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Abstract. The aim is to investigate ways of increasing the efficiency of grillage optimization. Following this general aim, 
two well-known optimization methods, namely the Genetic Algorithm (GA) and Simulated Annealing (SA), were com-
pared using some standard medium size (10 and 15 piles) examples. The objective function was the maximal vertical reac-
tive force at a support. Coordinates of piles were optimization variables. SA wins and was applied to real-life problem (55 
piles) by parallel computations performed using a powerful cluster. New element is comparison of SA with GA and appli-
cation of SA to a practical problem of grillage optimization. 
Keywords: Grillages, Simulated annealing, Global optimization, Finite elements, Genetic algorithms. 

 
1. Introduction 
Grillages are one of the common types of civil engineer-
ing structures that are widely used, e.g. in construction of so-called grillage-type foundations. This is the popular 
and effective scheme of foundations, especially in case of 
weak grounds. In this paper we shall concentrate on op-
timization of this particular type of foundations, which 
will be called simply “grillages”. 

Grillages consist of supporting piles and connecting beams resting on them. Piles are the terminal element of 
the erection, which distribute the loadings coming from 
the erection through the connecting beams. Usually the 
reinforced concrete piles are manufactured at the factory, 
and their dimensions are determined during the design 
stage. Having this in mind, the optimal grillage should meet twofold criteria: the number of piles should be 
minimal, and the connecting beams should receive mini-
mal possible torques what results in minimal consump-
tion of concrete for beams. In fact, here we encounter two 
separate optimization problems: search for minimal num-ber of piles and search for minimal volume of beams. 
Both problems can be integrated into one with a com-
promise objective function. In this paper we assume that 
the characteristics of piles and beams are known and 
consider the first optimization problem. 

Initial data for the grillage optimization problem are the following: 
− The geometrical scheme of connecting beams. 

− Cross-section and material data of all beams (area, moments of inertia, elastic constants). 
− Positions of immovable piles (if any). 
− Maximum allowable reactive force at pile. 
− Minimum possible distance between adjacent 
piles. 

− Stiffness of pile. 
− Loading data. Active forces can be applied in the 
form of concentrated loads and moments at any 
point on beam, or in the form of distributed 
trapezoidal loadings at any segment of beam. 

− Number of piles (obtainable dividing the total 
loading by a carrying capacity of pile). 

Results of optimization are such positions of all 
piles for which the reactive forces do not exceed the car-rying capacities at any pile. If such a placement is not 
possible the number of piles should be increased. In an 
ideal grillage reactive forces at all piles are identical. This 
makes the problems attractive from the mathematical 
point of view since it can be estimated how far the best 
value found is from the ideal one. 

Previous works. Whereas the beam optimization 
problems in form of optimal sizing of beams in grillage 
structures under given boundary and loading conditions 
(see, e.g. (Chamoret et al. 2008) and references therein) 
or optimal layout of grillages (e.g. (Rozvany 1997)) at-
tracted lot of attention, only a few papers deal with the optimization of pile placements schemes. In (Kim et al. 
2005) an optimal pile placement scheme under the raft is 



D. Šešok et al.  Global optimization of grillages using simulated annealing and high performance computing 

 

96 

sought that minimizes the differential settlements of the 
raft using genetic algorithms. The local search algorithms were employed for optimal placing of piles under a sepa-
rate beam of grillage (Belevičius and Valentinavičius 
2001) and under whole grillage using iterative algorithm 
on the basis of mentioned work (Belevičius et al. 2002). 
Experience shows that the objective function for practical 
grillage optimization problems possesses many local minima points. Due to this the local search obviously is 
not proper choice, and global optimization algorithms are 
the necessity. The deterministic global optimization algo-
rithms proved to require non-realistic computer resources 
for even small-scale grillage optimization problems 
(Čiegis et al. 2006). Promising results for larger-scale grillages (up to tens of design variables) were achieved 
with Genetic Algorithms (GA) (Belevičius and Šešok 
2008). The potential of Simulated Annealing (SA) for 
sizing optimization of grillage beams is illustrated in 
(Kripka 2005), but only for small problems, up to 10 
design variables. Experimental calculations of this paper show that 
SA is more efficient as compared with GA. This is the 
first new element. Another new element is investigation 
of practical limits of SA by solving the pile placement 
optimization problems up to 55 design variables using implementation of SA algorithm for parallel computa-
tions on a cluster of 40 homogeneous computers. 

 
2. Grillage optimization model  
The objective function is defined by finite element 
method. The girders of grillage are approximated as beam 
elements with fixed cross-section and material character-
istics. The piles are represented as the supports with specified displacements (zero displacements are the most 
common case). Alternatively, piles are regarded as sup-
ports with specified stiffness characteristics. Supports of 
the first type are rather non-realistic representations and 
sometimes yield misleading analysis results. For exam-
ple, when multiple supports are needed to carry large concentrated load, this kind of supports will lead to a 
logjam. If odd number of supports is placed under load, 
the central support will be located just beneath the load 
and will take all the force. In case of even number of 
supports the “saw-teeth” like distribution of reactions is observed, and the more supports will be installed, the 
larger in absolute value reactions will arise. 

The optimization problem is defined as in (Belevi-
čius and Šešok 2008)  
 ( )xfDx∈min . (1) 
Here f(x) is the objective function, D is the feasible shape 
of structure, which is defined by the type of certain sup-
ports, the given number and layout of different cross-
sections as well as different materials in the structure. 

f(x) is defined by the maximum difference between 
vertical reactive force at a support and allowable reaction for this support, thus allowing us to achieve different 
reactions at supports on different beams, or even at par-
ticular supports on the same beam: 
 ( ) allowiiNiDx RcRxf

i
−= ≤≤∈ 1maxmax . (2) 

Here Ns denote the number of supports, Rallow is allowable 
reaction, ci are factors to this reaction and Ri are reactive forces in each support. 

The values of objective function are defined by a fi-
nite element program.  

Finite element matrices and sensitivity analysis. 
The problem has to be solved in statics and in linear 

stage 
 [ ]{ } { }FuK = .  (3) 
Here [K] is the stiffness matrix of grillage, {u} are the 
displacements of grillage nodes, and {F} – the loadings. 
The reactive forces at a rigid supports are obtained using 
equation 
 j

j
iji uKR ∑= , sNi ,...,2,1= ,  (4) 

where a part of nodal displacements (displacements of 
free nodes) are already obtained via (3), and the dis-
placements of nodes representing the rigid supports are 
specified (usually – zero). If the supports have finite 
stiffness ik ,  
 iii ukR ≈ , sNi ,...,,2,1= .  (5) 

The sensitivity analysis that is required for the local 
search around the certain optimization solution is per-
formed using the pseudo-load approach; thus, the nu-
merical calculation of derivatives can be avoided. Denot-
ing the support positions by si Nix ,...,2,1, =  
 

iii ,x,xxi uKuKR }]{[}{][
,

+= .  (6) 
Here the derivative of stiffness matrix is obtained analyti-
cally, while the derivative of displacements supposes 
solution of the general sensitivity equation:  
 }{][}{}]{[

,,,

uKFuK
iii xxx −= .  (7) 

The derivatives of load vector are obtained also in a 
closed form, analytically.  

A simple two-node beam element with 6 d.o.f.‘s at a 
node (three displacements and three rotations about local 
element axes) is employed in the analysis.  Algorithms 
defining elements of stiffness matrix are well known, for example, in (Zienkiewicz and Taylor 2005). Additional 
details about finite element matrices are provided in (Be-
levičius and Šešok 2008).  
Program. The finite element mesh of grillage is prepared 
automatically by the pre-processor, introducing nodes at support points, discontinuities of material and cross-
sections properties, etc.  

 

3. Choice of optimization algorithm 
Genetic Algorithms (Goldberg 1989) are common tools 
in solving of optimization problems (Aliawdin and Ka-sabutski 2009; Amirjanov 2006, 2008; Chan et al. 2009). 
In our previous research (Belevičius and Šešok 2008; 
Šešok and Belevičius 2008) GA were applied for medium 
sized problems.  

One more popular algorithm for stochastic optimiza-tion (Baumann 2008; Calafiore and Dabbene 2008) is 
Simulated Annealing (Lamberti and Pappalettere 2007; 
Lamberti 2008; Genovese et. al. 2005). In this paper 
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Simulated Annealing algorithm, is compared with GA 
using the same test problems. The results of SA happen to be better therefore SA was applied to a real life pro-
blem of 55 piles. Clustering of calculations was needed to 
accomplish the task in reasonable time.  

 

4. Simulated Annealing algorithm 
Setting SA parameters. Efficiency of SA depends on parameters such as initial temperature x1 and annealing rate x2. On the basis of numerical experiments the follow-
ing parameter values were fixed in this research: x1 = 5.0 and x2 = 2.0. 

Generating initial decision  The asymptotic results of SA are independent on initial 
decisions. However, the results of SA after finite number 
of iterations depend on these decisions. Therefore, to 
improve the results, the initial decisions were performed 
N_init times by random generation of piles coordinates 
and by selecting the best one. The minimal distance be-tween piles dmin was limited by a half of grillage length 
divided by the number of piles. This limit is ignored dur-
ing SA optimization because the real engineering limits 
of minimal distance between piles are not as great.  

Generating permutations. The final SA results de-
pend on the strategy of permutations. The permutations were generated by adding a ran-
dom number uniformly distributed in an interval [–a1, a1]. After N1 iterations the interval was changed to the shorter 
one [–a2, a2], were a2 < a1, and the remaining N2 itera-tions were performed. This is the simplest version. In the 
following examples, the permutation interval was changed 4 times. 

Selecting next decision. The permutation is ac-
cepted with probability Pj  = 1, if it is better comparing 
with the current decision. Otherwise, it will be accepted, 
too, but with lesser probability 

( )
1

21ln
x

jxf

j eP
+∆

= . Here x1 is 
the initial temperature, x2 is the annealing rate, j is itera-tion number, and f∆  is the difference between the cur-
rent and permuted grillages. 

 

5. Testing SA  
To compare SA results with the results of GA (Belevičius and Šešok 2008) the same two test problems (10 and 15 
piles) were investigated. The same numbers of 4000 itera-
tions for 10-pile grillage and 9000 iterations for 15-pile 
grillage were fixed. The GA parameters (population size, 
mutation and crossover probabilities), as in case of SA parameters, also were chosen experimentally (see 
Belevičius and Šešok 2008) The first test: grillage of 10 
piles. SA parameters are in Table 1.  

SA and GA are stochastic algorithms therefore at 
least a couple of tens of numerical experiments should be 
accomplished for solution of each problem. Table 2 shows averages of 30 independent experiments. 

 
 

Table 1. SA parameters (10 piles) 
Initial temperature 5.0 
Annealing rate 2.0 

N_init 200 
a1 0.6 
N1 1000 
a2 0.2 
N2 1000 
a3 0.05 
N3 1000 
a4 0.01 
N4 800 

 

Table 2. SA results (10 piles) 
Sample Value  Sample Value 
1 193.19 16 199.14 
2 217.67 17 213.00 
3 213.07 18 184.91 
4 223.22 19 217.27 
5 184.89 20 191.65 
6 200.33 21 197.12 
7 189.56 22 192.90 
8 191.53 23 210.34 
9 195.30 24 196.12 
10 197.29 25 229.94 
11 203.40 26 194.25 
12 210.13 27 212.07 
13 207.81 28 188.78 
14 188.30 29 186.45 
15 204.62 

 

30 192.45 
 

For illustration, an experiment using Intel(R) Xeon(R) 
CPU E5420 @ 2.50GHz 2.49 GHz, 3069 MB RAM, 32-
bit requires 67 sec. The best results are in Table 3. 

 

Table 3. Best coordinates (10 piles) 
Pile X-position Y-position 
1 0.80 0.00 
2 2.81 –3.00 
3 5.48 –3.00 
4 5.99 –6.00 
5 9.97 –6.00 
6 0.00 –5.47 
7 4.00 –1.06 
8 8.00 –1.76 
9 8.00 –2.70 
10 15.00 –0.99 

Objective function 184.89 
 Fig. 1 shows the graph of the decision shown in Ta-ble 3.  
 

 
Fig. 1. Best decision (10 piles) 
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The second test: the grillage of 15 piles, 9000 iterations, 
the same as in (Belevičius and Šešok 2008). Table 4 shows SA parameters.  

 
Table 4. SA parameters (15 piles) 

Initial temperature 5.0 
Annealing rate 2.0 

N_init 400 
a1 0.6 
N1 2500 
a2 0.2 
N2 2500 
a3 0.05 
N3 2000 
a4 0.01 
N4 1600 

 
Table 5 shows the average results of 30 independent 

samples. 
 

Table 5. SA results (15 piles) 
Nr. of sample Value Nr. of sample Value 

1 153.49 16 157.89 
2 148.52 17 154.84 
3 156.40 18 146.64 
4 147.01 19 145.46 
5 163.63 20 169.12 
6 189.70 21 151.71 
7 162.02 22 157.20 
8 156.64 23 156.51 
9 152.67 24 177.50 
10 164.16 25 159.66 
11 160.83 26 171.41 
12 174.10 27 149.93 
13 159.84 28 151.12 
14 173.19 29 148.21 
15 157.09 

 

30 169.29 
 

The average CPU time is 108 sec. for a test. 
The coordinates of the best decision are in Table 6. 
 

Table 6. Best coordinates (15 piles) 
Pile X-position Y-position 
1 7.38 0.00 
2 11.76 0.00 
3 1.68 –8.00 
4 0.00 –4.39 
5 0.00 –2.01 
6 4.00 –2.02 
7 4.00 –5.24 
8 8.00 –5.07 
9 8.00 –6.19 
10 12.00 –7.09 
11 12.00 –7.92 
12 11.00 –13.60 
13 15.00 –8.76 
14 15.00 –12.52 
15 13.45 –6.00 

Objective function 145.46 

The graph of Table 6 decision is in Fig. 2. 
 

 
Fig. 2.  Best decision (15 piles)  
The results of GA and SA are compared in Table 7. 
 

Table 7. Comparing SA with GA (10 and 15 piles) 
Piles Iterations GA  SA  Global 
10 4000 192.4 184.89 183.8 
15 9000 157.7 145.46 143.0 

 
In both the tests, SA did show better results. 

In this research the optimal parameters of both GA 
and SA were defined heuristically, by experimental cal-culations. Automatic optimization of these parameters, 
for example, using the Bayesian Heuristic Approach 
(Mockus 2002), is an interesting subject of future re-
search.  

 

6. Real life grillage 
SA is applied to optimize coordinates of 55 piles of com-
plex configuration. First, the SA parameters defined in 
Table 4 are used. The results of 30 independent samples 
are in Table 8. 

 

Table 8. SA results (55 piles, 9000 iterations) 
Sample Value Sample Value 
1 565.84 16 665.23 
2 667.26 17 584.83 
3 467.89 18 668.10 
4 665.66 19 556.77 
5 468.29 20 466.44 
6 613.68 21 674.08 
7 497.41 22 673.89 
8 493.48 23 480.65 
9 560.79 24 589.95 
10 618.61 25 486.33 
11 606.26 26 563.89 
12 616.41 27 551.77 
13 577.93 28 544.18 
14 473.97 29 499.86 
15 537.22 

 

30 546.72 
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The average CPU time is 3904 sec. for a test. 
The results of the best decision 466.44 obtained af-ter 9000 iterations differs from the global minimum 

349.05 by 34%. This shows that we need more powerful 
computing environment. 

 
7. Application of cluster 
According to (Mockus 1967) asymptotic convergence 
rate is slow, not more than log(N), as usual, where  N is 
the number of iterations. Theoretically, in order to de-crease the discrepancy between obtained optimization 
result and the global solution twice, we have to perform 
about 100 times more iterations. Thus, for the 55-pile 
grillage we choose the number of iterations of 106. 

To perform such a number of iterations a cluster of 
computers was applied. All computations were performed on the PC cluster VILKAS (Rocks Cluster Distribution v 
5.0, CentOS release 5, x86_64) at Vilnius Gediminas 
Technical University. The cluster consisted of 18 PCs 
connected by Gigabit Ethernet (D-Link DGS 1224T Gi-
gabit Smart Switch, 24-Ports 10/100/1000Mbps Base-T Module). Hardware characteristics of the PC are listed 
below: Intel® Core2Quad Q6600 2.40GHz CPU (2x4MB 
L2 cache and bus frequency equal 1067 MHz), 2x2GB 
DDR2 800 RAM, 300GB HDD (SATA II Extensions and 
16 MB cache), Gigabit Ethernet NIC. 340 Gflop/s per-
formance was measured running HPL benchmark. The average results of 40 independent samples for each of the 
cluster computers are in Table 10. The total CPU time 
was about 50 hours.  

SA parameters for this test are in Table 9.  
 

Table 9. SA parameters (55 piles) 
Initial temperature 5.0 
Annealing rate 2.0 

N_init 500000 
a1 0.6 
N1 150000 
a2 0.2 
N2 150000 
a3 0.05 
N3 100000 
a4 0.01 
N4 100000 

 
The results are in Table 10.  
 

Table 10. SA results (55 piles, 1.000.000 iterations) 
Sample Value Sample Value 
1 426.88 21 467.01 
2 388.64 22 423.25 
3 421.98 23 463.05 
4 455.17 24 468.59 
5 429.52 25 480.05 
6 464.72 26 418.57 
7 408.67 27 423.29 
8 425.45 28 462.71 
9 440.74 

 

29 420.65 

Continue of Table 10 
Sample Value Sample Value 
10 461.86 30 441.54 
11 417.97 31 455.12 
12 488.54 32 417.27 
13 458.99 33 403.18 
14 456.22 34 416.97 
15 458.31 

 

35 457.97 
16 457.55  36 385.15 
17 462.85  37 430.81 
18 417.69  38 460.69 
19 397.27  39 460.87 
20 379.35  40 461.78 
 The best result (379.35) differs from global mini-

mum (349.05) by 9%. Thus, this error is better than the 
theoretical estimation of error for the number of iterations 
performed. This is acceptable error. Figure 3 shows the 
graph of this decision.  

 

 
Fig. 3. Best decision (55 piles, 106 iterations)  
Here are the coordinates of the best obtained solu-

tion:  (12.34, –30.35); (19.85, –30.35); (27.17, –30.35); (8.40, 
0.00); (11.96, 0.00); (15.56, 0.00); (19.93, 0.00); (30.40, 
0.00); (32.52, –29.73); (5.09, –26.03); (11.40, –26.03); 
(17.44, –26.03); (23.97, –26.03); (12.14, –9.71); (16.18, –
9.71); (36.65, –30.35); (42.64, –30.35); (47.12, –30.35); 
(35.88, –20.59); (37.71, –20.59); (44.11, –20.59); (46.69, –20.59); (35.07, –11.87); (35.70, –11.87); (39.64, –
11.87); (44.93, –11.87); (45.80, –11.87); (35.91, –2.11); 
(40.28, –2.11); (43.73, –2.11); (48.59, –2.11); (0.00, –
27.28); (0.00, –18.04); (0.00, –7.84); (0.00, –2.96); 
(28.32, –25.00); (28.32, –22.42); (28.32, –15.76); (28.32, –12.63); (28.32, –7.74); (28.32, –4.78); (33.04, –25.33); 
(33.04, –22.07); (33.04, –19.61); (33.04, –14.75); (33.04, 
–9.57); (33.04, –8.06); (33.04, –2.54); (49.24, –24.88); 
(49.24, –19.40); (49.24, –11.80); (49.24, –10.84); (49.24, 
–5.44); (49.35, –16.23). 

The data and the FORTRAN library for calculation of objective function are on the web (Mockus 2006): 
http://soften.ktu.lt/~mockus/grillage/contgrillage.html 

− Data10.dat is for 55 piles , 
− Data11.dat is for 10 piles, 
− Data12.dat is for 15 piles, 
− Grillage.lib is the Windows library with subrou-
tines for calculation of objective function. 

− Example.f90 is the FORTAN example file. 
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8. Conclusions 
In the medium sized (10–15 piles) test examples SA did 
show better results comparing with GA. Using the same 
number of iterations, the SA deviations from the global minimum for 10- and 15-pile grillages were about 8 and 6 
times less, correspondingly. Parameters of both algo-
rithms were adapted by additional experimentation calcu-
lations ended in reasonable time using standard PC.  

Solving a real life example (55 piles) clustering was 
used. For larger examples, the search algorithms should be optimized and specific features of the problem ex-
ploited.  
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GLOBALUS ROSTVERKŲ OPTIMIZAVIMAS TAIKANT ATKAITINIMO MODELIAVIMO METODĄ IR REMIANTIS DIDELIO NAŠUMO SKAIČIAVIMAIS 
D. Šešok, J. Mockus, R. Belevičius, A. Kačeniauskas 
S a n t r a u k a 
Straipsnio tikslas – ištirti galimus rostverkinių pamatų optimizavimo būdus. Siekiant šio tikslo du gerai žinomi optimi-
zavimo metodai – genetiniai algoritmai ir atkaitinimo modeliavimo algoritmas – buvo palyginti vidutinio dydžio (10 ir 15 
polių) pavyzdžiams išspręsti. Tikslo funkcija imama didžiausia atraminė poliaus reakcija. Projektavimo kintamieji – polių 
koordinatės. Atkaitinimo modeliavimo metodas laimi, todėl jis buvo pritaikytas praktiniam uždaviniui (55 poliai) spręsti. 
Spręsti buvo naudojamas klasteris. Naujumas – genetinių algoritmų palyginimas su atkaitinimo modeliavimo metodu bei 
atkaitinimo modeliavimo metodo pritaikymas sprendžiant praktinį uždavinį. 
Reikšminiai žodžiai: rostverkai, atkaitinimo modeliavimas, globalus optimizavimas, baigtiniai elementai, genetiniai algo-
ritmai. 
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