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Abstract. The attention of engineers is turned to the application of precast spun concrete columns reinforced by high-

strength steel bars for office and administrative buildings. The paper discusses a possibility of using the reliability index 

approach to designing beam-columns of building frames and analyses resistance criteria for beam-columns of annular 

cross sections as compression members with bending moments and bending members with compressive forces. First and 

second order effects of beam-columns are considered. The article also presents time-dependent resistance safety margin 

and its stationary equivalent and investigates the unsophisticated applied models for probability-based design of frame 

beam-columns. The design of a beam-column of the braced frames is illustrated providing a numerical example. 
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1. Introduction 

The economically and structurally rational precast spun 

concrete columns reinforced by longitudinal high-

strength steel bars uniformly distributed throughout their 

annular cross sections may be treated as sustained beam-

columns of office and administrative buildings (Kudzys 

and Kliukas 2009). High-strength reinforcing steel bars 

increase the ductility and capacity of eccentrically loaded 

columns due to the redistribution of ultimate compressive 

stresses of steel and concrete components of beam-

columns (MacGregor 1988; Kudzys et al. 1993; Kliukas 

et al. 2010; Židonis 2009; Juocevičius and Vaidogas 

2010). 

The Standards EN 1990 (2002) in Europe and 

ASCE/SEI 7-05 (2006) in the USA require that the load 

carrying structures of buildings shall be designed with the 

appropriate degrees of reliability. However, these stand-

ards are based on limit state concepts and respectively on 

the methods of partial safety factors design and load and 

resistance factors design. Therefore, some contradictions 

in reliability approaches presented in these Standards and 

the International Standard ISO 2394 (1998) on the relia-

bility for structures exist. Practically, the reliability de-

gree of load-carrying structures designed by various na-

tive semi-probabilistic and full-probabilistic limit state 

concepts can be markedly different in their values. This 

difference depends on the conditionality of mechanical 

and statistical uncertainties evaluated and integrated in 

design models.  

The quantitative reliability indices of particular 

members (sections) and structural members (columns,  

beams) may be objectively defined and predicted only by 

full-probabilistic approaches and models. However, the 

recommendations and directions devoted to the issues of 

design features of probability-based approaches presented 

in the design codes of reinforced concrete structures Eu-

rocode (EN 1992-1 2004) and ACI Committee 318-05 

(2005) are not fully formulated. Therefore, any possibility 

of engineering and wish for an objective prediction of the 

probabilistic parameters of building structures, including 

beam-columns, are rather hardly interpreted and used in 

design practice (Vaidogas and Juocevičius 2008; Jan-

kovski and Atkočiūnas 2008). 

In spite of the fairly developed concepts of probabil-

istic reliability design, it is difficult to apply probability-

based approaches in structural safety predictions both of 

complicated and not complicated members and their sys-

tems. These approaches may be acceptable to building 

engineers only under the indispensable condition that the 

probabilistic performances of members may be consid-

ered in design practice using unsophisticated and easy 

perceptible manners. 

The main task of this paper is to present new meth-

odological formats on the probability-based reliability 

predictions of the beam-columns of reinforced concrete 

frames subjected to recurrent single and joint extreme 

service and climate actions. The paper considers the pos-

sibility of using reliability index design approaches based 

on the transformed conditional intersection in engineering 

practice and failure probabilities of members and the 

stationary processes of their resistance safety margins 

using equivalent recurrent extreme service actions instead 

of their sustained and extraordinary components. 
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2. Resisting Compressive Forces and Bending Moments 

2.1. Compression with a Bending Moment 

Beam-columns are represented in design state taking into 

account their particular members (normal sections). There-

fore, the survival probabilities of beam-columns may be 

objectively assessed and predicted only knowing mechani-

cal and statistical parameters of their normal sections. 

Modelling the stress-strain state of spun concrete 

beam-columns must assess the structural features of an-

nular cross sections reinforced by high-strength steel 

bars. According to the interaction diagram RR MN   of 

eccentrically compressed spun concrete members, seg-

ments AB and B–C characterize their fully and partially 

compressed cross sections (Fig. 1). 

 

 

Fig. 1. Interaction NR – MR diagram of eccentrically loaded 

annular cross sections 

 

When the action effects of building structures are 

provoked only by gravity loads, beam-columns are under 

compression with a small bending moment. Modelling 

strain and stress distributions in concrete and high-

strength steel bars and the bearing capacity of eccentrical-

ly loaded sections may be based on a plain cross-section 

hypothesis and bi-linear concrete strain-stress relation 

(Fig. 2). 

When eccentricity ratio 0.1sre , the ultimate in-

ternal resisting compressive force of annular cross sec-

tions may be expressed as 

    sssscsccccRN rerAkAfkNR  , (1) 

where the response factors characterizing contributions of 

concrete and steel components to the ultimate resistance 

of beam-columns are defined as 

     1013.01 sc rek , (2) 

 ss rek 34.01 , (3) 

    cEEPccccc fNNff  7.185.01.012 , (4) 

is the compressive strength of spun concrete in beam-

columns the cylinder strength of which is cf ; EN  and 

EPN  are the applied total force and its quasi-permanent 

component;  

   436.1452sc  MPa, (5) 

is ultimate compressive stress in reinforcing bars; 

cs AA  is reinforcement ration; cA , sA  and sr  are 

geometrical parameters taken from Fig. 2. 

The mean and variance of response NR  by Eq. (1) are 

    smssscmsmcmccmcmNm rerAkAfkR  , (6) 

 


































 c

mc

N
cc

mcc

N
N A

A

R
f

f

R
R 2

2
2

2
2

σσσ  

 









































 2
2

2
2

2
2

σσσ

m

N

m

N
sc

msc

N R
e

e

RR
 

 




































σσ c

m

N

mc

N A
R

A

R
2

 



































σσ sc

m

N

msc

N RR
, (7) 

where cmk , smk , ccmf  and scm  are taken from 

Eqs. (2)–(5); 

  27000003.0088.0 ckc ff δ ,  (8) 

   2/122 08.0 ccc ff δδ ,  22
ccmcccc fff  δσ , (9) 

     122 1502.1 rrrIA  δδ ,  22
cmc AAA  δσ , (10) 

    222 105.0 scmscmscsc  δσ , (11) 

 

 

Fig. 2. Modelling strain and stress distributions in concrete and high strength steel bars based on a plain cross-section hypothesis 
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Fig. 3. Modelling stresses in concrete and steel bars based on their simplified plastic distributions 
 

 me  by Eq. (35), e2
σ  by Eq. (36),  

 cmsm AA ,   ccms AAA 2222
σσ  . (12) 

It must be noted that the coefficient of variation in spun 

concrete strength in thin-walled members increases and is 

equal to   2/122
crccc fff δδδ   where components cfδ  

and crfδ  indicate the effects of concrete mix quality and 

reinforcement presence on its value. 

 

2.2. Bending with Compressive Forces 

According to Vadlūga (1979), the ultimate internal resist-

ing bending moment RM  of the beam-columns of annu-

lar cross sections (Fig. 3) may be plastic and expressed as 

   EstssRM NfArMR 2.1  
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For design practice, the mean of this resistance may 

be written in the form 

 mmmMm TTTR 132 ,  (14) 

where 

  scmstmsccmcmm ffAfAT 1 , (15) 

  Emstmssm NfArT  2.12 , (16) 

 Emscmsccmcmm NfAfAT 3 , (17) 

when ccmf  is defined from Eq. (4); stmf 500 MPa, 

scmf 600 MPa; EmN  is joint compressive force pro-

voked by service and climate actions. 

The variance of resistance by Eq. (13) is expressed as 
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where cmk , smk , ccmf  and scm  are taken from 

Eqs. (2)–(5); ccf2
σ  by Eq. (9); cA2

σ  by Eq. (10);  

  22
stmsst fff  δσ ,  22

scmssc fff  δσ . (19) 

where   2/1

2
2

1
2

sss fff δδδ   when components 

1sfδ 0.09 and 2sfδ 0.12 define statistical deviations 

and uncertainties of right-angled epures of steel bar 

stresses. 

 

3. First and Second Order Effects  

The first order mean value of the eccentricity of the ap-

plied total compressive force EmN  is equal to 

 EmOEmom NMe   (20) 

but not less as 152r  and 20 mm (EN 1992-1 2004). 

The second order eccentricity of this force may be 

expressed as a magnification of the first order eccentricity 

resulting from linear-elastic analysis with redistribution in 

which the internal moments are modified with external actions 

and without a more explicit calculation of rotation capacity 

(EN 1990 2002; Kargaudas and Adamukaitis 2010). 

According to EN 1992-1 (2004), the additional ac-

tion effects of reinforced concrete beam-columns may be 

estimated by the flexural stiffness method. This stiffness 

of slender compression elements with constant cross sec-

tions may be represented as 

 ssccc IEIEKEI )( , (21) 

where 

  OEOGc MMK  125.0 , (22) 

is the factor for effects of cracking and creep defor-

mations on the overall behaviour of members; OGM  and 

OEM  are bending moments caused by permanent and 

total actions;  1.2–2.0 is the basic creep coefficient of 

concrete the value of which depends on its strength class 

and dimensions of a cross section of members; cE , sE  

and cI , sI  are the tangent module of elasticity and the 

second moments of the areas of concrete and steel bars. 

The mean and variance of flexural stiffness by 

Eq. (21) may be expressed as 

   sscmcmcmm IEIEKEI  , (23) 
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      ccmcmccmcm EIKIEKEI 22222 )( σσσ  

   ccmcm KIE 22
σ , (24) 

where 

  OEmOGmcm MMK  125.0 , (25) 

      
222 25.0 OGmOEmOGmc MMMKσ  

  EG NN 22
σσ  , (26) 

   3.0
1.020 cmcm fE  , (27) 

  22 15.0 cmc EE σ , (28) 

   44
1

4
2 mcm rrI  , (29) 

     mc rrrI 122
2 15020.1 σ , (30) 

   42
1

4
2 sss rrI  . (31) 

Buckling resistance   22
oB lEIN   can be used 

as a mechanical parameter in the second order analysis of 

members the mean and variance of which are 

   2
ommBm lEIN  , (32) 

   oomomB llEIlEIN 22322222 )(2)( σσσ  , (33) 

where mEI )(  and )(2 EIσ  are defined by Eqs. (23) and 

(24); som hl 75.0  and som hl   are the effective length 

of the columns of buildings with in situ and precast floor 

beams; sh  is a storey height of a building. 

For beam-columns without transverse loads, the se-

cond order eccentricity may be defined by the equation 
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where parameter c 8–12 depends on the distribution of 

moments and c2  is normally a reasonable simplifica-

tion. Therefore, the mean and variance of this eccentricity 

are 
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where BmN , BN2
σ  and EmN , EN2

σ  are the statistics 

of buckling resistance and the total compressive force of 

a beam-column. 

Design limit states of beam-columns include their 

loss of equilibrium and large deformations leading them 

to the second order effects. The model of the structural 

response of beam-columns reinforced by high-strength 

steel bars may be based on linear-elastic (Fig. 2) and non-

linear (plastic) (Fig. 3) resistances. 

 

4. Resistance Safety Margins  

According to probability-based approaches, the resistance 

safety margin of the particular members of the beam-

columns of buildings is a non-stationary resistance per-

formance process presented as: 

    )(),()( tEERtgtZ
ss QQGGRθX  

 clclQQ EtE
ee

 )( , (37) 

where )(tX  and θ  are the random vectors of basic and 

additional variables representing mechanical parameters 

and their model uncertainties. These parameters include 

resistance NR  by Eq. 1 or MR  by Eq. (13) and action 

effects GE , 
sQE , 

eQE , clE  caused by permanent, G , 

floor sustained, sQ , and extraordinary, eQ , live loads 

and climate actions (snow, S , wind, W , loads)  (Fig. 4). 

Live floor loads vary in time and space in a random 

manner (JCSS 2000). The sustained part of these loads in 

civil and engineering buildings contains the weight of 

furniture and heavy equipments respectively. An intermit-

tent extraordinary load represents all kinds of live floor 

loads which are not covered by the sustained load. It is 

caused by the crowded rooms during special events and 

by mobile equipment during processes in civil and engi-

neering buildings respectively. 

The probability distribution of resistance, R , and 

permanent action effect, GE , of reinforced concrete 

members is close to normal distribution (Ramsay et al. 

1979; Вадлуга 1979; Ellingwood 1981; ISO 2394 1988; 

EN 1990 2002; EN 1992-1 2004; JCSS 2000). According 

to these international standards, Gaussian or lognormal 

distributions may be assumed for sustained actions and 

Weibull, gamma or exponential distributions may be used 

for extraordinary actions representing non-stationary 

processes. 

Analogically to traditional standard approaches of de-

sign codes, the probability-based design needs simplifica-

tions of safety margin processes of particular members. 

The annular extreme sum of sustained and 

extraordinary live action effects may be modeled as a 

stationary rectangular wave renewal process described by 

Type 1 (Gumbel) distribution (Rosowsky and Ellingwood 

1992). The mean and coefficient of variation as well as 

variance in this process may be defined as 

  )()()()( jmQjmQimQimQQm tEtEtEtEE
eses

 

 

e

e

e

s

s

s

Q
Q

kQ

Q
Q

kQ

Ek

E

Ek

E

δδ 95.095.0 11 



, (38) 



Journal of Civil Engineering and Management, 2010, 16(4): 451–461 

 

455 

 

Fig. 4. Actual (a) and applied (b) models for a time-dependent safety analysis of particular members 
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  22
QmQQ EEE  δσ , (40) 

where kQs
E  and kQe

E  are the characteristic (nominal) 

values of live load components; sQ
k 95.0  and eQ

k 95.0  are the 

characteristic fractile of their probability distributions; 

sQEδ  and 
eQEδ  are the coefficients of variation in these 

components. 

When mQs
E 18.55 kN, 

sQEδ 0.9, mQe
E 12.0 kN, 


eQEδ 0.5, 55.300.1255.18 QmE  kN and 

QkE 65 kN, then according to Eq. (39), the coefficient 

of variation in the stationary extreme floor action, QE , is 

equal to 

      58.055.305.00.129.055.18
2/122

QEδ . 

Values QkQm EE 47.0  and QEδ 0.58 were su-

ggested by Rosowsky and Ellingwood (1992). 

Gumbel cumulative distribution is quite appropriate 

for the annual extreme snow and wind loads (Ellingwood 

1981; JCSS 2000; Vrouwenvelder 2002). The mean valu-

es, coefficients of variation and variances in these load 

effects may be expressed as 

  s
s

sksm EkEE δ98.01 , 7.03.0 sEδ , (41) 

  w
w

wkwm EkEE δ98.01 , 5.02.0 wEδ , (42) 

  22
smss EEE  δσ , (43) 

  22
wmww EEE  δσ . (44) 

Besides, a coincidence of annual extreme wind and snow 

loads is impossible. However, the recurrence number of 

joint extreme floor and climate action effects during the 

working life nt  of beam-columns may be defined as 

   clQclQnclQ ddtn , , (45) 

where Qd 1–3 days,  scl dd 14–28 days and 

 wcl dd 8–12 hours are the durations of extreme ac-

tion effects; Q 1 and cl 1 are their renewal rates. 

Therefore, Qsn 2.06–4.25 and Qwn 0.18–0.48. 

Thus, extreme events arise from extraordinary floor 

and climate conditions that usually are not considered 

explicitly in the limit state design of buildings. The mean 

and variance of stationary bivariate annual extreme action 

effects are 

 SmQmcm EEE   or WmQmcm EEE  , (46) 

 SQc EEE 222
σσσ   or WQc EEE 222

σσσ  , (47) 

where QmE , QE2
σ , SmE , SE2

σ , WmE and WE2
σ  are 

defined by Eqs. (38), (40), (41), (43), (42) and (44). 

The combination of short episodic annual extreme 

action effects of beam-columns belongs to exceptional 
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events when their magnitude can be considerable but the 

probability of the occurrence of which is small and rela-

ted to the working time of load-carrying structures. These 

action effects help us with rewriting the non-stationary 

safety margin by Eq. (37) in the stationary form 

 CCclclQQGGR EREEERZ  , (48) 

where  

 GGRC ERR  , (49) 

is the conventional resistance of beam-columns, 

clclQQC EEE   or QQC EE   or clclC EE  , (50) 

is conventional extreme action effects described by Gum-

bel distribution law. 

In design practice of beam-columns, additional va-

riables i  may be represented by their probability densi-

ty functions or simply as their means and standard devia-

tions, im  and iσ  (see Section 6). 

The means and variances of conventional parame-

ters cR  and cE  of beam-columns may be defined as 

 GmGmmRmcm ERR  , (51) 

  GGmRmRmc ERRR 222222
σσσσ  

 GGmE 22
σ , (52) 

 mclmclQmQmCm EEE ,, , (53) 

  clmclQQmQQmc EEEE 22
,

22222
σσσσ  

 clmclE 22
, σ , (54) 

where mR  by Eq. (6) or (14); GkGm NE   or 

eNME GkGkGm  ; QmE  by Eq. (38), QE2
σ  by 

Eq. (40); mclE ,  by Eq. (41) or (42), clE2
σ  by Eq. (43) or 

(44). 

 

5. Instantaneous and Long Term Survival  

Probabilities 

When extreme action effects are caused by two stochasti-

cally independent variable actions, a failure of beam-

columns may occur not only in the case of their coinci-

dence but also when the value of one out of two effects is 

extreme. Therefore, three stochastically dependent re-

sistance safety margins should be considered as follows: 

 
QQ QkCk ERZ  , QQ nk ...,,2,1 , (55) 

 
clcl kclCk ERZ , , clcl nk ...,,2,1 , (56) 

 
clQclQ kclQCk ERZ
,, ,, , clQclQ nk ,, ...,,2,1 . (57) 

The instantaneous survival probability of beam-

columns may be represented by the convolution integral as 

   dxxFxfERS
CC ERCCk )()()(

0




 PP , (58) 

where )(xf
cR  is the density function of their convention-

al resistance. 

GNNRCN NRR
GN

  or GMMRCM MRR
GM

 . 

 




























 5772.0

7794.0
expexp)(

C

Cm
E

E

xE
xF

C σ
, (59) 

is the cumulative distribution function for their conven-

tional action effect clNQNC NNN
clQ

  or 

clMQMC MMM
clQ

 . 

The stochastically dependent instantaneous survival 

probabilities by Eq. (58) of beam-columns exposed to the 

interrupted extreme action effects form series systems 

with Qn , cln  and clQn ,  elements. It is impossible to 

avoid the complicated intersections of recurrent survival 

events characterized by these elements. Therefore, the 

estimation of the long term safety of structures is connec-

ted with some methodological and mathematical impro-

vements. 

Improved computational methods are based on im-

portance and conditional sampling procedures (Mori and 

Ellingwood 1993), direction simulation approaches (Dit-

levsen 1997), the variable-complexity approach (Burton 

and Hajela 2003) and equivalent extreme-value events (Li 

et al. 2007). These improvements help researchers with 

reducing sophisticated computational procedures. 

However, they are inconvenient for structural designers 

and therefore not effective to translate them into everyday 

design reality.  

The prediction of the long term survival probability 

of beam-columns may be based on the concept of trans-

formed conditional probabilities (Kudzys and Lukoševi-

čienė 2009; Kudzys et al. 2010). Since the model of a 

series system consists of equireliable and equicorrelated 

elements, the long term survival probability of a beam-

column may be presented as 

  
1

1
)(

1
1)(



























n

k

x
klk

n
n

S
StT

P
PP , (60) 

where )( kSP  is defined by Eq. (58); x
kl  is the correlation 

factor of a series system the bounded index of which is 

 

kl

k
n

k

kl
k

S

S
Sx





































5.0
25.0

)(1

)(1

98.01

5.4
)(

P

P
P . (61) 

The coefficient of system element correlation is 

 
 

cclk

lk
kl

REZZ

ZZCov

221

1,

σσσσ 



 , (62) 

where cE2
σ  is defined by Eqs. (54) and cR2

σ  – by 

Eq. (52). 
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The prediction of the probabilistic reliabilities of 

beam-columns should be based on the reliability index 

approach. Their generalized reliability index may be int-

roduced as 

     nn tTtT  
PΦ

1 , (63) 

where )(Φ  is the cumulative distribution function of 

standard normal distribution tabulated in statistic texts; 

 ntT P  is probability defined by Eq. (60). For persis-

tent design situations during nt 50 years, the target 

value of reliability index  nT tT   for the beam-

columns of residential, office and public buildings is 

equal to 3.8 (EN 1990 2002). 

When the action effects of beam-columns are pro-

voked only by permanent loads, G , the resistance safety 

margin of these structural members may be expressed as 

GGRC ERRZ  . In this case, the reliability index 

of beam-columns may be defined as 

    CCmcG RRR σP   01 , (64) 

where the statistics of their conventional resistance, CR , 

is defined by Eqs. (51) and (52).  

 

6. Numerical Illustration 

6.1. The Parameters of Analysis 

Consider the reliability indices N  and M  of the spun 

concrete beam-column of the braced two-storied frames of 

Reliability Class RC2 (Fig. 5) designed by directions EN 

1990 (2002) and ASCE/SEI 7-05 (2006), (Kudzys and Kliu-

kas 2009). 

The means and variances of compressive forces and 

the first order bending moments are as follows: 

 GkGm NN 612 kN,   37456121.0
22 GNσ  (kN)

2
; 

8.28OGmM  kNm,   29.88.281.0
22 OGMσ  (kNm)

2
; 

55.3047.0  QkQm NN  kN, QN2
σ (0.5830.55)

2 
=    

314 (kNm)
2
; 

64.7OQmM  kNm, OQM2
σ (0.587.64)

2
 = 19.64 (kNm)

2
; 

  SSkSm NkNN δ98.01 12.19 kN;  

SN2
σ (0.512.19)

2
 = 37.2 (kN)

2
;  

OSmM 1.52 kNm, OSM2
σ (0.51.52)

2
 = 0.58 (kNm)

2
; 

EmN 612 + 30.55 + 12.2 = 654.75 kN, EN2
σ 3745 + 

314 + 37.2 = 4096.2 (kN)
2
; 

OEmM 28.8 + 7.64 + 1.52 = 37.96 kNm, OEM2
σ 8.29 + 

19.64 + 0.58 = 28.51 (kNm)
2
. 

The geometrical parameters of the beam-column can 

be expressed as 

oml 3.0 m, olδ 0.1, ol
2
σ (0.13.0) = 0.09 m

2
; 

2r 0.15 m, mr1 0.09 m, sr 0.12 m, mA 0.04524 m
2
, 

SA 0.00181 m
2
 (1612), cmA 0.0434 m

2
;  

m 0.0417,    44
1

4
2 mm rrI 34610

–6
 m

4
,  

   44
1

4
2 sss rrI 1310

–6
 m

4
,  

     mc rrrIA 122 1502.1δδ 0.1167, 

cA2
σ (0.11670.0434)

2 
= 25.6510

–6
 m

4
,
 

I2
σ (0.116734610

–6
)

2
 = 0.0016310

–6
 m

8
, 

   ccms AAA 222
σσ 24.6510

–6
. 

The parameters of spun concrete C50/60 are given by 

ckf 50 MPa,  m7.185.02 0.779,  

 EmGmccm NN1.01 0.9065, cmf 58 MPa,  

 

 

 

 a) b) c) 

Fig. 5. Compressive forces NG, NQ and NS caused by permanent (a) and variable extreme floor (b) or snow (c) loads 
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   52
10703088.0 ckc ffδ 0.10,  

ccfδ (0.10
2 
+ 0.08

2
)

1/2 
= 0.128; 

 cmccmccm ff 2 40.96 MPa, 

  
22

ccmcccc fff δσ 27.49 (MPa)
2
; 

  
3.0

1.020 cmcm fE 33.89 GPa, cE2
σ (0.1533.89)

2 
=  

25.84 (GPa)
2
. 

The parameters of reinforcing high-strength cold 

worked bars are 

kf 2.0 800 MPa,   mscm 436.1452 690 MPa, 

sc
2
σ (0.105690)

2
 = 5249 (MPa),  

sfδ (0.09
2
 + 0.12

2
) = 0.15, stmf 500 MPa,  

stf2
σ (0.15500)

2
 = 5625 (MPa)

2
, scmf 600 MPa,  

scf2
σ (0.15600) = 8100 (MPa)

2
. 

The statistics of additional random variables are: 

 MmNm 1.0 and Nσ 0.05, Mσ 0.10 for 

action effects and  mRN
0.99, 

NRσ 0.08 and 

 mRM
1.0, 

MRσ 0.14 for the resistance of the com-

pression and flexural members of the analysed annular 

cross sections. 

 

6.2. Second Order Effects 

According to Eqs. (25) and (26), the mean and variance 

of the stiffness factor are 

  1092.096.378.287.1125.0 cmK , 

     
222 8.287.196.378.287.125.0Kσ  

 (8.29 + 28.51) = 9659  10
–8

. 

Therefore, the statistics of the effective flexural stiffness 

of a beam column considering Eqs. (23) and (24) are 

mEI )( 0.1092  3.389  10
4 
 3.46  10

–4 
+ 210

5 
 

1.3  10
–5 

= 3.88 MNm
2
, 

)(2 EIσ (0.1092  3.389  10
4
)
2 
 0.163  10

–8 
+  

 (0.1092  3.46  10
–4

)
2 
 0.2584  10

8 
+  

(3.389  10
4 
 3.46  10

–4
)

2 
 9659  10

–8 
=  

0.07247 (MNm
2
)

2
. 

According to Eqs. (32) and (33), the mean and vari-

ance of buckling load are  

255.40.388.3 22 BmN  MN, 

  
232222 0.388.320.307247.0BNσ  

0.09=0.8037 (MN)
2
. 

The first order mean value of the eccentricity of 

joint compressive force is 

  75.65496.37ome 0.058 m. 

Thus, the statistics of the second order eccentricity 

according to Eqs. (35) and (36) are 

    06855.0255.46547.011058.0 me  m, 

 

















 8037.0

6547.0255.4

058.06547.0
2

2

2eσ  

 
 

63

2
10384.810096.4

6547.0255.4

058.0255.4  















 m

2
. 

 

6.3. Beam-Column as a Compression Member 

The mean values of the response factors of member com-

ponents taking into account Eqs. (2) and (3) are 

  8791.0417.112.006855.03.01 cmk , 

8058.012.006855.034.01 smk . 

Then, according to Eqs. (6) and (7), the mean and 

variance of beam-column resistance are 

 RmNm NR (0.87910.043440.96+0.80580.00181

690)0.12 / (0.06855+0.12) = 1.6351 MN, 

NR2
σ (0.87910.04340.6364)

2
27.49+(0.879140.96 

0.6364)
2
25.6510

–6
+(0.80580.00181 

0.6364)
2
5249+(40.960.04341.2117+1.34 

6900.00181)3.3754)
2
 8.38410

–6
+ 

(1.6782+0.9656)
2
24.6510

–6
+2(0.1161 

0.01488+0.067250.01488)=0.04122 (MN)
2
. 

According to Eqs. (51)–(54), the means and vari-

ances of conventional resistance, CNR , and extreme ac-

tion effects are 

CNmR 0.991.6351–1.00.612=1.0067 MN, 

CNR2
σ 0.99

2
0.04122+1.6351

2
0.0064+1.0

2
374510

–6
+ 

0.612
2
0.0025=0.06222 (MN)

2
; 

QmN 1.00.03055=0.03055 MN,  

QN2
σ 1.0

2
3.1410

–6
+0.03055

2
0.0025=31610

–6
 (MN)

2
; 

SmN 1.00.0122=0.0122 MN,  

SN2
σ 1.0

2
37.210

–6
+0.0122

2
0.0025=3810

–6
 (MN)

2
; 

QSmN 0.03055+0.0122=0.04275 MN,  

QSN2
σ 31610

–6
+3810

–6
=35410

6 
(MN)

2
.
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According to Eq. (62), the coefficients of the corre-

lation of the cuts of safety margins QNZ , SNZ  and QSNZ  

are Q 0.99495, S 0.9994 and QS 0.99434. 

The reliability parameters of beam-columns are pre-

sented in Table 1. Because coefficients 

1 QSSQ , index N 3.78 may be treated as 

the basic parameter the value of which is close to target 

reliability index T 3.80 (EN 1990 2002). 

 

6.4. Beam-Column as a Bending Member 

According to Eqs. (15), (16) and (17), the means of bend-

ing resistance components are 

mT1 0.043440.96+0.0181(500+600)=3.7687 MN, 

mT2 1.20.12(0.00181500+0.6547)=0.2246 MNm, 

mT3 0.043440.96+0.00181600–0.6547=2.209 MN. 

Thus, according to Eqs. (14) and (18), the mean and 

variance of beam-column resistance are 

 7687.3209.22246.0RmMm MR 0.1316 MNm, 

   
222 7687.3209.27687.32246.0mRσ  

(0.0434
2
27.49+40.96

2
25.6510

–6
+0.00181

2
 

8100)+ [0.001812.209(1.20.12 3.7687–

0.2246) / 3.7687
2
]

2
5625+[(1.20.12 

2.209–0.2246) / 3.7687]
2
409610

–6
=  

121.410
–6

 (MNm)
2
. 

The statistics of the second order bending moment 

components from Eqs. (53) and (54) are 

GmM 1.00.6120.06855=0.04195 MNm;  

GM2
σ (0.100.04195)

2
=17.610

–6
 (MNm)

2
, 

   GM M2
σ 1.0

2
17.610

–6
+0.04195

2
0.01= 

35.210
–6

 (MNm)
2
; 

QmM 1.00.030550.06855=0.002094 MNm, 

QM2
σ (0.580.002094)

2
=1.47510

–6
 (MNm)

2
, 

  QM M2
σ 1.0

2
1.47510

–6
+0.002094

2
0.01= 

1.51810
–6

 (MNm)
2
; 

SmM 1.00.01220.06855=0.000836 MNm, 

SM2
σ (0.500.000836)

2
=0.17410

–6
 (MNm)

2
, 

   SM M2
σ 1.0

2
0.17410

–6
+0.000836

2
0.01= 

0.18110
–6

 (MNm)
2
; 

QSmM 1.00.002094+0.000836=0.00293 MNm, 

  QSM M2
σ 1.51810

–6
+0.18110

–6
=1.69910

–6
 (MNm)

2
. 

According to Eq. (62), the coefficients of the corre-

lation of the cuts of safety margins QMZ , SMZ  and 

QSMZ  are Q 0.99697, S 0.99964 and 

QS 0.99661. 

The reliability parameters of beam columns are pre-

sented in Table 2. The reliability indices are very close to 

their values given in Table 1. Because the eccentricity 

ratio of compressive force  12.006855.0sre 0.57<1, 

the considered beam-column may be treated as a comp-

ression member the generalized reliability index of which 

is equal to 3.78 (see Table 1). 

It is called reader’s attention to the values of the re-

liability indices of beam-columns exposed only to perma-

nent compressive forces and bending moments. Accor-

ding to Eq. (64), the reliability indices of the considered 

beam-columns are equal to 

 04.406222.00067.1 GN , 

 03.400469.008965.0 CM . 

 

Table 1. Parameters of beam-columns as compression members 

CNmR   

by (51), 
MN 

CNR2
σ  

by (52), 
(MN)2 

Extreme 

actions 

Recurrent 

number n  

by (45) 

CmN  

by (53), 
MN 

CN2
σ  

by (54), 
(MN)2 

 CCN NR P b

y (58) 

 ntT P  

by (60) 

 nN tT   

by (63) 

 

1.0067 

 

0.068 60 

Q 50 0.030 55 31610–6 0.999 952 0.999 921 3.78 

S 50 0.012 20 3810–6 0.999 966 0.999 963 3.97 

Q + S 4.25 0.042 75 35410–6 0.999 942 0.999 932 3.82 

 

Table 2. Parameters of beam-columns as bending members 

CMmR   

by (51), 

MNm 

CMR2
σ  

by (52), 

(MNm)2 

Extreme 

actions 

Recurrent 

number n  

by (45) 

CmM  

by (53), 

MN 

CM2
σ  

by (54), 

(MN)2 

 CCM MR P  

by (58) 

 ntT P  

by (60) 

 nM tT   

by (63) 

 

0.089 65 

 

0.000 496 

Q 50 0.002 09 1.51810–6 0.999 957 0.999 938 3.84 

S 50 0.000 836 0.18110–6 0.999 967 0.999 965 3.98 

Q + S 4.25 0.002 93 1.69910–6 0.999 949 0.999 944 3.86 
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These values exceed the generalized reliability 

index   78.3 nN tT  not much. It shows that the 

variable actions of residential, office and public low rise 

buildings with reinforced concrete floors may only slight-

ly decrease the structural safety of columns. 

 

7. Conclusions 

The resistance concept of spun concrete beam-columns 

may be based on their ultimate resisting compressive 

force or resisting bending moment values. Therefore, the 

structural safety of these members may be assessed and 

predicted by the generalized reliability index  nN tT   

or  nM tT   from Eq. (63) respectively. 

The non-stationary time-dependent resistance safety 

margin of building beam-columns is closely related to 

their action effects provoked both by live floor and cli-

mate actions. Instead of the sustained and extraordinary 

components of live floor loads, it is expedient to use their 

annual extreme sums in probabilistic design practice. The 

mean and variance of joint annual extreme action effects 

are expressed by Eqs. (38) and (40). Live and climate 

(wind and snow) annual extreme actions effects modelled 

by Type 1 (Gumbel) distribution help engineers with 

expressing the resistance safety margin of building beam-

columns as a stationary process. 

The reliability levels of beam-columns designed by 

limit state and probability-based approaches were compa-

red. Regardless of methodological features, both limit 

state design methods EN 1990 and ASCE/SEI 7-05 lead 

to the same design results and are confirmed by the relia-

bility index values. The reliability index approach based 

on the transformed conditional probability concept opens 

quite realistic design formats in the long term structural 

safety prediction of beam-columns and other structural 

members. 
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TIKIMYBINIS SIJINIŲ KOLONŲ IŠ CENTRIFUGUOTOJO BETONO PROJEKTAVIMAS 

A. Kudzys, R. Kliukas 

S a n t r a u k a  

Atkreiptas inžinierių dėmesys į didžiastiprio plieno strypais armuotų sijinių kolonų iš centrifuguotojo betono naudojimą 

įstaigų ir administraciniuose pastatuose. Aptarta galimybė projektuojant pastato rėmo sijines kolonas taikyti patikimumo 

indekso būdą. Analizuojamas sijinių kolonų kaip lenkiamai gniuždomų ir gniuždomai lenkiamų žiedinio skerspjūvio ele-

mentų atspario kriterijus. Nagrinėjamos sijinių kolonų pirmosios ir antrosios eilės įrąžos. Pateiktas laike kintantis ribinės 

saugos atsparis ir jo stacionarusis ekvivalentas. Tyrinėjamas nesudėtingas taikomasis modelis rėmo sijinių kolonų ti-

kimybiniam projektavimui. Skaitiniu pavyzdžiu iliustruojamas stabilizuojamų rėmų sijinės kolonos projektavimas. 

Reikšminiai žodžiai: centrifuguotasis betonas, rėmai, antrosios eilės įrąžos, ribinė atspario sauga, patikimumo indekso 

skaičiavimas. 
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