JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT

2010
16(1): 103-121

SAOSYS TOOLBOX AS MATLAB IMPLEMENTATION IN THE ELASTIC-PLASTIC
ANALYSIS AND OPTIMAL DESIGN OF STEEL FRAME STRUCTURES

Valentinas Jankovski!, Juozas Atkogitinas®

Department of Structural Mechanics, Vilnius Gediminas Technical University,
Saulétekio al. 11, 10223 Vilnius, Lithuania
E-mail: "JWMsoftcorp@gmail.com; 2Juozas.Atkociunas@vgtu.lt

Received 19 Mar. 2009; accepted 06 Jan. 2010

Abstract. The improved mathematical model of steel frame structures’ design is created. The loading is simple, and plas-
tic strains are evaluated. Energy principles of deformable body mechanics and mathematical programming theory are em-
ployed. Equilibrium finite elements with interpolation functions of internal forces are used for discretization. The elements
are designed using HE, IPE, RHS steel profile assortments and considering dispersion of geometrical characteristics of
profile assortment sets. Optimal design of steel structures is realized by using the experimental tool system JWM SAOSYS
Toolbox v0.42, which was created by the authors in MATLAB environment. SAOSYS architecture operates with object-
oriented finite elements pseudo-polymorphously. The possibilities of this system are demonstrated by considering a nu-
merical example of optimal design of industrial building frame with strength and stiffness constraints. The assumption of

small displacements is adopted for computations.
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oriented programming, MATLAB.

1. Introduction

Structural design evaluating plastic strains allows us to
exploit carrying capacity of the structure more effectively
and create more economical projects (Majid 1974; Atko-
¢ianas 1999; Choi and Kim 2002; Kaliszky and Logo
2002; Anseauu 2005). It is worth noticing that the as-
sumptions of the limit equilibrium theory are referred to
in many papers (Cyras et al. 2004; Atko¢ianas et al.
2007; Karkauskas 2007). Optimization results under plas-
tic collapse criterion are not decisive in every case
because the limit feasibility state of optimal structure can
be lost even in the case, when plastic collapse due to
excessive inelastic strains and displacements is not
achieved (Giambanco et al. 1994; Tin-Loi 2000).
Therefore, chronologically, the paper (Kaneko and Maier
1981) is most important for the cases, where elastic-
plastic structures’ optimization with stiffness constraints
is analysed.

An optimum criterion of a structure can have ener-
getic or a definite physical meaning, i.e. minimum vol-
ume (weight) or minimum cost (Prager 1955; Atkocianas
et al. 2008; SkarZauskas et al. 2005; Kalanta et al. 2009;
Se3ok and Belevicius 2008). Engineering development in
the field of optimal structural design requires some theo-
retical and practical knowledge, including the fundamen-
tals of structural mechanics, structural design standards
(STR 2.05.08; EN 1993-1-1: 2005) and, finally, modern
information technologies. Further, not sticking to chro-
nology, we will mention only some papers (concerning

structures’ optimization) and provide a comprehensive
list of literature. It is mostly the work of M. I. Reitman
(1976) in Russian, as well as the books (Brandt 1978;
Atrek et al. 1984; Lloyd Smith 1990).

It should be noted that the above papers do not take
into consideration the relationship between dual theory of
mathematical programming and the problems of static
and kinematic formulas of rigid deformable body.
Namely, the dual theory applied to holonomic plastic
deformation process (Koiter 1960) allows the
construction of matrices showing the influence of residual
internal forces and displacement influence matrices
(Atkocitnas 1994). Finally, the revelation of the
mechanical meaning of Kuhn-Tucker optimality
constraints (Bazaraa et al. 2004) facilitates numerical
realization of optimization problems (Atkociunas et al.
2003-2008). An attempt was made to avoid all these
imperfections in the current paper.

An improved mathematical model of minimum vol-
ume design of steel structures with plastic strains was
created applying energy principles of structural mechan-
ics and mathematical programming theory. Besides,
strength, stiffness and stability requirements to structures
discretized by finite elements and subjected to local
forces were evaluated more accurately. The extreme in-
ternal forces of the elements were also restricted by addi-
tionally introduced nonlinear yield conditions. There is
also a possibility of precise evaluation of extreme ele-
ment deflections under stiffness conditions (these condi-
tions are mostly the constraints of node displacements of
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the discrete model of the structure). These additional
means allow us to avoid densification of the finite ele-
ments grid, thereby decreasing the size of the optimiza-
tion problem, as well as saving computer resources (espe-
cially, solving time).

An approximate objective function expressing the
volume of a structure is used in the developed
mathematical model of the optimization problem.
Structural elements are designed considering the
dispersion of geometrical characteristics in the sets of
profiles and based on the principle of admissible fields of
geometrical characteristics of the profiles assortments
HE, IPE and RHS (Rectangular Hollow Section).

For practical realization of the optimization problem,
the authors created a design algorithm of elastic-plastic
structures and structural analysis, as well as optimal de-
sign system JWM SAOSYS Toolbox v0.42 (Structural
Analysis and Optimization System) in MathWorks
MATLAB environment (Jankovski and Atkocitnas 2008)
(Fig. 1). Nonlinear optimization problem considered is
nonconvex. The convergence is obtained by an iterative
method, i.e. by solving a sequence of nonlinear problems.
The system SAOSYS combines finite element method,
object-oriented programming (OOP) paradigm, mathe-
matical models (Cyras et al. 2004) based on structural
analysis and extreme energy principles of optimization,
as well as mathematical programming theory and meth-
ods (Bazaraa et al. 2004; Raue et al. 2009), principles of
the initial structural data input and parameterization, da-
tabases of steel profiles’ assortments and the output and
interpretation methods of textual and graphical data.

Fig. 1. The main parts of the optimal design system of
structures

SAOSYS system’s architecture embraces User mode
pre-post-processor control system, and Kernel mode, in-
volving system topology and its components. The created
system operates with object-oriented LINK11 and

BEAM31 finite elements, composing finite elements’
library FELIB, which contains equilibrium and displace-
ment formulations of finite elements for solving various
problems. Due to limitations of MATLAB 7.0 environ-
ment OOP facilities, pseudo-polymorphism is realized in
SAOSYS system which maintains a concept of pseudo-
virtual methods. Pre-processor of the created system em-
ploys the command data input method of structural mod-
el (similar to ANSYS software) and a possibility of
structural parameterization in a variational design case.

The possibilities of SAOSYS system and the
proposed technique are illustrated by a numerical
example of optimal design of industrial building frame
with strength and stiffness constraints. The assumption of
small displacements is evaluated for computations.

2. A mathematical model

An elastic-plastic beam structure of known geometry
subjected to specified loading is analyzed. Simple loading
is perceived as loading, when all loads are proportional to
one common factor: thus, plastic deformation holonomic-
ity is indirectly provided. The principle of the minimum
energy of A. Haar and von Karman Th. (Koiter 1960) is
valid for this process. The numerical example in this pa-
per is aimed at finding the project of the structure of
minimum volume V, whose optimality criterion (1) is
provided with respect to strength and stiffhess, as well as
stability requirements. The optimality criterion consists
of the following items: L is the structural element’s
length vector; Gy is the leading vector of the elements’
cross-sections of design geometry; A() is the vector func-
tion of cross-section geometry conversion to cross-
section areas. Thus, minimization is performed when the
whole structure’s configuration, physical-mechanical
characteristics of the material of the elements, loading F
and the vectors of the limiting values of structural nodes’
displacements Umin, Umax and ultimate deflections v,
Vmax Of the elements are given. The vectors Vyin, Vimax are
used to control stiffness conditions.

The basis of this optimization is a system of equa-
tions and dependencies, defining a real stress-strain state
of an elastic-plastic structure before plastic failure. This
system can be created assuming the constraints of the
static formulae of the analysed problem and Kuhn-
Tucker’s optimality conditions of the problem (Atkoci-
anas and Merkeviciaté 2003). The above-mentioned sys-
tem of dependencies (giving the results of influence ma-
trices [Z] and [Y] of residual internal forces S, and resid-
ual displacements u, respectively) is often referred to as a
generalized Lagrange problem. Further, the internal
forces and displacements at the elastic stage will be de-
noted as S, and u,, respectively (16, 15), where [4] is the
matrix of the influence of structural displacements. Thus,
the aim of the computations is to find optimal distribution
of geometrical characteristics of the elements’ cross-
sections Gy, while safe exploitation of the structure with
plastic strains is secured.

Thus, a mathematical model for the problem of the
minimal volume is as follows:
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find minV =L"-A(G,) (1)
subjectto:  [B]G,—[Z]r=b), 2
;J([B]Go-[z]x-b):o, (3)
[Y]2 2 Upin — U, (4)

[Y]A <Upa —Ue, (5)

Yoo (M Se ) <0, (6)

Vinin < Pyedt (A Ug ) < Vingy @

A>0, (8)

Go =G min - 9)

Thus, the mathematical model (1)-(9) for the vol-
ume minimization problem of elastic plastic beam struc-
ture with variables Gy and A consists of nonlinear objec-
tive function (1) and constraints-conditions, such as linear
inequalities (2, 8); nonlinear complementary slackness
condition (3); stiffness constraints (4, 5); additional
nonlinear yield conditions (6), evaluating extreme inter-
nal forces of elements; nonlinear stiffness constraints (7),
evaluating extreme deflections of elements; and construc-
tional constraints (9). Furthermore, the following notation
is used in the given mathematical model:

(8= ([AlI<][AT ) (10
[H]= [«][A][K], (11)
[Q]= ([KI[AT [HI-[K]|[2] . @2
[2]= [][Q], (13)
[ J=[H][ I (14)
= [A]F, (15)
=[K][A] . (16)
b:[gD]Se an

Then, the vectors of the total displacements u and
internal forces S of the structure are as follows:

U=Ug+U, =U+[Y]2, (18)
S=S,+S, =S, +[Q]% . (19)

It only remains to note that structural configuration
matrix [B] and the vector of plastic multipliers A are in-
cluded into the direct yield conditions (2) (the vector b is
known during the iterative process). The vectors Upyin,
Umax are interpreted as maximum vectors of negative and
positive values of the restricted nodes’ displacements;
VeCtors Vpmin, Vmax are maximum vectors of negative and
positive values of elements’ deflections; [A] is the matrix
of coefficients of equilibrium equations of the structure;

[K]=[D]™ is the stiffness matrix of structural elements;

[@] is the matrix of structural elements’ linear yield con-
ditions at the nodes.

3. Beam finite elements: yield and strength conditions

Steel structures will be modelled by the equilibrium finite
elements with interpolation functions of internal forces
(De Veubeke 1963; Gallagher 1975; Kalanta 1995; Wil-
son 2002). LINK11 and BEAM31 types of finite ele-
ments are described in this paper. All elements
k=1,2,3, ..., ne of the structure compose a set K of finite
elements. Subsets Kj; and Kz, corresponding to finite
element types LINK11 and BEAM31, compose the set K.
The subset R, is composed of the elements of the same
type, material and cross-section’s geometrical character-
istics. The set R is composed of the subsets R, of attrib-
utes. After describing the sets of the finite elements of
structural model, we will discuss yield and strength con-
ditions of every element in detail.

1 kiR,

R Fea
Ny Ny

Fig. 2. Finite element LINK11

LINKZ11. It is an elastic-plastic equilibrium finite
element of truss which can only lengthen or shorten (i.e.
strains in axial direction are only evaluated) (Fig. 2). The
vector of the internal forces of the element is Sy = {N.}
and its yield-strength conditions (i.e. strength and stabili-
ty requirements) are as follows:

Mg =N, - fykPox <0,
14, =—N, -, fykPox <0,

The first constraint is the yield condition of the tensioned
element section, since the second is the strength-stability
condition of the compressed element (STR 2.05.08.
2005). Buckling reduction factor ¢, of centrally com-
pressed beam is calculated as follows:

§0k:¢)(Ek’ fy,kilk/ik)’ (21)

i = /% Le=min{ly, 1y} (22)

The yield-strength conditions (20), written in matrix-
vector form are as follows:

[Q(]Sk_pb,kBk(A:),kllk)SO’ keKy. (23)

keKy.  (20)
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Fig. 3. Finite element BEAM31

Here, Ny is the element’s axial force; f, is tensile steel
strength depending on the yield stress; Ey is elasticity
modulus of steel; I, is the element’s length; Aqy, li, ix are
the element’s cross-section area (design parameter), the
inertia moment and inertia radius of cross-section, respec-
tively; [@y], Bi(-) is the matrix of yield-strength condi-
tions ratios and configuration vectorial function.
BEAM3L. It is an equilibrium finite element of the
2D beam under bending and tension or compression
(Fig. 3). Two cases of this element are considered: C* is
an element subjected only to nodal loads (default); C? is
an element subjected to nodal loads and uniformly dis-
tributed load F/;. Then, the vector of the element’s in-

ternal forces S, is as follows:

{MklleZINk}v ch;

(24)
{Mie, Mg, My, Ny}, C2.

k:

Yield conditions must be satisfied in the nodes of the
BEAM31 finite element:

3l¢l(Mkil Nk):§|Mki|+Ck|Nk|— fy Wi yok <0, (25)
31¢2 :|Mki|_ fy,kvvpl y,0,k <0,
G = pl,y,o,k/Ak ' (26)
i=1,2,(3)2; keKy.

These conditions written in the matrix-vector form are as
follows

[@( ol,y,0.k Ak)] kB <0, (27)
where My; denotes bending moments in the element’s
nodes; &= 0,85 is the ratio; W0k Ax is plastic section
modulus of the element’s cross-section (design parame-
ter) and cross-section area, respectively.

The extreme bending moment Mg Should be
evaluated while designing elements of C? case (i.e. when
bending moments vary according to the second degree
curve) (Fig. 3). It can be implemented approximately by
increasing the number of finite elements. The second way
of accurate calculation, which will be discussed below, is
the direct application of additional nonlinear yield condi-
tions (6). With reference to the formula (19), the true vec-
tor of internal forces S = {S, k € K} can be calculated. A
relative position 7 of the feasible extreme bending mo-
ment is expressed as follows:

plyO

1y dyy #0;
M =4 dy (28)

J, otherwise,

where
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dy =3Myq —4My; + Mys, (29)
Ay =My —2My; + Mys. (30)

If 7 € (0; 1), the value of the extreme bending moment
is calculated as follows
1d&
M =M, ———. 31
k,ext k1 8 de ( )

Finally, the additional nonlinear yield condition (25) of
the element with reference to the extreme bending mo-
ment My e IS expressed as

s extk = 31¢1(Mk,ext’ Nk)S 0, keKy. (32)

4, Stiffness condition of the BEAM3L1 finite element

The stiffness conditions (4, 5) in the structural volume
minimization problem allow us only to restrict the real
(total) displacements u of the nodes of the discrete struc-
tural model. In order to check extreme deflections vy ex
(Fig. 4) of separate elements, we must densify the grid of
finite elements, or calculate accurately, i.e. directly apply
stiffness conditions (7), corresponding to extreme deflec-
tions. We will discuss it in more detail. Applying the
conditions (18) we begin to calculate the vector u of
global displacements, from which we pick the values of
nodes’ displacements uy of a single element.

Y.V

Fig. 4. Extreme deflections of the BEAM31 element

To create the interpolation function of the element’s
deflections vi(x), we choose a third-degree polynomial:

Vi (X):[Nv,k (X)]UL :[Nv,k (X)J[Tk]uk , (33)

where [N, «(X)] is function-matrix of the element’s shape;
[Ty] is transformation matrix of the displacements of the
element’s nodes; Uy = {Uk1, Ukz, ..., Uks, <Ux7>c2} IS global
displacement vector of the element’s nodes; u, is local

displacement vector of the element’s nodes. For deflec-
tion interpolation function vi(x) we apply a stationary
condition. Then, while solving the quadratic equation, we
try to find two solutions to the locations of extreme de-
flections Xy ext -

-b+J/D
Xear| | ———, D=0;
Xk,ext = - = 2a (34)
k,ext2 @’ D <0,
where
D =b? —4auy,, (35)
3 ' ' ’ '
a=|—3(2Uk2+|kUk3—2Uk5 +lUgs ) (36)
K
2 , , ' '
b= I—z(—3uk2 — 2l uis +3ups —hugg) . (37)
K

The extreme deflections of the element are calculated for
each location X e :

Vi (X exti )y X exti €(05 1 )5 .
Vicext Vicexti = (Xcens) "*e“*'_e( ) i=12.(38)
, otherwise,

Finally, these nonlinear stiffness conditions (which
evaluate extreme deflections and are denoted in the
mathematical model (1)—(9) as (7)) are expressed as fol-
lows:

min
Vmin,k < |:5Uv,ext,k = maka,ext:| Svmax,k' ke K31- (39)

5. Assortments: fields of discrete geometrical
charac-teristics of the profiles in structural
optimization

Steel structures’ design is closely connected to discrete
sets of profiles’ assortments. Analysing the distribution of
geometrical characteristics of the profiles IPE, HE, RHS
(Fig. 5, Fig. 6), we can see that the single-valued depend-
ence between cross-section geometrical characteristics A-
W,y and I-A does not exist. Therefore, the admissible
points “G (Fig. 6) are to be found in discrete fields
Jj}'\—wp,,y and .7]_, of assortments during the optimization

process.

In the case of the elements of different types in a
structure, the geometry vector “G of cross-section takes
the form of:

Ao I
{Wpl,y,o,k' Ak}’ ke K31!
For the whole structure, the following notation is correct:

[G]=[Go. G4]. (41)

keKy;

“G ={Gyx, Gix} = k e K .(40)

The mathematical model (1)—(9) involves only Gy
design parameter (the problem’s variable), which is the
vector of the leading design geometry. The inertia mo-
ments I, and areas A of cross-sections compose the vec-
tor of the driven geometry G;. While solving the optimi-
zation problem (1)-(9) by the iteration process, the lead-
ing geometry is optimized, whereas the lagged driven
geometry is only corrected with reference to the yield
conditions (2, 6) and admissible field bounds Anmin(Wpiy) —
Anax(Woiy), Imin(A) — Inax(A) of the assortments.
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A, m2 A, m2
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Amax(Wpl,y) ) '.
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Fig. 5. Admissible fields of the discrete characteristics of
IPE and HE profiles A-Wy
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Fig. 6. Fields of discrete values .7}, and admissible I-A
characteristics of RHS profile assortment

6. Optimality criterion of the structure

The nonlinear objective function (1) reflects the volume
V of the structural elements written using the vector of
the leading cross-section geometry Go:

Go ks keKi;

_ keK. (42
Ak(GO,k)v k e Ka, - 2

A(GO):AK(GO,k)z

Functions Ac(-) relate to different geometrical cross-
section characteristics of the elements (Gox: Aox | Woiy.o0k)
with the areas Ay of these cross-sections. Because of the
lack of a single-valued dependency between A(W,,) (the
case of the BEAM31 element design) (Fig. 5), we ana-
lyzed two appropriate solving methods of this problem:
1. approximate mean curves of profile assortments;
2. isocurve fields, approximating admissible fields of
profile assortments A-Wj .

The numerical experiments showed that the first
method proved to be better because a more optimal solu-
tion was reached. The second method ‘disbalances’ the
optimization problem during the iteration process and,
therefore, the solution departs from the optimal version.

Approximative mean curves. For approximating
discrete points” distribution A-W,, of the profile assort-
ments HE and IPE we choose a third-degree polynomial

n 3 2
Ac(Woiy ) =aWs  +a W5 +aWy,  +a,, (43)

pl.y

the ratios a; of which are derived by creating the follow-
ing non-correlation function of the least squares method

s(A,Wp,,y)z[A_;ka’y)}z' )

We apply stationary conditions for the total non-
correlation of a set of discrete points ./ and a condition
for the polynomial, approximating the edge point de-

pendency of a discrete set. Then, four-equation system
takes the form of:

_a -
da z S(AJ’WpI,y,j): 0, 1=123
% ie (45)

S( ‘L//“Amim ‘/Wpl,y,min ) =0.

We solve the given equation system for separate
profile assortments at the point of the ratios a; (i=1,
2,..,4). The obtained ratios’ values of approximative
polynomials (Fig. 7) are presented in Table 1.

Woiy Woiy

Fig. 7. Approximative mean curves of IPE and HE
profiles

Table 1. Ratios of approximative polynomials

. a

: HE IPE HE U IPE
1 1,3331-10* 1,1407-10° 1,2391.10*
2 —4,5793-10° -1,4351.10° - 4,2690-10?
3 6,9108 7,9208 6,7065

4 1,1582-10° 4,8818-107* 5,1086-10™*

Fields of approximative isocurves. To avoid the
problems related to the above-mentioned not existing

single-valued dependencies of RK(\NpLy), we analyzed
the fields of the isocurves, approximating the admissible
profile fields .7 (Fig. 8).

The function of isocurves’ field is linearly interpo-
lated between two spline functions Anin(-) and Apa(:),
which bind the admissible field .Z. This function may be

written as follows

Ac (Wpl ' 77) = |:Anax (Wpl )— Anin (Wpl )] 1+ Anin (Wpl ) . (46)
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We solve the optimization problem (1)—(9) by itera-
tions and control the dependence of the ‘G = {Woryok Ak
points on the admissible field. During this process, we
correct relative ratios of the approximative isocurves (46)
selectors:

_ Ak - Anin (Wpl,y,o,k)
Anax (Wpl,y,o,k )_ Anin (Wpl,y,o,k )

Then, the optimization problem developed for a new it-
eration is solved with the new corrected approximative

functions A (Goy ) = A (Go . 7 ) » Which compose the
objective function (1).

T , keKg. (47)

Al

HE

i Vvpl)

- discrete point

0 W

Fig. 8. Isocurves’ field of HE profile assortment

7. Design algorithm

Design algorithm of elastic-plastic structures is real-
ized in the integrated design system, which combines
MATLAB and system SAOSYS developed by the authors.
Further, we will describe the main parts of the algorithm
(Fig. 9).

Structural modelling. Parameterization (in the case
of variant design) and discretization of a structure with
elastic-plastic equilibrium beam LINK11 and BEAM31
finite elements are performed. The initial data file of the
structure (SAOSYS pre-processor Batch and Data file —
BDF) is created.

Preparing design environment. The routine P1 of
SAOSYS pre-processor reads and translates BDF, as well
as creating the database DB of structural finite element
model. The routine P2, which controls profile assort-
ments, reads and prepares the assortment of steel profiles
HE, IPE, RHS from SRT database. The routine P3 loads
the finite elements’ library FELIB of the SAOSYS system.
Finally, the routine P4 creates and initializes the assem-
blage FE of the finite elements, which compose the struc-
ture (i.e. calculates the length of the elements I, and direc-
tion cosine vectors ny, as well as preparing displacement
compatibility vectors and performing other operations).

Preliminary calculations. The routine P5 directly
creates the ratios’ matrix [A] of the structure from sepa-
rate finite element matrices [A,] of assemblage FE and
external loading matrix [F] (in the case of single loading
— vector F). The boundary conditions of a discrete model
are evaluated. The routine P6 activates the yield condi-
tions of the elements of FE assemblage. The edge values’
vectors Gomin, Gomaxs Gimins Gimax Of the leading and
driven geometry with reference to SRT database of pro-
file assortments are created. The total length vector L of
the sets of structural elements and element length vector
Lmax composed of the longest elements in groups (R,
r € R) are created. The vectors of the nodes’ limit dis-
placements Umin, Umax @nd the element’s ultimate deflec-
tions Vimin, Vimax are also created.

Solving the optimization problem. To solve the
optimization problem (1)-(9), we use an iterative ap-
proximation and begin with the highest geometrical val-
ues of the vectors Gy = Gg max, G1 = G1 max-

e Step 1: the routine P7, with reference to the cre-
ated geometrical matrix [G] (41) of Wy,,0x and A, values,
performs an interpolation operation I, =1,() of the
cross-sections’ inertia moments of the BEAM3L finite
elements. This operation is described in more detail in
Section 7.1. The created vector I, of interpolated inertia
moments is used for constant flexibility matrices [D,] for
BEAM3L1 elements.

e Step 2: matrices and vectors By (23, 27) finite
elements’ flexibility [D,] (Gallagher 1975; Kalanta 1995)
and yield conditions [ @] are created:

D (G , keKiq;

[Dy]= [ k( 0,k):| " -
I:Dk (Gl,ki Iy,k):|, k e K3j|_x

[q?(]_ [Q]’ keKp; (49)
[, (Goy. Guy )], K e Ky

N
k By, ke Ky,

keK,

from which quasidiagonal matrices [D] and the structu-
re’s configuration matrix [B] are constructed. The deriva-
tive values’ matrices of the mathematical model (1)-(9):
[K], [H], [Q], [Z], [Y] are calculated.

e Step 3: with reference to formulas (15, 16), the
displacement vector u, and internal forces’ vector S, for
the elastic solution of the stress-strain state of the struc-
ture are found.

e Step 4: the routine P8 solves one iteration of
nonlinear mathematical programming optimization prob-
lem (1)—(9). If the procedure of solving is successful (i.e.
optimal solution is found), we have a new leading geome-

try vector G, of cross-sections and a new vector A of
plastic multipliers.
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Fig. 9. Design algorithm SAOSYS-EPSOptim for elastic-plastic steel structures

If the solution failed (i.e. the admissible point and
optimal solution are not found), the leading geometry
vector Gy is increased:

1, Gox —Gox
TR
0k = 0.k eK, (51)
&Gy ks otherwise,

where Gg zGS;kpre" is the leading geometry vector of

previous successful iteration; ¢ is the relative threshold of
recurrent Gg increase (107 %); & is the partial ratio of
Gox direct increase. The routine P9 corrects the driven
geometry vector of cross-sections G;; then, we return to
Step 1.

e Step 5: with reference to formulas (18, 19) the
displacement vector u and internal forces’ vector S of the
real (total) stress-strain state are calculated.

e Step 6: the routine P9 performs a correction pro-
cedure of the driven geometry vector G;. The procedure
is described in detail in Section 7.2.

e Step 7: with reference to geometry matrix [G]
cross-section areas Ay, and A values, the structure’s

volume V is calculated. This iterative process is per-
formed until the above convergence conditions of the
problem are satisfied:

G5 ~Gox
T keKp<egg,
0k (52)

max

V'~V
V!

ng,

where V"’ is structural volume of the previous iteration;
&g, & denote convergence tolerance criteria (0,1 %) of
the leading geometry of cross-sections and structural vol-
ume, respectively.

The results of problem solution verification.
Based on the optimal solution Gy, G;, u, S, V, the post-

processor of the system SAOSYS calculates the distribu-
tion of strength reserves in the elements’ length and cre-
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ates the control diagram EYCPlot of the elements’
strength reserve. In addition, the internal forces and struc-
tural strain intensity diagrams can be created, and the
numerical results of node displacements, as well as ex-
treme deflections and internal forces of the elements can
be derived.

7.1. Interpolation of the inertia moments of
cross-sections

Let us assume that the admissible point of cross-section
“G belongs to the discrete field ‘%*Wm , of geometric

characteristics of assortment profiles. We have to find the
moment of inertia I, depending on 3D discrete point
dispersion J{y_A_WpI , of assortment (Fig. 10).

Three discrete points pi={fA,pr,]y]i,'/'ly’i},

i =1, 2, 3 closest to the point “G (according to the short-
est geometrical distance) should be found in the normal-
ized ||A — W, system of the coordinates. Linear interpo-
lation of the inertia moment is performed for three closest
points p; only when the point t gets in the interpolation
field © (Fig. 10), otherwise, the mean value of inertia
moments of discrete points is used:

ag Wy y +agaAtags, tel;
L AWg s A =13 _ 53
y( ply [p]) EZ"/'y,i’ te (53)
34
Al ly (W, A) .
P "
/////Z////L////fp
3
Ak ””” . - .
0
i p2 -
Tz Bz -
: [ ]
O Wiy, Wbyl

: W,
Wovox Myl

Fig. 10. Interpolation of the inertia moments of
cross-sections I, of BEAM31 elements

This system of equations (created for three closest
points p;) should be solved in order to find the linear in-
terpolation ratios o

I 7 Nz
{ag,i Vvpl,y,i"’“g,i A"'ag,i = Iy,i! (54)

i=123,
which can be written in the matrix form as follows
(Mg Jag="1,, (55)

and, finally, linear interpolation ratios can be derived
from this formula

gy .
92 :[MQT . (56)

g3

agza
a

7.2. Correction of cross-section geometry G;

In structural design, we introduce a concept of the set of
the elements’ subsets R. We optimize cross-sectional
geometrical characteristics Go,, G, of separate subsets of
elements r € R. These characteristics compose a couple
of vectors Gy and G;. Since we operate with the subsets
of elements, the elements of the subset r are obtained by
the intersection of element sets K and R, (K " R,). The
driven geometry vector G; of cross-sections is treated as
the limit geometry vector, which satisfies yield conditions
(2, 6) of the elements and the limits of admissible discrete
fields j}*—WpLy and ._, of profile assortments. It can be

described by the following dependencies:

IIim,r = IIim (GO,I‘7 Sk7 I-max,r ) ~>747—A>v

Alim,r = Aim (GO,rv Sy, DZ;‘_Wpl,y ), ke Ks1s
ke KNR,,

Gy =

reR.

LINK11. We will deal with estimation of the inertia
moments ljim, of LINK11 elements’ limit cross-sections
(57), which satisfy the yield conditions (20) and discrete
limits of assortments. Let us note that Ay, = Gy,. For
every compressed element (N¢ < 0) of the set R, of the
elements’ subsets we calculate limit buckling ratios as
follows:

N
Dlim,r k f )

y,reur

keKynR,. (58)

While calculating the limit buckling and slenderness ra-
tios of this system of conditions:

{{b(Er ) fy,rv /11im,r,k ) = Dlimrk»
/11im,r,k < ﬂ“c,u '

(59)

we get the limit slenderness ratios Ajmx Of compressed
elements. Here, A, is the ultimate slenderness ratio of
centrally compressed element (STR 2.05.08. 2005). Fi-
nally, according to the limit slenderness ratios Ajimk, We
get the limit inertia moment of the set R, as follows:
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2
L
i, = Max Am( max"J ,keK;nR }, reR.(60)

im,r k

It is additionally checked and corrected. Then, in the
cases of the elements under compression or tension, the
limit conditions of discrete admissible fields of profile
assortments must be satisfied

/Imin,r('A\),r)S IIim,r < flmax,r(pb,r)- (61)

Since @(-) is a gradually decreasing piecewise func-
tion, the binary search algorithm realizes a numerical
solution of the system of conditions (59) (Fig. 11). This
algorithm can be implemented by using MATLAB-
SAOSYS routine

X = BinFunArgValSearch(hFun, y, vint, tol),

where x is the function argument value found (Ajimrk);
hFun is the function handle; y is the function output
(@imrk); vint is the search interval vector {0; A .}; tol is
the search tolerance (convergence tolerance criterion).

Plimrk

()

Agy A

Fig. 11. Binary search algorithm for defining limit
slenderness ratio Ajim x Of LINK11 element

Discrete limits “Ipin(-), “Imar(-) (61) can be derived

with reference to binary-bared search, which can be per-
formed by this function

vp = BinBarSearch(vD, x, b),

where vp is the index vector of discrete points found in
the bar; vD is the vector (“Apeupe.rus) OF discrete values

arranged in the increasing order; x is the real value (Ao,);
b is the width of the search bar. According to the vector
vp, We get discrete limits and return the non-admissible
points 'G = {Ao,, lim} (Fig.12, points 1 and 3) to the
admissible field (points 4 and 5).

BEAM31. We will deal with estimation of limit
cross-section areas Ajm, (57) of the BEAM31 elements
which satisfy the yield conditions (25, 32) and discrete
limits of assortments. Let us note that Wy o, = Go,. Simi-
larly, for every element k € K3; N R,, we calculate the

I *
Imax,r (AO,I’)

IIim,r ﬂ
ﬂlmin,r (Aa,r) *

* Return

A

Fig. 12. Binary-bared search: return to the admissible field

limit cross-section areas Ajim rx, Which compose the vector
Avim,r Of the limit cross-section areas:

AIim,r = {Aﬁm,r,k' ke K31 M Rr} ’ (62)
where
N
Alim,r,k = | k| ) (63)
AN
. Vvpl,y,O,r

i=12(3 ext)cz .

Finally, we get the limit cross-section area of the set of
the elements’ subsets R, as follows:

Alim,r = Mmax Alim,r’ reR. (64)
It is also additionally checked and corrected. Then, the
following limit conditions of discrete admissible fields of
assortments must be satisfied

'Z‘Anin,r (Wpl,y,o,r ) < Aimyr < 7 Arar (Wp|,y,0,r) - (69)

8. SAOSYS system of structural modelling, analysis
and design

JWM SAOSYS Toolbox v0.42 (Structural Analysis and
Optimization System) is an experimental prototype of
toolbox for MathWorks MATLAB software environment,
intended for numerical research, embracing a set of data,
functions, objects and scripts used in the analysis and op-
timal design of steel structures by finite element method.
The MATLAB environment selected is easily used, as well
as having numerous functional and technological facili-
ties. Combined with the key module Optimization Tool-
box, used for solving optimization problems, it became an
effective tool for experimental system design.

SAOSYS system architecture is based on User mode
pre-post-processor control system and private active Ker-
nel mode block, which embraces system topology and its
components (Fig. 13). Processors give SAOSYS control
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commands, functions and scripts to user for modelling
and solving the problem and for interpreting textual and
graphical data. Further, the development of the experi-
mental system will be aimed at realizing the control of all
processor commands.

Table 2. SAOSYS pre-processor commands

W%E

User mode

Pre-processor Processors Post-processor

KERNEL

Optimization
Toolbox

MATLAB

Fig. 13. The architecture of JWM SAOSYS Toolbox v0.42

The system’s kernel is composed of the library
FELIB of object-oriented finite elements; the database
SRT of steel profile assortments; the processor modules
PRCMDS for problem solving; the database DB of the
problem and the structure; the assemblage FE of finite
element objects composing the structure; the collection
UTILS of additional neutral functions; and the system’s
functional core KERNEL composed of two subkernels
DSK and ESK, working with displacement and equilib-
rium finite elements’ formulations, respectively, for par-
ticular problem solving.

Pre-processing module. This system module is in-
tended for the preparation of SAOSYS environment and
structural modelling by finite element method, including
the creation of load cases. The system pre-processor func-
tions according to the deterministic finite state machine
(DFSM) principle for parsing the formatted strings with
comma-separated values (CSV) (Aho et al. 1986; Hop-
croft et al. 2001; Bucknall 2001). There are two com-
mand groups of specifying and action. Specifying com-
mands define the operations, which further are performed
by action commands. Command arguments are character-
ized by the required (noted as arg) and default (noted as

For the discussed structural discrete model, we per-
form problem modeling by SAOSYS pre-processor com-
mands, i.e. create Batch and Data File (BDF). The acti-
vated pre-processor (using BDF) creates SAOSYS struc-
tural model database DB, prepares steel profile assort-
ment database SRT, finite elements’ library FELIB, and,
according to the data in DB, object-oriented finite ele-
ments’ model assemblage FE of the structure and initial-
izes the finite elements. Further, pre-processor leaves the
work to the selected processor modules.

/TITLE, title
Defines the main problem title.

/EFORM, ef
Chooses a formulation of system finite elements: displace-
ment or equilibrium finite elements.

NDOF, ndof
Chooses the problem type: truss or plane problem.

MP, id, optpars
Defines a list of physical properties of the material.

R, id, optpars
Defines a group of the element’s attributes.

N, id, X, y, z
Defines a discrete model node.

E, id, ndl, nd2, ..., ndN
Defines an element by node connectivity.
TYPE, type

MAT,  mid

REAL, rid

Specifying commands of the elements’ types, materials and
element attributes’ pointers.

ER, eid, [eNd1l eNd2 ... eNdM]
Declares the releases of the elements’ nodes.

LOAD, id, name

Defines a load case.

D, [ndl1 nd2 ... ndV], dof
Defines DOF constraints at the nodes.

F, [ndl ...1, Fx, Fy, Fz, Mx, My, Mz
SFE, [eidl ...], axis, pl, p2
Specifies concentrated and distributed loads.

Processing modules. In the present system version
(v0.42), the following PRCMDS processing modules are
realized for problem solving: StatAn is the static struc-
ture’s analysis; EPSOptim is the optimal elastic-plastic
steel structure’s design (analyzed in this paper);
TrussDPD is the direct probability design of optimal steel
trusses (Jankovski and Atkocianas 2008).

Every processing module has the main subroutine,
which prepares a supportive environment of algorithm
and performs problem solving. When the solving proce-
dure is completed, the main subroutine copies all the data
from the local memory stack (the routine internal work-
space) and pastes it into the global MATLAB base work-
space memory for further post-processing interpretation.

Post-processing module. This module is intended
for output and interpretation of textual and graphical re-
sults. The following graphic functions are noteworthy:
NPlot() displays nodes; ErPlot() is used for deformed
and non-deformed structural schemas of displays;
splot() creates diagrams of internal forces; EYCPIot()
creates reserve diagrams of the elements’ strength; up-
lot() creates the deformed schema of the structure, ac-
cording to intensity values of displacement uy, uy and u.
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Model database. All information about the problem
and finite elements model of the structure is placed in the
SAOSYS database DB of structural model (Fig. 14). It
allows us to create a usable structure of the initial data,
serving as a basis for finite element model creation. The
database consists of the following tables: materials of
structural elements MAT; attributes of structural element
groups REAL,; the discrete structure model nodes NODE;
finite elements of the structure ELEM; groups of external
loads LOAD; load cases LVAR. The problem is addi-
tionally defined by the finite elements’ formulation
EFORM, degree of freedom of discrete model node
NDOF, problem title TITLE and other parameters.

DB
EFORM
NDOF NODE LVAR
TITLE SN LVID
X name
MAT Y {LOAD:, LID }
MID z
E DOF
Ry ELEM LOAD: i-12.
EID LID
REAL TYPE TYPE
RID ~{NID}
SEC REL LTN N\ LT M
SID MID —~ [NID EID
SEL RID FX, FY,FZ ||AXis
PFLAG MX, MY, MZ||P1, P2

SAOSYS function Sortiment() compiles text file
IPE.sec and creates binary assortment file IPE.seb, which
consists of a header and data segment. Further, SAOSYS
works only with binary files. Therefore, assortment data
reading into MATLAB workspace memory is fast. Func-
tion Sortiment() works in the reading mode. It reads the
selected binary assortment and returns data structure 1PE,
which is defined by the assortment type TYPE; name
srtName; names of profile characteristics’ parName; and
the number of profiles and arrays of characteristics’ val-
ues. All profile assortments are integrated into SRT data-
base, i.e. assortment table (Fig. 16), which is later used by
SAOSYS design algorithms.

IPE SRT
TYPE: int
srtName:  string 1| &
parName: svector
count: int ® | 2
name: svector 3 | o TUB
A: dvector
ly: dvector 4 F
Wy: dvector . !
Whply: dvector .
1z: dvector

Fig. 14. SAOSYS database DB of structural model

Database of steel assortments. The design of steel
structures is dependent on databases of profile assort-
ments. Relational Database Management System
(RDBMS) and its internal integration to SAOSYS system
are refused. Instead, for simplicity, the plain text files,
binary files and MATLAB structural principles are used.
The system operates with HE, IPE and RHS steel profile
assortments. We will discuss the creation of IPE assort-
ment prior to its use in design.

Steel profile characteristics are written in a not for-
matted plain text file IPE.sec (Fig. 15). The assortment
file has two directives: #srt is the assortment name; #par
denotes the labels of column data. Profile names and
geometric characteristics are given in the rows below.

; IPE Steel Sortiment

#srt IPE
#par name A ly Wy Wply Iz

1PE_A80 6.38 64.38 16.51 18.98 6.85
IPE_80 7.64 80.14 20.03 23.22 8.49
IPE_A100 8.78 141.20 28.81 32.98 13.12
1PE_100 10.32 171.00 34.20 39.41 15.92
IPE_A120 11.03 257.40 43.77 49.87 22.39
IPE_120 13.21 317.80 52.96 60.73 27.67
IPE_A140 13.39 434.90 63.30 71.60 36.42
1PE_140 16.43 541.20 77.32 88.34 44.92

Fig. 15. A fragment of profile assortment file IPE.sec

Fig. 16. The structure of steel profile assortments

9. Object-oriented finite elements and
pseudo-polymorphism

The system of structural modelling, analysis and design
SAOSYS operates with object-oriented finite elements.
The main choice of object-oriented programming (OOP)
was determined by the concepts of encapsulation and
polymorphism (Gamm et al. 1995; Riel 1996; Eckel
2000). The library FELIB of the system’s finite elements
consists of the following classes of finite elements: elastic
elements LINK1, BEAM3 and elastic-plastic elements
LINK11, BEAM3L. Finite element class is a collection of
properties (variables) and methods (functions) working
with these variables. New finite elements can be inte-
grated into SAOSYS for new problem solving.

An element class constructor creates the finite ele-
ment object in MATLAB environment memory. Object
characteristics and pointers to methods (in nested func-
tion forms) are placed inside the object, i.e. in its data
field. Standard MATLAB 7.0 object control methods sub-
sasgn() and subsref() are overloaded, and this allowed
us to create a compact syntax form, similar to that used in
C++ programming language:

obj.member = expr (66)
obj.member(expr [, expr]) = expr (67)
obj.member{expr} = expr (68)
designator = obj.member (69)
designator = obj.member(expr [, expr]) (70)
designator = obj.member{expr} (71)
designator = obj._Member([exprlist]) (72)
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The MATLAB functions get() and set() are gener-
ally intended for object manipulation (Krysl 2005; Regis-
ter 2007). Having disposed of these inconvenient func-
tions, we achieved a marked improvement in the pro-
gram’s text clarity and application simplicity. Direct as-
signment of expression expr result to object member
obj .member is performed by (66); the assignment of the
results to arrays and cell array members is performed by
(67, 68); direct assignment of object member value is
performed by (69); assignments of array and cell array
member values are performed by (70, 71). Syntactic col-
lision of calls to object methods (72) and assignment of
object submember (70) is solved by using the lists of me-
thod names placed in the classes. These lists separate
object members-data from object members-methods.

A polymorphism concept is used to perform flexible
operations with finite elements. MATLAB 7.0 system
provides limited OOP facilities, not supporting polymor-
phism. Therefore, pseudo-polymorphism is implemented
in SAOSYS system. In this concept, the basic class of fi-
nite element represents the cell array FE of structural
elements’ assemblage. The cell array FE maintains a con-
cept of pseudo-virtual methods (Fig. 17) in the derived
classes of elements. The base class of finite elements FE
is more oriented to beam elements and has the following
properties: dimension degree SPACE; type identificator
TYPE; element number ID; the number of the members
SNUM of the vector of the element’s internal forces S;
the number of the element’s displacement vector uy
members UNUM; the number of the yield conditions
PHINUM of the element nodes; the element’s material
identificator MID; the element group identificator RID;
the element length L, direction cosines vector vDir; etc.
The base class of finite element implements such pseudo-
virtual methods: element initialization Init(); initiator-
selector of the element’s yield conditions Inityc(Q); the
getting methods of the transformation matrix [T,]
GetTk(), the matrix of coefficients of the structure’s
equilibrium equations [A] GetAk(), flexibility matrix
[Dy] Getdk(Q), Yield conditions [@y] and By Getyc(); the
method of deformed element and evaluation of dis-
placement intensity distribution Evalbefu(); the printing
method of the element’s internal data EPrint(Q); the
method of the deformed and undeformed element plotting
EPlot(); methods of the diagram output of the element’s
internal forces splot() and strength reserve EYCPlot().
The classes eLink11 and eBeam31 of the derived elements
are complemented with additional characteristics and
overloaded methods, including private helper routines.

First, we choose the formulation of the finite ele-
ment method (equilibrium or displacement finite ele-
ments). Then, the SAOSYS system calls finite element
class constructors (eBeam31(), eLink11()) in turn and
prepares the library FELIB (the table of objects of the
finite element types) (Fig. 18). In MATLAB environment,
the array FELIB represents object samples.

While parsing BDF, the SAOSYS pre-processor
places finite elements in the element assemblage array
FE. Here we can indicate three new element placement
steps: 1. selection — queried finite element object selec-

tion from FELIB; 2. copying — queried element object
copying into FE; 3. initialization — sample element ini-
tialization method 1nit(Q call, which initializes finite
element properties and method pointers.

FE <+— eBeam31
SPACE: int nmA_UpyRow: int
TYPE: int eta: double
ID: int ‘
SNUM: int eBeam31(.): object
UNUM: int Init(.): object
PHINUM: int InitYC(.): object
MID: int GetTk(): dmatrix
RID:. int GetAk(): dmatrix
L: double GetDk(.): dmatrix

GetYC(.): struct
EvalDefU(): dmatrix
EPrint(): void

EPlot(.): hAxes
SPlot(.): hAxes
EYCPIot(.): hAxes
UpdateEta(): object
EvalDefU(.): dmatrix
ParabMFun(.): double

vDir: dvector
vUKk2U: ivector
nvS_offset: int

Init(.): object
InitYC(.): object
GetTk(): dmatrix
GetAk(): dmatrix
GetDk(.): dmatrix
GetYC(.): struct
EvalDefu(): dmatrix |- |
EPrint(): void
EPlot(.): hAxes none
SPlot(.): hAxes - -
. eLink11(.): object
EYCPIlot(.): hAxes Init(.): object
InitYC(.): object
GetTk(): dmatrix
GetAk(): dmatrix
GetDk(.): dmatrix
GetYC(.): struct
EvalDefU(): dmatrix
EPrint(): void
EPlot(.): hAxes
SPlot(.): hAxes
EYCPIlot(.): hAxes
EBetaPlot(.): double

eLink11

— Pseudo-virtual methods A

Fig. 17. UML diagram of finite element classes

FELIB FE

1| et—~{__elinki_ ) 1| o ~(_eBeam31 )
2 2 | | ~(_eBeam31 )
s|ef~(_eBeam3 ) 3 |e{~{_eBeam31 )
, :

eLink11
eLink11

11

eLinkll o

2  Selection
. 2. Copy

i 3. Init

Fig. 18. Library-table of the objects of the finite elements
FELIB and structural elements’ assemblage FE
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The array FE, validated by pseudo-virtual methods,
prompts to the realization of objects independent of an
object type. For example, to derive the matrix of coeffi-
cients of the structure’s equilibrium equations of k-th fi-
nite element, we need the prompt mAk = FE{k}.GetAk().
MATLAB 7.0 environment does not allow us to prompt
directly to the memory addresses of the data fields (be-
cause it does not maintain a pointer data type). Therefore,
the values of the variables are updated by using reinitiali-
zation principle, which lowers the efficiency of MATLAB
environment, especially, in the case of objects. Therefore,
contrary to other high-level programming languages
(C++, Delphi, Java), it is necessary to update the object
by reassigning FE{k} = FE{k}.Init(id).

10. Graphical representation of displacement intensity
of the deformed element

The optimization problem (1)-(9) is solved. Then, ac-
cording to (18), the real displacement vector u of the
structural nodes is computed. SAOSYS post-processor
routine uPlot() allows us to create the deformed schema,
which shows the distribution of displacements’ (uy, Uy,
Uy) intensities in the structure.

Let us discuss a procedure of the finite element
BEAM3L presentation (Fig. 19). The vector uy of the
finite element nodes’ displacement from the vector u is
selected. Invoking the function-matrix [Hy(x)] for produc-
ing the element displacements’ interpolation form, we
created the element displacements’ interpolation vector
function ug(x) = {ukx(X), Uxy(X)} in the system of the local
coordinates (LCS) x1y.

We divide an element into N equal sections (Fig.
19 a). Then, the coordinate vectors P; = {P;x, Piy} in the
global system of the coordinates (GCS) are calculated as
follows:

H=Jr%Wf(§

+s[Hk(xi)}[Tk]uk], (73)
x=%hi:QLZWN, (74)

where [T,] is the transformation matrix of node displace-
ments of the element GCS—LCS; s is the scale ratio;

[T¢] is the transformation matrix of the coordinates

(2% 2); Jy is the vector of the element’s first node coordi-
nates in GCS.

Let the element be described by the thickness t (Fig.
19 c, d). Then, this condition (the sum of geometric con-
ditions of the vectors (75)) is valid for calculating the
vectors of the coordinates L; and R; of the element’s mul-
tiline nodes

ST =&, (75)

Pi+1_|:)i . .
PRV ke, (76
N e AR VLML ELE I

We solve the system of equations (75) in respect of the
unknown ratios y and &. Finally, the coordinates of multi-
line nodes are calculated by the formulas given below:

Li =P +&r, R =P -{r, (77)
L (78)
2 1+nin;,

The sections of the deformed element R;.;-R;-Li-Li.1
are covered with quadrangles (Wright and Lipchak 2004),
the nodes’ colour vectors of which c;={R;, G;j, Bj}=
Cj(ujx.v.x) are displacement intensity functions of nodes
Pi in respect of all displacements of structural elements.

2 X

Fig. 19. Displacements and strains of the beam element:
a) deformed element BEAM31; b) sequence of element
surface colouring; c) creation of deformed element multi-
line; d) geometric condition of the sum of vectors

11. A numerical example

Design structure. Industrial building frame subjected to
simple loading is designed at the elastic-plastic stage
(Fig. 21). The frames are placed along the building at the
interval of L=6,0m. The element’s material is steel
S275: E =210 GPa, Ry =275 MPa. The frame is mod-
elled by equilibrium finite elements and consists of 19
nodes, 30 finite elements (13 of the BEAM31 type, 17 of
the LINK11 type), and 14 design parameters Ry 14 (i.e.
element cross-sections). The first-floor columns R;—R;
are designed from HE type profiles. The second-floor
columns R, are designed from HE or IPE type profiles
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(the alternative design is performed for cross-section
type). The girders Rs—R¢ are designed from IPE type pro-
files. The truss top chord R; is designed from IPE type
profiles, and the bottom chord and the grid Rg—Ry4 — from
RHS profiles. Structural loads are as follows: s3; = S35 =
S, = 12,480 kKN/m; wy, = 1,123 KN/m; wy, = 0,562 KN/m;
W,y = 1,393 KN/m; wy, = 0,696 KN/m; ¢ = 23,400 kN/m.
The own weight of the structure is not evaluated. The
stiffness conditions of the structure are as follows: for
nodes — [|ua, url] <0,050 m, usey < 0,055 m; for ele-
ments (deflections) — [Vimaxs, Vmax7] < 0,030 m.

Batch and Data File. The preparation of the design
system, structural parameterization and sample fragment
of modelling commands in pre-processor mode are con-
tained in the file Frame.m of the form given in (Fig. 20).
It is a plain text MATLAB script file, beginning with the
HEADER consisting of SAOSYS environment preparation
macros. Further, ordinary MATLAB computations (calcu-
lations of node coordinates, etc.) can be performed. The
declared user-named variables (b1, qo0) are the structural
parameters. They are directly applied to SAOSYS pre-
processor’s command fragment, which is bracketed by
“w{ .. %} symbols (the MATLAB block comment).

The following parameters are defined in the segment
of SAOSYS pre-processor commands: the problem title
/TITLE; finite element formulation 7EFORM (EF_E denotes
equilibrium finite elements); the degree of freedom of the
node NDOF (ND_PLANE is the 2D problem with three free-
dom degrees of the node); element materials mP (here,
elasticity modulus E and the tensile steel strength depend-
ing on the yield stress Ry should be defined); finite ele-
ments’ sets R (here, sec is the cross-section type, sid is
the default cross-section number in assortment and sel is
the cross-section selection flag). Further, the nodes’ coor-
dinates N of the structure’s model are defined. Finite
element definition (e command) is performed only after
specifying the pointers to the type of the element TYPE,
material MAT and the element’s attribute group REAL.
Then, boundary conditions of nodes (supports) b, and the
element’s node releases (hinges) ER should be defined.
Finally, load cases LOAD are created, where F and SFE
commands are assigned the values of concentrated and
distributed loads, respectively. At the end of the file, a
prompt to SAOSYS processor module routine is written:
EPSoptim() is the elastic-plastic structure’s optimization
with stiffness constraints. Then, the BDF can be executed.

The results obtained. Structural design was per-
formed by using an iterative procedure. In general, eleven
iterations were made (Fig. 22). As a result, optimal theo-
retical cross-sections were found. The profiles closest to
them are presented in the table (Table 3). While using the
alternative design, it is advisable to choose the frame’s
second-floor column E{4, 5} cross-sections from the IPE
type profiles, while, the first-floor column E{1, 2, 3}
cross-sections are chosen from HE type profiles. The
volume of the designed structure is V = 6,897-102 m>. In
the future, we intend to realize discrete optimization of
structures, which is required for correcting the final find-
ings of the optimal discrete solution.

The diagram of strength reserve of structural ele-
ments (Fig. 23) shows the location of plastic hinges. The
elements E{5, 10, 11, 16, 21, 22, 24, 25, 29, 30} are de-
signed under strength reserve state (i.e. plastic flow, or
stability loss in the case of LINK11 is observed). Inten-
sity diagrams of displacements uy and u, (Fig. 24, Fig.
25) show that stiffness requirements for the nodes and
elements of the structure are satisfied.

HEADER % SAOSYS header macros
bl = 12.0; % Define variables as
= 3.0*%1.3*L; % model parameters.

q0
- % Other MATLAB evals

%{ % Batch segment start
/TITLE, "Frame 2008"

/EFORM,EF_E

NDOF ,ND_PLANE

Materials and gruops of elements
P,1, E=210e6, Ry=275e3

sec=ST_HE, sid=1,
sec=ST_HE, sid=1,
sec=ST_HE, sid=1,
sec=ST_HE_IPE, sid=1,

sel=1
sel=1
sel=1
sel=1

VOOV ODZ
AWNPF

20
g
EN

, sec=ST_TUB, sid=1, sel=1

: Nodes

=z2=z=

1
,2, bl
3, bl+b2

N,17, b1/12 + 3*b1/6, -hl+h4
N.18. bl/12 + 4*b1/6, -h1+h4
N.19. b1/12 + 5*b1/6. —-hi+h4

TYPE,BEAM31
REAL,1
E,1,1.,4
REAL,2
E,2,2,5

; Elements

TYPE,LINK11
REAL,9
E,19,14.,4
E,30,19,5
REAL, 14
E,24,16,11
E,25,17,11

D,[1 2 3],UX+UY+URZ
ER,1,2
ER,13,2

; BndrCnds

LOAD, ,"Load Case 1"
SFE,1,LY,wll
SFE,3,LY,wl2

SFE,[8 9 10],LY,s11 + g0
SFE,6,LY,q0

; Loads

%3 % Batch segment end

EPSOptim(mFfilename) % Call PRCMD routine

Here: MATLAB code space;

%/ MATLAB + SAOSYS pre-processor space.

Fig. 20. Sample initial data and a batch file (BDF)
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Fig. 21. Structural model discretized by LINK11 and BEAM3L1 finite elements
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Table 3. Calculated optimal theoretical cross-sections (*) an
the profiles closest to these cross-sections

i Gox Gk
Profile = 3 EE
Wpl,y,O,k’lo , M A107°, m
Ry  * 5,836 1,560
.. HEI00AA ] 5836 . 1560
Ry * 11,983 1,560
HE 100AA 5,836 1,560
HE 120AA 8,412 1,855
. HEI00A 8301 . . 2124
Rs:  * 12,282 1,560
HE 100AA 5,836 1,560
HE 120AA 8,412 1,855
_HEL00A 8301 . 2124
R4 * 14,109 0,724
IPE 80 2,322 0,764
IPE A100 3,298 0,878
____PEASO 1898 | 0638
Rs: * 21,671 2,347
IPE A200 18,170 2,347
IPE 180 16,640 2,395
__.....IPEOI8O . 18910 _: 2,710
Re: * 11,972 1,103
IPE A120 4,987 1,103
IPE 100 3,941 1,032
... IPEAl4O 7160 1339
Ry = 8,136 0,936
IPE 100 3,941 1,032
IPE A100 3,298 0,878
IPE A120 4,987 1,103
Profile Agyc107, m? 11078 m*
Rg: * 7,171 6,406
RHS 30x70x4 7,360 10,249
RHS 40x70x3.5 7,210 16,371
... RHS25x60x5 | 7500 6406
Ro: * 3,622 0,808
RHS 20x45x3 3,540 2,108
RHS 20x40x3.5 3,710 1,889
o RHS25x85x35 . 3710 2900
Rig:  * 9,403 14,085
RHS 30x70x5 9,000 11,750
RHS 40x60x5 9,000 20,750
... RHS40x90x4 9760 . 25609
Ry:  * 1,491 0,0899
RHS 10x25x2.5 1,500 0,171
RHS 15x20x2.5 1,500 0,385
o RHSI1030x2 1440 | 0203
Ry * 4,812 6,368
RHS 30x45x3.5 4,760 5,632
RHS 25x50x3.5 4,760 3,995
... RHS25x60x3 4740 4726
Riz:  * 0,460 0,0695
. RHES10ASXL | 0460 . 0,0695
Ry * 2,711 1,604
RHS 20x40x2.5 2,750 1,438
RHS 25x35x2.5 2,750 2,165
RHS 30x42x2 2,720 3,884

12. Conclusions

1. The design of elastic-plastic structures is a prob-
lem of nonlinear mathematical programming, which can
be solved by the iteration method approaching the opti-
mal solution step by step.

2. The additional nonlinear constraints-conditions
in solving an optimization problem evaluate strength,
stiffness and stability requirements to structural elements
more accurately, enabling us to avoid densification of the
finite element grid, i.e. to decrease the volume of the op-
timization problem and thereby the time of solution.

3. The principle of the admissible fields of geomet-
ric characteristics of the assortment profiles (the opti-
mized leading geometry G, and the controlled driven
geometry G;,) allows the design of the elements depend-
ing on the dispersion of geometric characteristics of pro-
file sets in assortments.

4. A concept of the OOP pseudo-polymorphism re-
alized in MATLAB environment allowed the authors to
create such SAOSYS system architecture that can flexibly
operate with object-oriented finite elements.

5. The SAOSYS system and its module EPSOptim,
aimed at designing elastic-plastic steel structures under
single loading, which were developed by the authors, do
not take into account the probable stability loss of beam
elements yet.
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TAMPRIUJU PLASTINIU PLIENINIY KONSTRUKCIJU ANALIZES IR OPTIMALAUS PROJEKTAVIMO
SAOSYS TOOLBOX SISTEMA MATLAB APLINKAI

V. Jankovski, J. Atkodiunas
Santrauka

Pasitelkus deformuojamo kiano mechanikos energinius principus ir matematinio programavimo teorija, sudarytas mini-
malaus tario strypiniy plieniniy konstrukciju, patyrusiy ir plastines deformacijas, projektavimo nuo vienkartés apkrovos
uzdavinio patobulintas matematinis modelis. Diskretizacijai naudojami pusiausvirieji baigtiniai elementai su jraZy interpo-
liavimo funkcijomis. Elementai projektuojami i$ sortimentiniy HE, IPE, RHS plieniniy profiliuociy, atsizvelgiant i profi-
liuociy aibiy geometriniy charakteristiky sklaida sortimentuose. Optimalus plieniniy konstrukciju projektavimas realizuo-
jamas autoriu MATLAB aplinkoje sukurta eksperimentine sistema JWM SAOSYS Toolbox v0.42. SAOSYS architektiira
pseudopolimorfiSkai operuoja objektiskai orientuotais baigtiniais elementais. Sistemos SAOSYS galimybés atskleidZiamos
pramoninio pastato rémo optimalaus projektavimo su stiprumo ir standumo apribojimais pavyzdziu. Skai¢iuota
atsizvelgus { mazy poslinkiy prielaidas.

Reik3miniai ZodZiai: optimalus projektavimas, ekstreminiai energiniai principai, matematinis programavimas, plieninés
konstrukcijos, baigtiniy elementy metodas, objektiSkai orientuotas programavimas, MATLAB.
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