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Abstract. One of the main problems related to the design of suspension bridges is stabilisation of their initial form. The 
tendency of suspension bridges to deform is generally determined by the kinematical displacements of the suspension ca-
ble caused by asymmetrical loads rather than by the elastic deformations. There are some suspension bridges when the so-
called rigid (stiff in bending) cables instead of usual flexible cables are suggested for stabilisation of their initial form. The 
analysis methods of such suspension bridges with rigid cables are underdeveloped. For the analysis of classical suspension 
bridges analytical models can be applied. However, in case of concentrated forces, the numerical techniques are preferred. 
The article presents analytical expressions for the calculation of internal forces and displacements of suspension bridges 
with a rigid cable. The article also discusses the discrete calculation model for classical suspension bridges. 
Keywords: suspension bridge, flexible cable, rigid cable, non-linear analysis, continual model, discrete model, internal 
forces and displacements. 

 
1. Introduction 
For many years, suspension bridges have an exclusive 
place among other structural systems due to their effi-
ciency and remarkable architectural appearance (Troyano 
2003). Due to the dominating tension stresses, suspension 
bridges assure covering the longest spans in the world 
(Ryall et al. 2000; Gimsing 1997). However, one of the 
main peculiarities of the suspension bridges is the ten-
dency of having large exessive deformations (Katchurin 
et al. 1971; Gimsing 1997). Such tendency to deform is 
generally determined by kinematical displacements 
caused by asymmetrical loads rather than by elastic de-
formations of the suspension cable (Kulbach 2007; Juo-
zapaitis & Norkus 2004). As shown in Fig. a, the stiffen-
ing girder is the main structural element that ensures the 
required stiffness of classical suspension bridges. A num-
ber of additional structural hints, which help to reduce the 
displacements of kinematical origin, are also known 
(Katchurin et al. 1971; Jennings 1987; Gimsing 1997). 
However, some of them are rather complex or are inef-
fective from the technical and economic perspective. 
Quite a number of publications analyse the behaviour of 
classical suspension bridges when the suspension cable is 
considered ideally flexible (Cobo del Arco & Aparicio 
2001; Wollman 2001; Kulbach et al. 2002). However, 
this idealisation is a purely theoretical concept, as in real 
structures such elements have a certain height of the 

cross-section and, consequently, a bending stiffness of a 
finite (not equal to zero) value (Furst et al. 2001). There 
are some publications that analyse the stress-strain state 
in flexible cables of suspension bridges taking into ac-
count their local bending stiffness that exists in certain 
sections (Gimsing 1997; Prato & Ceballos 2003). It must 
be noted that the so-called rigid cables ( c c 0E J > , see 
Fig. b) are used to reduce the kinematical displacements 
of suspended structures (Moskalev & Popova 2003; 
Muschanov et al. 2005; Juozapaitis et al. 2008). Such 
suspended structural elements are made from the standard 
hot rolled or welded sections, which simplify their con-
struction and assembly. Besides, these sections have 
higher fatigue resistance (Kala 2008). A modern struc-
tural scheme of the suspension bridges allows stabilising 
the initial form and ensuring the required stiffness of the 
bridge by introducing the rigid cables (Grigorjeva et al. 
2004; Juozapaitis et al. 2006). Calculation methods for 
such suspension bridges are scarce. A simplified engi-
neering technique has been proposed by Grigorjeva et al. 
(2006) for predicting displacements of suspension bridges 
with rigid cables subjected to symmetrical or asymmetri-
cal external loading. The technique is useful for concep-
tual, rough analysis of such bridges. However, this 
method (based on a girder idealisation) cannot be consid-
ered sufficiently accurate. Numerical methods (Mang 
2009) are often used for more advanced analysis of sus-
pension bridges with rigid cables  (Nevaril & Kytyr 2001). 



A. Juozapaitis et al.  Non-linear analysis of suspension bridges with flexible and rigid cables  

 

150 

 
Fig. Calculation model for a suspension bridge 

 
Certainly, it is relevant to develop an accurate analytical 
calculation technique for suspension bridges with rigid 
cables. The behaviour of classical suspension bridges is 
analysed based on the assumption that the hangers trans-
fer a uniformly distributed load to the cable. However, 
this assumption sometimes can not be applied in the cases 
of relatively long distance between the hangers or consid-
erable concentrated forces. A discrete calculation model 
is applied in such cases (Kulbach et al. 2002). 

This article discusses the stress-strain analysis of a 
classical suspension bridge with a flexible cable. The 
analysis is extended for the case of a suspended bridge 
having a modern structural scheme with a rigid cable. 
Analytical expressions for calculation of such bridges are 
presented. Applying of the fictitious displacement concept 
allowed reducing the amount of iterative calculations in 

the proposed procedure. The discrete calculation model 
for a classical suspension bridge is also presented. 

 
2. Static Analysis of a Suspension Bridge 
The structural scheme of a classical single-span suspen-
sion bridge that consists of a flexible cable, a stiffening 
girder, hangers, pylons and anchor cables is shown in 
Fig. a. The analysis of such bridges concerning the non-
linear structural behaviour is a complex task (Gimsing 
1997; Kulbach 2007). Therefore, the equilibrium condi-
tions for classical suspension bridges are formulated on 
the basis of certain assumptions: (a) the main cable is 
absolutely flexible and has a square parabola as its initial 
shape when the bridge is subjected to the dead load only; 
(b) all structural elements are made from ideally elastic 
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materials; (c) the elastic elongation and horizontal dis-
placements of the hangers can be neglected; (d) the height 
as well as the bending stiffness of the stiffening girder is 
constant along the entire span of the bridge ( b consth = , 

b b constE J = ); (e) the number of hangers and the dis-
tance between them allow the load acting on the cable to 
be considered as uniformly distributed. 

The transfer route of loads acting on the bridge (the 
load history) is also specified: the entire dead load g acts 
on the cable, while the live load p is carried both by the 
stiffening girder bp  and the cable cp . 

 

2.1. Analysis of a classical suspension bridge 
The design scheme of a classical suspension bridge af-
fected both by the dead load g and the live load p is 
shown in Fig. b. The main cable is subjected to couple 
action of the dead load and part of the live load ( cg p+ ), 
while the stiffening girder is affected only by part of the 
live load (pb). The cable of a classical bridge is assumed 
to be ideally flexible ( c c 0E J = ). 

The initial state of the cable, when it is subjected to 
the dead load g only, may be defined by the following 
equation: 
 ( ) ( )0 0 gH z x M x⋅ = . (1) 
Here H0 is the horizontal component of the cable tension 
force when the dead load g is acting; ( )gM x  is the bend-
ing moment of an equivalent girder (the same span 
length) due to load g. 

The live load p applied on the bridge strains both the 
cable and the stiffening girder. Considering the assump-
tion (c), we can write the equation for vertical displace-
ments of the stiffening girder and the cable: 

( ) ( ) ( )b cw x w x w x= = . The equilibrium condition of the 
flexible cable is as follows: 
 ( ) ( ) ( )0 c,g p 0H z x w x M x++ + =   . (2) 
Here H is the horizontal component of the cable tension 
force in the main cable due to the dead and live loads; 

( )c,g pM x+  is the bending moment of an equivalent 
girder due to complex loading on the cable ( cg p+ ). 

The equilibrium condition of the stiffening girder 
subjected to the live load may be expressed using the 
following differential equation: 
 ( ) ( )b b b,p 0E J w x M x′′− ⋅ + = . (3) 
Here b bE J  is the bending stiffness of the girder; 

( )b,pM x  is the bending moment of an equivalent girder 
due to live load (pb). 

Considering the assumption (c) and the equations 
(2) and (3), the differential equation can be written: 
 ( ) ( ) ( ) ( )b b 0 g p 0E J w x H z x w x M x+′′⋅ − + + =   . (4) 
Here ( )g pM x+  is the bending moment of an equivalent 
girder due to dead load and live load ( g p+ ) acting on 
the entire bridge. 

It should be noted that the stress-strain state of sus-
pension bridges can be defined using the differential 
equation (Kulbach 2007; Wollman 2001). However, solu-
tion of such equation frequently is rather complex. Sim-
plifying the solution procedure, equation (4) can be re-
written as follows: 
 ( ) ( ) ( ) ( )2 2 0 g+pw x k w x k z x M x H′′ − = −   . (5) 
Here 2 b bk H E J=  is the flexibility parameter. 

The ratio ( ) ( )fic g+pz x M x H=  represents the ficti-
tious curvature of the deformed axis of the ideally flexi-
ble cable subjected to loads g p+  (Moskalev & Popova 
2003). Then, equation (5) can be rearranged as follows: 
 ( ) ( ) ( )2 2 ficw x k w x k w x′′ − = − ⋅ . (6) 
Here ( ) ( ) ( )fic fic 0w x z x z x= −  is the fictitious displace-
ment of the cable. 

The equation above can be solved assuming that the 
bridge is subjected to uniformly distributed load 
( , constg p = ) and taking into consideration the bound-
ary conditions 

 
( ) 2

fic 2 2 2
4 4 8 ;

1 1.

x x Xw x f L L k L
chkLX chkL shkLshkL

 = ∆ − +  
−= − ⋅ −

 (7) 

Here ficf∆  is the fictitious displacement of the cable in 
the middle of the span. 

It should be noted that equation (7) is equivalent to 
the equation used in the calculations of displacements of 
individual rigid cables ( 0EJ ≠ ) (Moskalev & Popova 
2003; Juozapaitis et al. 2006). It means that the behaviour 
of a classical suspension bridge can be defined by the 
behaviour of a rigid cable obtained as a result of the syn-
thesis between a flexible cable and a girder. 

The main unknowns in equation (7) are the fictitious 
displacement ficf∆  and the tensile force in the cable H. 
Some additional equations should be introduced in order 
to find these parameters. Let us use the dependence 
which we know from the analysis of suspension struc-
tures: 

 ( ) ( )
0 el

22 0 00

c c

;
80,5 .3

s s s
H H sfL w x dx L L E A

= + ∆
  −′+ = + +      ∫  (8) 

Here s0 is the initial length of the cable; els∆  is the elastic 
elongation of the cable and s is the length of the deformed 
cable. 

The unknowns (H and ficf∆ ) are defined using the 
gradual approximation. Introduction of the fictitious dis-
placement leads to the reduction of the number of itera-
tions by considerable amounts. When the values H  and 

ficf∆  are known, we can calculate the real displacements 
( )w x  of the bridge and the bending moment of the girder 
( ) ( )b b bM x E J w x′′= − ⋅ . 
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2.2. Analysis of a suspension bridge with a rigid cable 
It should be noted that the assumption (a) applied in the 
analysis of a classical suspension bridge may sometimes 
be unacceptable. Admittedly, the absolutely flexible cable 
is just a theoretical idealisation. Cables of suspension 
bridges, depending on their cross-sections, always have a 
certain bending stiffness ( c c 0E J > ), and neglecting it 
may lead to inaccuracies of various extent (Furst et al. 
2001; Gimsing 1997). Moreover, the rigid cables are 
often suggested for stabilisation of the initial form of the 
modern suspension bridges. Such cables can be made 
from standard steel profiles or with welded cross-
sections. Accurate calculation methods for the analysis of 
the behaviour of suspension bridges with a rigid cable are 
practically unavailable. A simple and at the same time 
efficient engineering technique is proposed by Grigorjeva 
et al. (2006). This technique uses the girder model. Under 
this assumption, the equilibrium condition of displace-
ments of the cable and girder is formulated for two points 
of the entire span only. It is necessary to develop a more 
accurate technique for the analysis of suspension bridges 
with a rigid cable. 

It is known that during assembly the rigid cable can 
be shaped so that it would carry the entire dead load as an 
absolutely flexible cable and the live load like a rigid 
cable (Kirsanov 1990; Moskalev & Popova 2003). 
Analysis of such bridge will be discussed below. The 
initial equilibrium condition of the rigid cable subjected 
to load g may be formulated using equation (1). Assum-
ing bending stiffness of cable c c 0E J > , application of 
the live load pc will cause bending moment ( )cm x  extra 
to axial force. The equilibrium equation can be written as 
follows: 

 ( ) ( ) ( ) ( )
( ) ( )

0 c c,g+p

c c c

0;
.

H z x w x m x M x
m x E J w x
+ + + =  

′′= − ⋅  (9) 

The equilibrium condition of the stiffening girder 
subjected to a part of the live load pb remains the same as 
in the case of a classical bridge and is defined by equation 
(3). Considering expressions (9) and (3), we can write the 
constitutive differential equation: 

 ( ) ( ) ( ) ( )0 g+p

b b c c

0;
.

EJ w x H z x w x M x
EJ E J E J

′′⋅ − + + =  
= +  (10) 

The equation above is equivalent to the equilibrium 
condition (4) obtained for a classical bridge. However, 
the analysed bridge possesses some extra stiffness. Obvi-
ously, the displacements of such bridge under the same 
conditions would be smaller than of a classical bridge 
(which has ideally flexural main cables). If the bridge is 
subjected to uniformly distributed loading, then equation 
(10) can be solved similarly to equation (7); only the 
flexibility parameter will be defined, taking into consid-
eration the rigidity of the cable: ( )2 b b c c/k H E J E J= + . 

It should be pointed out that the behaviour of a sus-
pension bridge may be regulated by changing the values 
of the bending stiffness of the girder and the cable. If 

from the condition of the serviceability limit state, the 
bending stiffness of the bridge b b c cEJ E J E J= +  is 
known, a rational ratio of the bending stiffness of the 
cable and the girder c c b b/n E J E J=  can be selected, and 
such rational ratio would ensure the lowest stresses in the 
structural elements of the bridge. The flexibility parame-
ter may be expressed as ( )2 b b 1k H E J n= + . The pro-
cedure of iterative calculations for a suspension bridge 
with a rigid cable is the same as that for a classical 
bridge. The bending moments will distribute between the 
stiffening girder and the cable depending on the stiffness 
ratio n. 

 
2.3. Discrete model for a classical suspension bridge 
The assumption that the distance between the hangers 
affects the uniformly distributed load that acts on the 
cable is not always applicable in calculations. In certain 
cases there may be only a few hangers; moreover, con-
centrated forces may act on the stiffening girder. In such 
cases a bridge must be analysed using the discrete model. 
The scheme of a girder-stiffened suspension bridge is 
presented in Fig. c. 

The initial vertical load F0i is fully balanced by the 
cable and pre-stresses it. For calculating the cable force 
H0 we may use the following expression: 

 
( )

( ) ( )

n
0 0 i
i 1

0
0 1 0 n 1 0

ia F l x
H

l z z a z z
=

+

−

=
− + −

∑
. (11) 

Part of the additional load P is balanced by the cable 
and the rest of it is balanced by the stiffening girder. The 
equation that describes the deflection of the girder can be 
written as follows: 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

2

0 0
b b

3

b b
4 4

b b

2

6

.
24

x a H x aw x w x M E I
x b H x bF E I
x c H x c x d H x dp E I

− −
= +ϕ − +

− − +

− − − − −

 (12) 

Here EbIb is the flexural stiffness of the girder; w0 is the 
vertical displacement at the first point of the girder; ϕ0 is 
the angle of rotation at the first point of the girder; a, b, c 
and d are the coordinates of the points of the application 
of forces; and H(x) is the Heaviside’s function. 

Equation (12) can be used for calculating the deflec-
tion of the bridge subjected to complex action of external 
bending moments M, axial forces F, and uniformly distri-
buted loading p. 

In the case of vertical pylons, the horizontal displa-
cements of the supporting nodes of the cable may be 
defined as 

 ( )0 a 0
0 1 3 2

a a a acos cos
n

H H L H Hu u B
E A E A+

− −
= = =

α α
. (13) 
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Here La is the length of the anchor cable and α  is the 
angle of inclination of the anchor cable (see Fig. c). 

Let us consider only the stiffening girder. Displace-
ments of each hanger joint and support point can be 
found using the following equation: 

 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3m 1 i m i m
m 0 0 m

b bi 1
2 3

b b b b
4 4

b b

6

2 6

.
24

F x x V xw w x E I
x a H x a x b H x bM FE I E I
x c H x c x d H x dp E I

−

=

− + ⋅
= +ϕ + −

− − − −
+ +

− − − − −

∑
 (14) 

Here Fi is the internal force in the i-th hanger and V is the 
vertical reaction in the support. 

We obtain n + 1 linear equations for calculating Fi, 
but there are n + 2 unknown parameters: F1, F2 … Fn, V, 
and 0ϕ . An extra equation can be written from the mo-
ment equilibrium condition upon one of the supports as 
follows: 
 ( )n

i Pi 1 0L x V L M
=

− + ⋅ + =∑ . (15) 
Here MP is the bending moment induced the external 
loading in the support and L is the span of the suspension 
bridge (see Fig.). 

It becomes evident that it is reasonable to converge 
all the linearly interdependent components into a uniform 
linear equation system, which thereafter will be depend-
ent on the cable’s internal force H. Thus, optimisation of 
the solution process is aimed at choosing of the function 
H. When placing the displacements calculated from the 
linear equation system into the expression linking the 
elongation of the cable and the displacements and the H 
found in its solution equals the H used for compiling the 
linear equation system. 

 
4. Concluding remarks 
The article has analysed classical suspension bridges that 
consist of a flexible cable and a stiffening girder, as well 
as a modern bridge structures with a rigid cable (having 
non-zero flexural stiffness) that is used for stabilisation of 
the displacements of kinematic origin. The equilibrium 
conditions of a suspension bridge both with a flexible or 
rigid cables were discussed in the light of an assembly 
sequence of such bridges. 

The concept of a fictitious displacement was intro-
duced to come up with the expressions for the calculation 
of displacements and internal forces of such bridges. It 
has been determined that the derived equations are 
equivalent to the equations used in the calculation of 
displacements for suspension cables with bending stiff-
ness. The derived expressions show that a bridge with a 
rigid cable will have smaller displacements than a classi-
cal bridge under the same conditions. It must be noted 
that the state of stress-strain of a suspension bridge may 
be regulated by changing the values of the bending stiff-
ness of the stiffening girder and the cable. 

The article also presents a discrete calculation 
model for classical suspension bridges. The model con-
siders the effect of hangers and concentrated forces on 
displacements and action-effects of the bridge. The equi-
librium conditions of such bridges and the iterative calcu-
lation are discussed. 
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KABAMŲJŲ TILTŲ SU LANKSČIU IR STANDŽIU LYNAIS NETIESINIS SKAIČIAVIMAS 
A. Juozapaitis, S. Idnurm, G. Kaklauskas, J. Idnurm, V. Gribniak 
S a n t r a u k a 
Viena iš pagrindinių kabamųjų tiltų projektavimo problemų yra pradinės jų formos stabilizavimas. Kabamųjų tiltų defor-
matyvumą lemia iš esmės ne tiek tampriosios deformacijos, kiek asimetrinių apkrovų sukelti kinematiniai kabamojo lyno 
poslinkiai. Yra žinomi kabamieji tiltai, kurių pradinei formai stabilizuoti siūloma vietoje įprastinių lanksčiųjų lynų taikyti 
vadinamuosius standžius lynus. Tokių kabamųjų tiltų su standžiais lynais skaičiavimo metodai nėra iki galo parengti. Kla-
sikiniams tiltams su lanksčiu lynu skaičiuoti taikomi daugiausia kontinualūs modeliai, kurie esant tam tikrai tilto sandarai 
ar veikiant sutelktoms apkrovoms nėra pakankamai tikslūs. Straipsnyje pateikiamos analizinės išraiškos kabamųjų tiltų su 
standžiu lynu įrąžoms ir poslinkiams apskaičiuoti, aptariamas diskretusis klasikinių kabamųjų tiltų skaičiavimo modelis. 
Reikšminiai žodžiai: kabamasis tiltas, lankstus lynas, standus lynas, netiesinė analizė, kontinualus ir diskretinis modeliai, 
įrąžos ir poslinkiai. 
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