades-related context, 
(2) a scene parsing method named ‘label transfer’ is adopt-
ed for construction object recognition, (3) the probabilis-
tic model depicting the relationships between objects and 
worker actions is learned from training data, and (4) the 
baseline of worker action recognition is improved by using 
semantic information.

Promising experimental results are achieved on a pub-
licly available dataset, which contains 500 video clips re-
corded in real construction sites, covering 11 types of 
worker actions. Algorithm with the state-of-the-art per-
formance of worker action recognition (Yang et al. 2016) 
was selected as the baseline. The experimental results 
showed that the proposed system outperforms the base-
line algorithm by 10.5% on average. 

The main contribution of this paper is that the idea 
of adopting a scene parsing method for action recogni-
tion enhancement is novel. It provides a new solution to 
integrate semantic information globally, other than con-
ventional object detection, which can only depict local 
context.  The proposed system is especially suitable to be 
applied in construction sites, where semantic information 
is rich from local objects to global surroundings.

1. Related work

During the past decade, many researchers have applied 
computer vision technologies to construction operation 
analysis (Yang et  al. 2015; Seo et  al. 2015; Teizer 2015). 
In early studies, usually workers were detected (Rezaza-
deh Azar, Mccabe 2012; Memarzadeh et  al. 2013) and 
tracked (Peddi et al. 2009; Yang et al. 2010) or equipment 
was tracked (Zou, Kim 2007; Bugler et  al. 2014; Brila-
kis et  al. 2011), and then their activities were analyzed 
by trajectories using prior knowledge of the site layout  

(Rezazadeh Azar et al. 2012; Yang et al. 2014; Gong, Cal-
das 2011). However, trajectories are not always sufficient 
for construction operation analysis, in particular when 
trades are practiced at a fixed spot without obvious loca-
tion changes. Under such circumstances, it is more im-
portant to describe the body movements of equipment or 
workers. Spatial-temporal descriptors effectively depict 
motion through the space and time domains, as well as 
capturing salient background information (Laptev 2005; 
Dollar et al. 2005). A recent trend is to adopt the spatial-
temporal feature descriptors in a bag-of-features pipeline 
for action recognition without using explicit object detec-
tion or tracking (Laptev et al. 2008; Wang et al. 2013).

Gong et al. (2011) utilized the 3D Harris detector as 
the feature detector, histogram of gradient (HoG) and 
histogram of optical flow (HoF) as feature descriptors, 
and Bayesian network models as the learning method in 
worker and backhoe action recognition. Golparvar-Fard 
et al. (2013) focused on action recognition of earth mov-
ing equipment. They used a Gabor filter as the feature de-
tector, HoG and HoF as descriptors, and support vector 
machines (SVMs) for action learning. Yang et  al. (2016) 
studied worker action recognition. They established a new 
dataset with 1176 video clips, covering 11 types of trades. 
A state-of-the-art recognition rate was achieved using 
dense trajectory description (Wang et al. 2013).

Evidence garnered from cognitive science research 
shows that humans require semantic information, such 
as the context, scene, or interacting objects, to recognize 
actions (Biederman et  al. 1982). In many studies in the 
computer vision field, attempts have been made to in-
clude semantic information in human activity recogni-
tion (Ziaeefard, Bergevin 2015; Onofri et al. 2016; Herath 
et al. 2017). Marszalek et al. (2009) exploited the context 
of natural dynamic scenes for human action recognition 
in video clips. They used movie scripts for annotation and 
discovered the reoccurring relation between scenes and 
actions. Instead of focusing on the scene in general, Ul-
lah et al. (2010) proposed improving action recognition by 
disambiguating local space-time features and integrating 
additional non-local cues. They decomposed videos into 
region classes and augmented local features with corre-
sponding region-class labels. Gupta et al. (2009) present-
ed a Bayesian approach for gaining an understanding of 
human-object interactions. In their method, spatial and 
functional constraints were applied for coherence seman-
tic interpretation. 

Construction workers interact with tools, equipment, 
materials, or other workers frequently in order to complete 
their tasks. However, in few studies was an attempt made to 
understand worker activities using semantic information. 
A pioneering work by Kim and Caldas (2013) was the first 
to use tools information to improve worker action recog-
nition. In their study, worker actions are recorded as skel-
eton movements by Microsoft KINECT system, and classi-
fied by a Gaussian mixture model.  Three types of actions, 
“caulking”, “hammering”, and “screwing”, were involved. 
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Then, handheld tools were recognized and included in a 
probabilistic model to improve action recognition. The 
study was conducted in a controlled indoor environment. 
Only handheld tools were considered as context, and other 
semantic information was not utilized. Construction sites 
are usually cluttered and dynamic and thus handheld tools 
may be invisible as a result of occlusion. Luo et al. (2018) 
proposed a novel scheme to interpret interaction activi-
ties from still site images using semantic information. 
Construction-related objects were detected using convo-
lutional neural networks. Semantic relevance and spatial 
relevance were established to describe relevance between 
two objects. Then activities were recognized through pre-
defined activity patterns. Their method has the advantage 
to interpret multiple activities simultaneously from wide-
range surveillance images. It can be applied as guidance to 
further detailed action analysis. 

Construction sites evolve over time and involve a large 
number of entities (Teizer 2015). Kim et  al. (2016) pro-
posed a novel scheme to recognize construction objects in 
the entire image using a data-driven scene parsing method. 
The system was nonparametric and scalable to the number 
of recognizable objects. An average pixel-wise recognition 
rate of 81.48% was achieved for real construction site im-
ages. Inspired by Kim et  al. (2016) and Kim and Caldas 
(2013), we propose a system using context information 
obtained by data-driven scene parsing to enhance action 
recognition of construction workers. 

The differences between the proposed system and the 
two closely related studies are as follows. Kim et al. (2016) 
introduced an existing scene parsing method ‘Label Trans-
fer’ to construction objects recognition. We adopted the 
same scene parsing method to obtain semantic informa-
tion from the entire construction site. Based on our own 
taxonomy, the semantic information was integrated to en-
hance worker action recognition. Kim and Caldas (2013) 
recognized three types of hand-held tools by convention-
al object detection and applied the tools information to 
improve skeleton-based worker action recognition. Our 
scene parsing based system can recognize more types of 
construction objects easily and obtain semantic informa-
tion globally. Furthermore, compared to KINECT sensor, 
video cameras has no strict constrains on indoor or out-
door environment.

2. Methodology

The overall workflow of the proposed system is shown in 
Figure 1. As can been seen, it comprises three pipelines. 
The first pipeline is to build taxonomy of construction 
objects (will be introduced in Section 2.3), annotate the 
image database (Section 3.1), and learn the model of con-
struction actions with context (Section 2.3). The second 
pipeline is data-driven scene parsing (Section 2.1), which 
involves three modules: scene retrieval, dense scene align-
ment, and label transfer-based object recognition. The 
third pipeline is to apply the object recognition results to 
the baseline algorithm (Section  2.2) for action recogni-
tion enhancement (Section 2.3). Among these procedures, 
data-driven scene parsing adopts an existing algorithm la-
bel transfer (Liu et al. 2011a). And the baseline of worker 
action recognition was originally developed by Yang et al. 
(2016). 

Note that action recognition is conducted on videos 
while scene parsing is based on images. Therefore, given 
a test video, its first frame is extracted for scene parsing.

2.1.  Scene parsing-based construction object 
recognition

Scene parsing is to segment and parse an image into dif-
ferent image regions associated with semantic categories, 
such as worker, scaffold, rebar, and hammer. In our sys-
tem, a nonparametric scene parsing method named label 
transfer (Liu et al. 2011a) is adopted for construction ob-
ject recognition. An image dataset is required for scene 
parsing. All images in the dataset should be annotated 
manually with object category labels. The first step of 
the algorithm is called ‘scene retrieval’, which is to match 
an input image (usually called a query) with similar im-
ages (usually called neighbors) in the database. Then the 
second step ‘dense scene alignment’ is to establish dense 
scene correspondence between the query image and each 
of the retrieved nearest neighbors.  Lastly, ‘label transfer’ 
is to mapping the annotations from the nearest neighbors 
to the query image according to the estimated dense cor-
respondence. Details are described as follows. 

Scene Retrieval. Given a query image, scene retriev-
al is to find a set of nearest neighbors that share similar 
scene configuration with the query. K-NN model and  

Figure 1. System overview
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-NN model are two commonly used models to find the 
nearest neighbors. K-NN model takes the K closest imag-
es to the query while -NN model finds all images within  
(1+ ) times the minimum distance from the query. In our 
system, these two models are generalized as <K, > -NN 
model, defined as:

( ) { | dist( , ) (1 )dist( , ),
argmin dist( , ), },
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where  is the query image, iy  represents one of the near-
est neighbors, and ( ).,.dist  is the distance function. The 
Euclidean distance of the GIST descriptor (Oliva, Torralba 
2001) was used in this study.

Dense Scene Alignment. In order to transfer exist-
ing annotations to a query image, dense correspondence 
needs to be established between the query image and its 
nearest neighbors. SIFT flow is used to find correspond-
ence by matching local SIFT descriptors (Liu et al. 2011b). 
The energy function of SIFT flow is defined as:
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where ( , )= x yp  is the pixel coordinate, ( ) ( ( ), ( ))= u vw p p p  
is the flow vector at point p , 1s  and 2s  represent the local 
SIFT descriptor for two images, and e contains all nearest 
neighbors. The three terms in the energy function have 
different control objectives: the data term (Eqn (2)) con-
strains the SIFT descriptor to be matched along the flow 
vector, the small displacement term (Eqn (3)) ensures the 
flow vectors are as small as possible, and the spatial regu-
larization term (Eqn (4)) constrains the flow vector of ad-
jacent pixels to be similar. By minimizing the energy, the 
top M  re-ranked votes are retrieved from the ,< >K
-nearest neighbor ( ≤M K ). This set contains the candi-
dates for label transfer to the query image.

Label Transfer. Now, the scene parsing problem can be 
formulated as the label transfer problem from the match-
ing candidates to the query image. Let I  be the query 
image with its SIFT image and s  be the candidate set, in 
which is , ic , and iw  are the SIFT image, annotation, and 
SIFT flow field (from s  to is ) of the i th candidate, re-
spectively. A probabilistic Markov random field model is 
built to parse image I . As shown in Eqn (5), the posterior 
probability contains three components: likelihood, prior, 
and spatial smoothness. The pixels in the query image are 
labeled by minimizing
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where  Ω = + = = …, { ; ( ( )) }, 1, ,l ii c l l Lp p w p  is the index set
of the candidate images, the label of which is l  after being 
warped to pixel p . τ  is the value of the maximum dif-
ference of the SIFT feature: τ = −

1 2, , 1 2max ( ) ( )s s s sp p p  .
The prior term λ =( ( ) )c lp  is the prior probability of 

object type l appearing at pixel p. It is estimated by count-
ing the occurrences of object type l at pixel p during train-
ing:

λ = = −( ( ) ) log hist ( )lc lp p ,                                           (7)

where hist ( )l p is the spatial histogram of object type l.
The smoothness term sets the neighboring pixels to 

have the same label when no other information is avail-
able. The chance of neighboring pixels having different la-
bels is proportional to the luminance of the image edges:
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where −γ = < − >2 1(2 ( ) ( ) )I Ip q  .

2.2. Baseline algorithm for action recognition

For worker action recognition, a cutting-edge video de-
scription method, dense trajectories, was applied in a 
bag-of-features pipeline (Wang et al. 2013). Given an in-
put video, each frame is densely sampled to obtain a set 
of points. These points are tracked based on displacement 
information from a dense optical flow field.  Displacement 
record of a point in the time domain is a trajectory. Fea-
ture descriptors (HoG, HoF, or motion boundary histo-
grams (MBH)) are computed along trajectories. The spatio 
and temporal feature descriptions of all points are concat-
enated to generate the video description, so called dense 
trajectories.  Then, codebooks are generated by K-means 
clustering and descriptors are assigned to their nearest 
vocabulary word for quantization. Non-linear SVMs are 
trained for action recognition. We refer the readers to 
Yang et al. (2016) for more details.

2.3. Enhancing action recognition by scene  
parsing-based object recognition

Taxonomy of construction objects.  Taxonomy of con-
struction objects is a category structure to define inter-
ested construction objects. Reasonable taxonomy is im-
portant for effectively understanding a construction scene. 
Three rules are followed in the establishment of taxonomy. 
First, only construction entities are considered. There are 
five main categories: personnel, equipment, tools, materi-
als, and temporary facilities/structures. The natural envi-
ronment (e.g., trees) is not included. Second, action rec-
ognition enhancement is accomplished by assuming that 



572 J. Yang. Enhancing action recognition of construction workers using data-driven scene parsing 

the occurrences of certain types of objects are indicators 
of related actions. Hence, the granularity of objects in tax-
onomy is rendered coarse, only focusing on the objects’ 
existence without considering their quantities. For exam-
ple, we annotate “bricks” instead of single pieces of “brick”. 
The reader can refer to a list of frequently used temporary 
construction resources in Teizer (2015). The proposed tax-
onomy is shown in Figure 2. As can been seen, there are 
attributes under each category, totally 54 types of objects.

Enhancing Action Recognition with Semantic Infor-
mation. Now, we are ready to improve action recognition 
using semantic information obtained from scene parsing. 
Given an input video x , let ( )ag x  and ( )sg x  be the score 

vectors of action classification and object recognition,  
respectively. The model of action recognition with context 
is defined as (Marszalek et al. 2009):

′ = + τ( ) ( ) ( )a sag x g x wg x ,  (9)

where ′ ( )ag x is the new score vector for all action class-
es, ( )sg x  is the score vector for all object classes. τ is a 
weighting parameter, decided by experiments. w is the 
conditional probability matrix encoding the occurrence 
probability of a certain type of object given an action, 
which means = (Object | Action)w p . It can be estimated 
from the annotated training data. Finally, the action type 
is determined by the maximum value of ′ ( )ag x .

Note that, although we selected specific algorithms for 
baseline action recognition in this study, technically any 
algorithm that fits can be plugged into Eqn (9) for context-
enhanced action recognition.

3. Experimental results

3.1. Data preparation and experimental setup

A publicly available worker action dataset (Yang et  al. 
2016) was used in our experiments. The original dataset 
involves 11 types of worker actions: “LayBrick”, “Trans-
porting”, “CutPlate”, “Drilling”, “TieRebar”, “Nailing”, 
“Plastering”, “Shoveling”, “Bolting”, “Welding”, and “Saw-
ing”. The action type “Transporting” was excluded from 
the experiments since it is not specifically related to se-
mantic information. Meanwhile, 50 video clips covering 
different workers and view angles are extracted from each 
action type in order to obtain an equally distributed data-
set.  The final dataset with 500 video clips was divided into 
halves randomly for training and testing. 

For scene parsing, the first frames of all videos were 
annotated according to the proposed taxonomy using the 
software LabelMe (Russell et  al. 2008) for training and 
evaluation. The open source code of label transfer scene 
parsing is available at Liu et al. (2011a). 

Two sample images from each action type, together 
with their annotations, are displayed in Figure 3. The oc-
currence frequency of all the objects is shown in Figure 4.

3.2. Evaluation metrics

To evaluate the scene parsing performance, two metrics 
were used: average pixel-wise recognition rate r  and per-
class average rate lr  (Liu et al. 2011a):

∈Λ
= = >∑ ∑∑

1 ( ( ) ( ), ( ) 0),
ii i

i

r o a a
m p

1 p p p
 

(10)

where, for pixel p in image i , ( )a p  is the annotat-
ed ground truth, ( )o p is the output of label transfer, 
Λi  represents the image lattice for test image i , and

∈Λ
= >∑ ( ( ) 0)

i

im a p
p

1  represents the number of all labelled

pixels in image i  (note that some pixels may be unla-
beled). The per-class average rate is estimated as:Figure 2. Proposed taxonomy of construction objects
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For action recognition evaluation, average precision 
(AP) was adopted, which approximates the area under a 
recall-precision curve (Everingham et al. 2008). For over-
all system performance, the average AP (AAP) was com-
puted.

Figure 3. Sample images and their annotations in the dataset

3.3. Results for scene parsing-based object 
recognition

We selected one test image from each action type to show 
the results of label transfer in Figure 5. Different objects 
are labeled in different colors according to the legend on 
the right. The query image from the test set is displayed 
in Figure 5(a). The best match from Figure 5(a)’s nearest 
neighbors together with its corresponding annotation is 
shown in Figures 5(b) and 5(c), respectively. Figure 5(d) 
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shows the warped image, where the matched SIFT flow 
field is applied to warp the RGB image of the nearest 
neighbor to the query.  Figures 5(e), and 5(f) are the ob-
ject recognition results and the ground truth produced by 
user annotation, respectively. The dark gray pixels repre-
sent “unlabeled” pixels. The system does not generate an 
unlabeled output, but attempts to produce a prediction for 
as many objects as possible.

In the label transfer procedure, there are five main pa-
rameters, the spatial smoothness coefficient λ , number of 
nearest neighbors K , number of final candidates M , prior 
weight α , and spatial weight β , which affect the perfor-
mance of the algorithm. The spatial smoothness coefficient 
λ  was fixed to 0.7 in the experiment, which is the opti-
mal setting according to the study in Liu et al. (2011a). It 
was shown in Kim et al. (2016) that different settings of 
prior weight α  and spatial weight β  would have an ef-
fect of a magnitude of 0.001. We simply adopted the opti-
mal configuration in Kim et al. (2016) with α = 0:06 and  
β = 20. M  and K are closely related to the scale of the 

data. Therefore, we chose different combinations of M , 
K  and plotted the per-pixel recognition rate as a function 
of K  for a variety of M s, as shown in Figure 6. Overall, 
the recognition rate increases with an increase in K . The 
best performance, 84.6%, is achieved when K = 20 and  
M = 7. Figure 7 shows the per class recognition rate un-
der the optimal setting. As can be seen, the top five objects 
according to the recognition results are panel, mixer, rein-
forcing mesh, plastered wall, and gravel pile. The bottom 
five objects are shelf, hammer, wrench, saw, and scaffold-
ing couplers. The tag count information in Figure 4 shows 
that the per class recognition rate is not necessarily related 
to their tag counts, or in other words, how frequently the 
objects appear in the dataset. It can also be easily noticed 
that the pixel area of the object has a strong correlation 
with its recognition rate. Usually, the smaller the object, 
the lower is its recognition rate. One possible explanation 
is that the chance that a small object is inaccurately labeled 
is large (Kim et al. 2016). Pixels not belonging to the small 
object lead to recognition errors. The second reason is 

Figure 4. Occurrence frequency of all objects in ascending order
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Figure 5.  Scene parsing results: (a) query image, (b) the best match from nearest neighbors, (c) the annotation 
of the best match, (d) the warped version of (b) according to the SIFT flow field, (e) the object recognition result, 

and (f) the ground truth annotation of (a)
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that the label transfer algorithm allows only one labeling 
for each pixel. Therefore, small objects tend to be over-
whelmed by the labeling of larger objects (Liu et al. 2011a).

3.4. Results for action recognition enhancement

The occurrence probability of certain types of objects 
given an action is estimated from the annotated training 
data. In Figure 8, the probabilities of the top five related 
objects for each action type are displayed. Note that ob-
jects with probabilities equaling 1 are not ordered. Natu-
rally, “worker” is the prerequisite for all action types. The 
handheld tools (drill, hammer, shovel, saw, etc.), materials 
(bricks, mortar, nail box, iron wire, etc.), materials (form-
work, brick wall, scaffold, sand pile, etc.), and outcomes 
(reinforcing mesh, plastered wall, etc.) are the top catego-
ries with related corresponding actions. The estimated 
probability model agrees with common knowledge about 
construction. Meanwhile, it does not exclude any back-

ground objects or supported objects, which may have a 
minor relation with worker actions.

As described in Section 3.3.2, the semantic informa-
tion gained from label transfer was applied to enhance 
action recognition. The baseline action recognition algo-
rithm in Yang et al. (2016) was adopted. The parameters 
were set according to the best reported performance; MBH 
was used as the feature descriptor and the codebook size 
was equal to 500. The average precision per action type of 
the proposed system is shown in Figure 9. For compari-
son, the performance of the baseline algorithm, together 
with that of action prediction by object recognition, are 
also displayed. It can be seen clearly that the proposed sys-
tem improved the performance of the baseline algorithm. 
The AAPs of the baseline algorithm, action prediction by 
context, and the proposed system are 69.2%, 47.9%, and 
79.7%, respectively. The average gain of the proposed sys-
tem as compared to the baseline is 10.5%, with a maxi-
mum gain of 20% and minimum gain of 2%. The most im-
proved action type is “Drilling”. While drilling, a worker 
shows no obvious body movement, and the fast spinning 
of the drill is difficult to capture by video descriptions. Us-
ing context information, such as the recognition of “Drill”, 
action recognition is highly enhanced. The action type 
“Bolting” has the smallest gain. By closely examining the 
details, we discovered that the background of this action 
type was cluttered and lacked continuity because of the 
presence of scaffolding. Therefore, when the image was 
labeled, many pixels remained “unlabeled”. During label 
transfer, the algorithm predicted unlabeled pixels for some 
unrelated objects for this action type. A poorly recognized 
context cannot facilitate action recognition. By tuning the 
parameter τ in Eqn (9), we can easily control the effect of 
context information on action recognition. According to 
our current experience, the best performance is achieved 
with τ equal to 0.7.

Figure 6. Per pixel recognition rate as a function of the number 
of nearest neighbors K and the number of voting candidates M

Figure 7. Per class recognition rate under the optimal parameter settings
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4. Discussion

Experimental results show that worker actions recogni-
tion has been improved significantly with the integration 
of scene parsing based object recognition. Construction 
operations are essentially interactions between all the con-
struction entities (workers, equipment, materials, tools 
and temporary facilities or structures). It is beneficial to 
combine context information for activity analysis. How-
ever, conventional object detection is computationally ex-
pensive. The proposed system is able to capture semantic 
information from the whole construction site conveni-
ently. Another advantage of the system is its openness. 
To support the recognition of more action types, the user 
simply needs to add more samples from the new catego-
ries, annotate related objects, and re-train the action-con-
text model. The tedious classifier training task required by 
conventional learning-based systems is not needed. 

However, the limitation of the proposed system also 
originates in the scene parsing module. The success of scene 
parsing-based object recognition strongly depends on good 
matches between the query image and similar training im-
ages. This indicates that the system may fail when applied 
to an unseen construction scene. One possible solution is 
to enlarge the general database by annotating more con-
struction site images (e.g., with the help of a crowd sourcing 
platform). When applied to new construction scenarios, it 
is also suggested to prepare a few annotated images of tar-
geting scenes, which will not take many efforts using the 
software LabelMe and our proposed taxonomy. 

Second, the effect of “unlabeled” pixels on action recog-
nition is negative if their object types are wrongly predict-
ed. One solution could be to add a confidence value to pre-
diction. If the value is smaller than a certain threshold, the 
prediction result will be excluded from action recognition.

Figure 8. Probabilities of top five related objects for each action type. Note that because of space 
limitation, some of the objects’ names are abbreviated: “mortarCNTR”, “cutMACH”, “reinfMesh”, 

“PWall”, “tongs”, “WBar”, and “WMask” represent “mortarcontainer”, “cuttingmachine”, 
“reinforcingmesh”, “plasteredwall”, “solderingtongs”, “weldingbar”, and “weldingmask”, respectively

Figure 9. Comparison of the average precision of the proposed system for each action type 
with that of the baseline algorithm and context-based action prediction
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Lastly, the recognition of small objects is not satisfac-
tory in the current scheme, which may affect the system’s 
performance given that some handheld tools are usually 
in small scale. One solution is to increase the accuracy of 
small object labeling using a segmentation method, e.g., 
Grabcut (Tang et al. 2013). Another solution is to improve 
the label transfer algorithm. By introducing spatial con-
straints between various construction entities, small ob-
jects, such as handheld tools, can be constrained to loca-
tions close to workers. Recognition will then be improved. 
We leave the above-mentioned issues as future work.

Conclusions

We presented a novel system that uses semantic informa-
tion to enhance worker action recognition. A non-par-
ametric data-driven scene parsing method was adopted 
to recognize construction objects. The model of action 
recognition with context is learned from the training 
data. Action recognition is then improved by using the 
recognized construction objects. Promising results were 
achieved on a comprehensive dataset. The proposed sys-
tem outperformed the baseline algorithm by 10.5% on 
average, with a maximum performance gain of 20% per 
action type. As shown in our taxonomy, the proposed sys-
tem can obtain semantic information globally. It is ben-
eficial for construction action recognition since semantic 
information is naturally rich in construction sites and the 
relationship between semantic information and construc-
tion operations can be clearly defined. The key point of 
‘label transfer’ is to transfer object labels to query images 
from existing annotated images. Hence it is easy to change 
the number of recognizable objects as long as new objects 
are annotated in the database. Compared to conventional 
object detection, which needs to train individual classifier 
for each type of object, the scene parsing method is easy 
to implement, requiring less tedious training or param-
eter tuning, and is scalable to the number of recognizable 
objects (Liu et al. 2011a). The limitation of the proposed 
system is that it relies on good matches between the query 
image and the database. So it may fail in an unseen con-
struction scene. It is suggested that in real world applica-
tion a set of completely labeled images are prepared for a 
particular job site. 

The proposed system proves the success of context 
based activity analysis and can be easily applied to real 
construction management. Notice that in real world appli-
cation, video cameras for general monitoring purpose are 
usually mounted statically with a wide range of view, re-
cording multiple activities simultaneously. To analyze cer-
tain type of worker actions as described in this paper (re-
quiring a relatively high resolution of worker movements 
and related objects), a possible solution is to set up multi-
ple temporary cameras to monitor different types of work-
ers according to the site layout. Hand-held video cameras 
can also be used complementarily by foremen. 

Action recognition forms a foundation for manage-
ment applications. To measure productivity, continuous 
worker activities needs to be observed and measured, 
which will require action segmentation for long video 
analysis. With prior knowledge of construction opera-
tions, progress can be evaluated based on productivity. 
Though regular actions types are considered in this paper, 
safety monitoring can be conducted by recognizing unsafe 
actions from safe actions.  

Recent years, deep learning has been a fast growing di-
rection in computer vision. Several studies in construction 
field have adopted deep learning for object detection and 
so derived activity interpretation (Luo et  al. 2018; Fang 
et al. 2018).  Though deep learning has achieved the state-
of-art performance on object detection (Krizhevsky et al. 
2017), its performance heavily relies on tedious training 
and elaborate system tuning. The proposed scene parsing 
based construction object recognition is nonparametric, 
easy to implement with few parameters. And it is scalable, 
which means it can easily adjust the number of object cat-
egories without cumbersome re-adjustment of the system.  

From the aspect of action recognition, Ding et  al. 
(2018) integrated convolution neural networks and long 
short-term memory to detect unsafe worker behavior. Ex-
perimental results on a relatively small dataset (200 video 
clips, 4 action types) showed that deep learning method 
outperformed feature descriptors (HoG, HoF, MBH) based 
method. However, a recent survey on action recognition 
(Herath et al. 2017) discovered that both descriptors based 
method and deep learning performed equally well on a 
widely used dataset HMDB-51 (7000 video clips, 51 ac-
tion types). Hence comparison study of descriptors based 
and deep learning based action recognition still needs to 
be performed on larger scale construction datasets, which 
should be one of the future directions.
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