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Abstract. Construction cost and duration are two critical project indicators. It is acknowledged that these two indicators 
are closely dependent and highly uncertain due to various common factors and limited data for explanatory model calibra-
tion. However, the stochastic dependence underlying construction cost and duration is usually ignored and the subsequent 
probabilistic analysis can be misleading. In response, this study develops a Nataf distribution model of building cost and 
duration, in which the uncertainties of total cost, unit cost, and duration are respectively quantified by univariate distribu-
tion fitting, while their stochastic dependence is inferred by maximum likelihood estimation. This method is applied to 
the costs and durations of 77 China residential building projects completed between 2011 and 2016. The goodness of fit 
test illustrates that the data conform well to the developed model. The conditional distributions of cost and duration are 
then derived and the corresponding conditional expectations and variances are given. The results provide the distribution 
of building costs for a desired duration and the expected duration given a budget. This, together with the ability to update 
probabilities when new project information is available, confirms the potential of the proposed model to benefit precon-
tract decision making from a risk perspective.

Keywords: probabilistic modelling, cost-duration, stochastic dependence, Nataf distribution.

Introduction

Construction cost and duration are two critical proj-
ect indicators. It is widely considered that construction 
cost and duration are interrelated (Bromilow 1969; Žujo 
et  al. 2017). Several studies indicate that construction 
cost can be used to estimate the construction time (Bro-
milow 1969; Ogunsemi, Jagboro 2006) while some works 
explore the influence of duration delays on cost overrun 
(Huo et al. 2018; Lo et al. 2006). Despite the close rela-
tionship between construction cost and duration, they are 
usually deemed as two contradictory objectives that need 
to be traded off in project management. A planed budget 
largely determines a reasonable construction time through 
its impact on resource supply. In other words, completion 
within a certain period usually requires sufficient budget. 
From the owner’s perspective, determining the planed 
budget demands a good understanding of the depend-
ence between construction cost and duration. Some plan-
ners may prioritize financial and budgetary factors in early 
project planning while others would consider completion 
on time of paramount importance. Understanding this 

dependency between construction cost and duration help 
planners to select reasonable duration according to the 
budget limit and make reasonable decision according to 
their risk preference.

The closeness of construction cost and time relation 
has been proved by numerous researches. Several stud-
ies have examined the causes of cost and duration over-
run in different regions, including Vietnam (Kim et  al. 
2018), Nigeria (Dada, Jagboro 2007), Hong Kong (Huo 
et al. 2018; Lo et al. 2006), and Malaysia (Ismail et al. 2014; 
Shehu et al. 2014a, 2014b). Construction delay has been 
identified as one of the major reasons for construction 
cost overrun (Flyvbjerg  et al. 2004). On the other hand, 
schedule delay often occurs due to an insufficient budget 
for covering the extra costs originating from unpredicted 
events such as bad weather or design changes. Some own-
ers prioritize financial and budgetary factors in early proj-
ect planning while others consider completion on time of 
paramount importance.
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Several studies have attempted to address the pre-
diction of construction cost and duration by using both 
qualitative and quantitative methods. This has resulted 
in several factors being identified as the major causes of 
construction duration and cost overruns, including inef-
fective early project planning, changes in design or scope, 
and late payments (Famiyeh et al. 2017; Larsen et al. 2015; 
Mulla, Waghmare 2015; Shehu et  al. 2014a). Studies of 
the relationship between construction duration and cost 
began with a simple linear model (Fulkerson 1961), fol-
lowed later by the fitting of several non-linear models, 
such as the quadratic (Deckro et al. 1995) and exponential 
(Žujo et  al. 2017). A representative model developed by 
Bromilow (1969) in Australia has had its predictive abil-
ity tested and improved in different countries (Chan 1999; 
Kaka, Price 1991; Ogunsemi, Jagboro 2006; Ng et al. 2001; 
Yeong 1994). Optimization approaches based on these 
models have been proposed to address the cost-duration 
tradeoff problem; these methods include the genetic al-
gorithm (Agdas et al. 2017; Koo et al. 2015; Zheng et al. 
2004), artificial bee colony algorithms (Tran et al. 2015), 
and particle swarm optimization (Aminbakhsh, Sonmez 
2016) and critical path (Alavipour, Arditi 2018).

Various factors contribute to construction perfor-
mance, including project complexity, financial considera-
tions, political conditions, and market environments. Some 
are difficult to quantify because of the limited amount of 
data available (particularly at the early stage of construc-
tion), while other factors are difficult to incorporate due 
to limited knowledge of their explanatory relations, such 
as project communication and team hierarchical diversity 
(Sanchez et al. 2017). Consequently, predicting construc-
tion cost and duration is surrounded by considerable un-
certainty; even the performance of projects with an identi-
cal design still differ because of these uncertainties (Pinto, 
Morris 2004). 

In minimizing the risk of unrealistic project planning, 
therefore, it is critical to capture the uncertainty in con-
struction cost and duration. This is difficult to do by de-
terministic methods as they only provide point-value es-
timates (Kim, Reinschmidt 2009). As shown in Figure 1, 
due to the uncertainty of the underlying factors, the rela-
tionship between cost and duration cannot be represented 
by a deterministic function; rather, for a given duration 
(e.g. d in Figure 1), the corresponding cost (c in Figure 1) 

is uncertain and better characterized by a distribution of 
probable points ( ( )f x in Figure 1).

In contrast, the probabilistic approach provides a  
distributive estimate rather than point estimate, which is 
potentially more useful (Skitmore 2001). The fitness of 
several general distribution types such as Weibull (Nassar 
et al. 2005) and uniform (Fine, Hackemer 1970; Grinyer, 
Whittaker 1973; Van Cauwelaert, Heynig 1979), Gamma 
(Friedman 1956), and lognormal (Skitmore 1991) have 
been explored for construction cost or duration. Other 
studies investigate the distribution of duration under dif-
ferent weather conditions (Lee et  al. 2009), project and 
contract types (Irfan et al. 2011), and logic types (Wang 
2005). Based on predefined distributions, several proba-
bilistic methods such as Monte Carlo simulation (MCS), 
the program evaluation and review technique (PERT) and 
agent-based simulation have been widely used to address 
the uncertainty in construction duration (Ahuja, Nan-
dakumar 1985; Ballesteros-Pérez 2017; Erol et  al. 2017; 
Farshchian et  al. 2017; Karabulut 2017; Moret, Einstein 
2016). Based on assumptions of precedence relationships 
between activities, these methods can model the distribu-
tion of scheduled duration (Wang 2005). However, a com-
mon assumption underlying probabilistic simulation is the 
independence between variables (Irfan et al. 2011), where-
as construction duration and cost are closely dependent 
(Žujo et  al. 2017), raising concerns over the accuracy of 
the results obtained under the independence assumption 
(Isidore, Back 2002). Therefore, there is a need for a proba-
bilistic method considering the stochastic dependence be-
tween construction cost and duration. The significance of 
cost and time dependency modelling is prominent within 
the context of early project decision making. Many con-
struction companies consider the cost and time are main 
objectives for project management. Quantifying the 
changes of the cost caused by the deviation of the duration 
from a probabilistic perspective helps the planner to better 
select the duration and prepare for the possible crashing. 

This study employs the Nataf distribution to capture 
the uncertainty of construction duration and cost and 
their stochastic dependence (Žujo et al. 2017). The Nataf 
distribution is widely used to describe dependent uncer-
tainties. Unlike other multivariate distribution models, the 
Nataf distribution is more flexible in the choice of univari-
ate normal or non-normal distributions. Moreover, the 
stochastic dependence is modeled independent of the un-
certainty characterization of each random variable, which 
simplifies the procedures of model development. Several 
studies have employed the Nataf distribution for construc-
tion reliability analysis (Chen et al. 2015).

This paper introduces a probability model based on the 
Nataf distribution to capture the dependent uncertainty 
between cost and duration. This model is developed and 
tested on a dataset comprising the total cost (TC), unit cost 
(UC), and duration (D) of 77 China residential building 
projects. UC (total final contract cost/total floor area) is 
included here because it was also deemed a key indicator 
of construction performance (Chan, A. P. C., Chan, A. P. L. Figure 1. Construction duration-cost relationship
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2004). Univariate and multivariate analysis of TC, UC and 
D are carried out and the conditional distribution based 
on the multivariate distribution model is derived, and the 
method of updating of distributions given new observa-
tions is then illustrated. Finally, the potential application 
of the proposed model is presented and its implication for 
early stage project management is discussed.

1. Methodology

This research aims to model the stochastic relationship 
between building cost and duration. A multistep process 
is proposed (Figure  2), which includes data processing, 
model development and validation, and model updating. 
Each step is presented in detail in the subsequent para-
graphs.

1.1. Data source and processing

The data collected in this study was from a professional da-
tabase in the construction industry in China, which covers 
various types of construction buildings. Th e detailed in-
formation of each project is stored in a structured way that 
each project sample consists of several fundamental con-
struction attributes, such as project type, storey, total floor 
area, bidding, decoration standard, delivery method. Th is 
study focuses on one major type of project, i.e., apartment 
building. Moreover, cost and schedule overrun is caused 
by some errors, omissions, or changes (Love et al. 2012). 
Th erefore, the data samples corresponding to projects with 
cost or schedule overruns are removed to minimize the 
influence of unpredicted factors. In other words, this study 
focuses on the cost-duration relationship that a ‘normal’ 
project is likely to possess.

To eliminate the bias caused by the inconsistence in 
commence date and location, the project cost data was ad-
justed to the identical point of time using the price indices 
of construction from the National Bureau of Statistics of 
China. This index is an artificial statistical data used to es-

timate price fluctuation by assuming 100 as the price at a 
certain point in time (Koo et al. 2010). 

1.2. Model development and validation

Investigating the stochastic relationship between cost and 
duration requires the modeling of their joint probability 
distribution. This study employs the Nataf distribution 
to capture the dependency uncertainty of building cost 
and duration. The major advantage of this model comes 
in terms of its flexibility to incorporate various univariate 
distributions while preserving the correlations between 
variables. The model is useful because the uncertainties of 
building cost and duration are usually non-Gaussian and 
correlated. The model parameter (including the univari-
ate distribution) is estimated by the maximum likelihood 
method. Finally, univariate and multivariate goodness of 
fit tests are conducted to examine whether the uncertain-
ties of cost and duration and their stochastic dependence 
are well represented by the developed model. The follow-
ing explains the method used in this study. 

The Nataf distribution is a popular model used to ap-
proximate the joint probability distribution of the input 
random variables. The model is flexible and efficient since 
it can incorporate various marginal distributions and can 
be easily generalized to higher dimensions. The stochas-
tic dependence is modeled via a joint Gaussian distribu-
tion after mapping the random variables from the original 
space onto standard normal space (Chen et al. 2015). 

Suppose ( )1 2, , , nX X X= …X  is an n-dimensional ran-
dom vector. Assume that the univariate probability den-
sity function (PDF) and cumulative distribution function 
(CDF) of each element , 1, ,iX i n= …  are ( )i if x  and ( )i iF x , 
respectively. A transformation ( ) : n nT= →Y X    is 
used to map each element iX  independently onto stand-
ard normal random space:

( )1
i i iy F x−  = Φ   ,  (1)

Figure 2. Methodology framework
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where ( )1−Φ ⋅  is the inverse of a univariate standard 
normal CDF denoted as ( )Φ ⋅ ; iy  is a standard normal 
random variable. By applying the differentiating rule, the 
joint PDF and CDF of X  are:

( ) ( ) ( )
( )1

;
n

i i
n

ii

f x
f

y=
= φ

φ∏X 0x y ρ ; (2)

( ) ( );nF = ΦX 0x y ρ , (3)

where ( ) ;nφ ⋅ 0ρ  and ( ) ;nΦ ⋅ 0ρ  are the PDF and CDF 
of an n-variate standard normal distribution respectively, 
and 0ρ  is its correlation matrix. The joint probability dis-
tribution of X  with the PDF given by Eqn (2) is referred 
to as the Nataf distribution and 0ρ  is termed the fictive 
correlation matrix acting as the Nataf distribution model 
parameter (Higham 2002).

Maximum likelihood estimation (MLE) is extensively 
used to infer parameters of statistical models from a set of 
observations. The basic idea is to maximize the likelihood 
of the statistical model given the observations with respect 
to the model parameters. For the Nataf distribution model, 
there are two types of parameters: (1) the parameter of the 
univariate distribution of each random variable; and (2) 
the fictive correlation matrix describing the dependence 
strength between different random variables. Estimat-
ing the Type 1 parameters for a univariate distribution is 
straightforward. For the Type 2 parameters, the inference 
by MLE where the log-likelihood of the model is:

( ) ( ) ( ) ( )
1 1

log log ;
n n

n i i i
i i

f f x y
= =

= φ + − φ∑ ∑X 0x y ρ . (4)

Given specified marginal distributions, both ( )
1

n

i i
i

f x
=
∑  

and ( )
1

n

i
i

y
=
φ∑  are independent of 0ρ . Thus the maximi-

zation of ( )log fX x  with respect to 0ρ  is equivalent to 
the maximization of ( )log ;nφ 0y ρ  with respect to 0ρ . In 
other words, the estimator of 0ρ  is the estimator of the 
correlation matrix of an n-variate standard normal distri-
bution, which is:

( )( )

( ) ( )

, ,
1

0,
2 2

, ,
1 1

ˆ ˆ

ˆ ˆ

m

k i i k j j
k

ij m m

k i i k j j
k k

Y Y Y Y

Y Y Y Y

=

= =

− −
ρ =

− −

∑

∑ ∑
,  (5)

where ( )1, ,
ˆ ˆ ˆ, ,i i m iY Y= …

T
Y  and ( )1, ,

ˆ ˆ ˆ, ,j j m jY Y= …
T

Y  are 
transformed from the m observations of the i-th and j-th 
random variable by Eqn (4) respectively; iY  and jY  de-
note the sample mean of ˆ

iY  and ˆ
jY , respectively.

The goodness of fit of a statistical model measures the 
discrepancy between the proposed statistical model and 
the observations. This measure is commonly used in sta-
tistical hypothesis testing to test whether the data frequen-
cies can be captured by a given distribution. The goodness 
of fit of a univariate distribution model is measured in 

terms of the deviation between the theoretical CDF ( )F x  
from the proposed model and the empirical CDF ( )F̂ x  
from observations, which are respectively:

( ) ( ) ( )x
F x P X x f t dt

−∞
= ≤ = ∫ ; (6)

( ) ˆ
1

1ˆ
i

m

X x
i

F x
m ≤

=
= ∑1 , (7)

where ( )f x  is the theoretical PDF of X , ˆ , 1, ,iX i m= …  
are m observations of X  sorted in an ascending order, 
and E1  is the indicator function of event E .

The Anderson–Darling (A–D) statistic ( 2A ) has ex-
cellent power properties against a variety of alternatives 
(D’Agostino 2017). Therefore, in this work, the A–D test 
is taken to examine whether the data samples are drawn 
from the proposed univariate distribution model, where 
the A–D statistic ( 2A ) is defined as:

( ) ( ) ( )( )1
2

1

1 ˆ ˆ2 1 log log 1
m

i m i
i

X
m

A m i F F X − +
=

 = − − − + −  ∑ .
 (8)

For a multivariate distribution model, the PIT-based 
A–D test is employed to test its goodness of fit. Particu-
larly, to examine whether the observations of a random 
vector X  are appropriately modeled by the Nataf distri-
bution, a null hypothesis is defined as:

0H : X  conforms to the Nataf distribution.
The PIT of X  is a transformation ( ) : n nT= →Z X    

given by:

( )
( )

1 1 1 1

1 1

| , ,
| , , , 1, , .

i i i i i

i i

z P X x X x X x
F x x x i n

− −

−

= ≤ = … = =

… = …
 

 (9)

It has been proved that the elements of the random 
vector ( )1 2, , , nZ Z Z= …Z  are uniformly and indepen-
dently distributed on 0,1   (Rosenblatt 1952). Therefore,

the random variable ( ) 21

1

n

i
i

S Z−

=

 = Φ ∑  has a 2χ  distri-

bution with n degree of freedom (DOF). In other words, if 
the random vector X  conforms to the Nataf distribution, 
the corresponding observations that transformed into S  
should conform to a 2

nχ  distribution. By defining the aux-
iliary null hypothesis:

*
0H : S  conforms to the 2

nχ  distribution.
The null hypothesis 0H  can then be tested by testing 

*
0H . In other words, 0H  cannot be rejected if *

0H  cannot 
be rejected because 0H  implies *

0H . The null hypothesis 
*
0H  can again be tested using the A–D statistic.
To visualize the fitness of the Nataf distribution, the 

theoretical CDF is plotted based on Eqn (2) whereas the 
multivariate empirical CDF is defined as:

( ) ( ) ( ),1 1 ,
ˆ ˆ...

1

1ˆ
i i n n

m

X x X x
i

F
m  ≤ ≤  =

= ∑X x 1
 

, (10)

where   indicates the intersection of event sets.
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1.3. Model updating

The established Nataf distribution model could be updated 
to infer the conditional distribution of some random vari-
ables given new observations of the others. In addition, 
the calculation of conditional statistics such as expectation 
and variance are introduced.

A potential application of the established Nataf dis-
tribution model is to infer the conditional distribution 
of some random variables given new observations of the 
others. Let ( ) ( )( )1 2,=X X X  where ( ) ( )1

1, , kX X= …X  
and ( ) ( )2

1, ,k nX X+= …X . The corresponding trans-
formed standard normal random variable is then de-
noted as ( ) ( )( )1 2,=Y Y Y  where ( ) ( )1

1, , kY Y= …Y  and 
( ) ( )2

1, ,k nY Y+= …Y . Suppose that the Nataf distribu-
tion has been established where the model parameter

 
=  
  

11 12
0 0

0 21 22
0 0

ρ ρ
ρ

ρ ρ
. 11

0ρ , 22
0ρ , and ( )=

T12 21
0 0ρ ρ  are the cor-

relation matrix of ( )1Y , of ( )2Y , and between ( )1Y  and 
( )2Y , respectively. Without loss of generality, suppose that 

new observations of ( )2X  is available. By definition, the 
PDF of the conditional distribution ( ) ( )

( ) ( )( )1 2
1 2

|
|f

X X
x x  

is:

( ) ( )
( ) ( )( ) ( )

( )
( )( )

( )
( )( )

( )
( )

1 2

2

1 2
| 2

2 1

|

;
,

;

k
n i i

iin k

f
f

f

f x
y=−

= =

φ

φφ
∏

X
X X

X

0

22
0

x
x x

x

y

y

ρ

ρ
 (11)

while the CDF of the conditional distribution 
( ) ( )

( ) ( )( )1 2
1 2

|
|F

X X
x x  is:

( ) ( )
( ) ( )( )

( )

( )
( )( )

( )
( )

( ) ( )
( ) ( )( )

1 2

1 2
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1 2

1 2
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F
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f
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+−∞ −∞ −∞

+−∞ −∞ −∞
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=
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=
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=
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Φ

∫ ∫ ∫

∫ ∫ ∫

X X

X

X

0

22
0

Y Y

x x

x

y y

 

 ρ

ρ

 (12)

which is the CDF of a multivariate normal distribution. 
In other words, the CDF of ( ) ( )( )1 2|X X  is equivalent to 
the CDF of ( ) ( )( )1 2|Y Y  which follows a k-variate normal 
distribution * *( , )kN µ ρ  with mean and covariance matrix 
respectively given by:

( ) 1* (2)−
= 12 22

0 0 yµ ρ ρ ; (13)

( ) 1* −
= −11 12 22 21

0 0 0 0ρ ρ ρ ρ ρ . (14)

For the computation of the marginal conditional CDFs 
in the PIT, we can simply apply Eqns (12)–(14) by setting 

( )1
iX=X  and ( ) ( )2

1 1, , iX X −= …X and choosing the cor-
responding sub-matrix of 0ρ  as the model parameter.

Based on the conditional distribution, the conditional 
statistical moments can be calculated. For example, the 
conditional expectation and variance are calculated as fol-
lows:

( ) ( )| |X xf x dx
+∞

−∞
= ∫e e ; (15)

( ) ( )( )2| | |X X X = − 
 

e e e   , (16)

where   is the expectation operator,   is the variance 
operator, e  denotes the observations of conditioning vari-
ables.

2. Data collected

Considering the consistency in the project attributes, this 
study finally collected 77 project samples of apartment 
buildings from the database. These projects were complet-
ed during 2011 to 2016 in China without occurrence of 
cost and schedule overrun. The project cost was adjusted 
using the price indices of construction from the National 
Bureau of Statistics of China to eliminate the effects of 
inflation. 

The statistics of the data are shown in Table  1. The 
Pearson’s correlation between TC and D is –0.4949, UC 
and D is –0.3621, TC and UC is 0.3112, indicating that TC 
and D, UC, and Dare negatively correlated while there is a 
positive correlation between TC and UC.

3. Results

This study includes three variables (UC, TC, D) indicat-
ing project performance, which are stochastic and inter-
dependent. The target is their statistical modeling and un-
ravelling their stochastic relationship. Univariate analysis 
and multivariate analysis are both included in this section.

3.1. Univariate analysis

To establish the model, the first step is to quantify the 
uncertainty of each random variable by determining the 
univariate distributions. A number of continuous distri-
butions are examined, including the Beta, Burr, Weibull, 
Log-Logistic, Cauchy, Gumbel Max/Min, Gamma, John-
son SB, and Normal. The parameters of the distributions 
are estimated using the MLE method. The software pack-
age Easyfit 5.5 is used for parameter estimation and the 

Table 1. Statistics of project cost and duration

Project 
information UC (¥/m2) TC (¥) D (days)

Mean 1524.3 11357759.73 545.61
Variance 155906.01 4.83E+13 23925.24

Maximum Value 2546.63 29440351.52 1205

Minimum Value 861.17 2953483.15 284
No. of projects 77
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goodness of fit test of the univariate distributions. The null 
hypothesis 0H  that the observations follow the specified 
distribution cannot be rejected if the statistic 2A  is less 
than the critical value at the given significance level 𝛼; 
otherwise, the null hypothesis is rejected.

Table  2 presents the hypothesis test results corre-
sponding to the best-fit distributions for UP, TP, and D, 
respectively. The probability density functions (PDFs) 
and cumulative distribution functions (CDFs) of Weibull 
(3-parameter), Gamma (3-parameter), and Log-Logistic 
(3-parameter) distributions and the meaning of associated 
parameters are given in Table 3. Figure 3 compares the em-
pirical distribution (stair step lines) with the best fit distri-
bution for UP, TP, and D respectively. The empirical CDF 

Figure 3. Best fit distributions of TC, UC and D

is generally in good agreement with the theoretical CDF, 
which indicates that the uncertainty of UP, TP, and D can 
be characterized by the theoretical CDFs.

3.2. Multivariate analysis

The next step in developing the Nataf distribution model 
is to estimate the fictive correlation matrix. The results are 
shown in Table 4. The fictive correlation matrix is close to, 
but deviates from, the correlation matrix associated with 
the original random vector. In general, the fictive correla-
tion and original correlation are co-monotonic (i.e. fictive 
correlation strictly increases as the original correlation 
strictly increases, and vice versa) and the fictive correla-
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tion is positive or negative if the original correlation is 
positive or negative. The deviation is largely determined 
by the normality of the univariate distribution of each 
random variable.

The goodness of fit of the developed multivariate dis-
tribution model is then examined. A critical step in the 
goodness of fit test of the Nataf distribution model is the 
PIT, which involves the sequential computation of the 
marginal conditional CDFs of the random vector. The re-
sult of the A–D test for goodness of fit is shown in Table 5. 
This indicates that the auxiliary hypothesis *

0H  (statisti-
cal S  conforms to the 2

nχ  distribution) is accepted, which 
means that the Nataf distribution can be used to model 
the trivariate distribution of the random vector. The his-
togram of S  compared with the PDF of 2

3χ  distribution 
is shown in Figure 4 and the empirical cumulative distri-
bution of S compared with the CDF of 2

3χ  distribution is 

Table 2. Hypothesis test based on the A–D statistic

Variable Distribution type A–D statistic 𝛼-value Critical value Reject?

TC Weibull (3-parameter)
α = 1.134
β = 8,804,609.80
γ  = 2,918,564.67

0.4835 0.2 1.3749 No
0.1 1.9286 No

0.05 2.5018 No
0.02 3.2892 No
0.01 3.9074 No

UC Gamma (3-parameter)
α = 4.07
β = 198.15
γ = 717.55

0.2325 0.2 1.3749 No
0.1 1.9286 No

0.05 2.5018 No
0.02 3.2892 No
0.01 3.9074 No

D Log-Logistic 3-parameter)
α = 4.37
β = 332.56
γ  = 185.01

0.1938 0.2 1.3749 No
0.1 1.9286 No

0.05 2.5018 No
0.02 3.2892 No
0.01 3.9074 No

Table 3. Distribution functions

Distribution type PDF and CDF
Log-logistic  
distribution

(3-parameter)

21

( ) 1x xf x

−α− α    α − γ − γ = +    β β β    
1

( ) 1F x
x

−α  β = +   − γ  

Gamma distribution
(3-parameter) ( )

( )
( )1

( ) exp
x x

f x
α−

α

 − γ − − γ
=   ββ Γ α  

( ) ( )
( )

( )
x

F x
−γ βΓ α

=
Γ α

Weibull distribution
(3-parameter) ( )1

( ) exp
xxf x

αα−   − − γ α − γ  =      β β β     

( )
( ) 1 exp

x
F x

α
 − − γ

= −   β 

Note: α  is the shape parameter, β is the scale parameter and γ  
is the location parameter. 

Table 4. Fictive correlation matrix of the Nataf distribution

Variable TC UC D
TC 1 0.3090 –0.6169
UC 0.3090 1 –0.3985
D –0.6169 –0.3985 1

Table 5. A–D test for *
0H

Variable Distribution type A–D statistic 𝛼-value Critical value Reject?

S 2
3χ  distribution 0.30545 0.2 1.375 No

0.1 1.929 No
0.05 2.502 No
0.02 3.289 No
0.01 3.907 No



Journal of Civil Engineering and Management, 2018, 24(6): 444–456 451

shown in Figure 4(b). Figures 4(a) and 4(b) illustrate that 
the proposed model well fits the empirical data. Figure 5 
compares the contours of the trivariate empirical distribu-
tion with that of the Nataf distribution in two dimensions. 
The empirical and fitted CDFs are generally consistent de-
spite some small deviations.

4. Model application
An application of the established Nataf distribution model 
is to infer the conditional distribution of construction du-
ration or cost when new information of the others is avail-

able. This section discusses the conditional distribution 
of cost or duration given new observations. In addition, 
the calculation of conditional expectation and variance of 
building cost and duration is illustrated. The potential of 
the proposed model for project management is discussed 
later.

4.1. Conditional distribution of TC or UC given D

This section discusses the conditional distribution of TC 
or UC given new values of D. Figures 6(a) and 6(b) pre-
sent the PDF and CDF of the conditional distribution 

Figure 4. (a) Histogram of S compared with the PDF of 2
3χ  distribution, (b) P-P plot of S compared 

with the CDF of 2
3χ  distribution

Figure 5. Comparison of contours of the empirical distribution and the Nataf distribution in 
dimensions: (a) TC-D dimension; (b) UC-D dimension, and (c) TC-UC dimension
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of UC under different values of D respectively. Here, we 
take the 5th (355 days) and 95th (837 days) percentile of 
D for illustrative purpose. The unconditional distribution 
of UC is included as a reference. The mode of UC that 
corresponds to the maximum of unconditional PDF is  
¥1322/m2. If the duration equals to its 95th percentile, the 
mode of UC decreases to ¥1134/m2 and the conditional 
CDF is above the unconditional CDF, which implies that 
a smaller value of UC is likely to occur. In contrast, as the 
duration is shortened to its 5th percentile, the mode of UC 
increases to ¥1619/m2 and the conditional CDF is below 
the unconditional CDF. In other words, the probability of 
UC being less than a value is lower, which indicates that a 
larger value of UC is likely to appear. A similar pattern of 
influence is observed for conditional distribution of TC. 
When D equals its 5th and 95th percentile, the mode of TC 
deviates from its unconditional value of ¥4.22e6 to ¥1.50e7 
and ¥3.15e6, respectively. The conditional CDFs of TC giv-
en in the 5th and 95th percentile of D are also below and 
above the unconditional CDF of TC. However, the devia-
tion between the conditional and unconditional CDF lines 
for UC and TC are different. The following index is used to 
investigate the sensitivity of UC and TC to D:

( ) ( )
( )

2 2 1 1 2 2

2 2

|
100%

P X x X x P X x
P X x

< = − <
δ = ×

<
, (17)

here, we set 2x  to the median of its unconditional distri-
bution (i.e., ( )2 2 0.5P X x< = ) and 1x  to its 5th and 95th 
percentile, respectively. Table 6 summarizes the sensitivity 

of TC and UC to D. The conditional CDFs of TC appar-
ently deviates more significantly from its unconditional 
CDF than the result from UC. This difference indicates 
that TC is more sensitive to D.

Table 6. The sensitivity of TC and UC to D

δ -value
1X D=

( )
1
1

1 0.05Xx F−= ( )
1
1

1 0.95Xx F−=

2X TC= , ( )
2
1

2 0.5Xx F−= 80.4% 80.0%

2X UC= , ( )
2
1

2 0.5Xx F−= 52.2% 52.7%

Note: ( )-1F ⋅ is the inverse function of ( )F ⋅  and the subscript 
indicates the name of the variable.

4.2. Conditional distribution of UC and TC given D

This section explores the conditional joint distribution of 
UC and TC given the value of D. First, the CDF and PDF 
of unconditional joint distribution between TC and UC 
are presented in Figures 7(a) and 7(b). Figures 7(c) and 
7(d) show the CDF and PDF of the conditional joint dis-
tribution of TC and UC given the 5th percentile of D and 
Figures 7(e) and 7(f) are the CDF and PDF of conditional 
joint distribution of TC and UC given the 95th percentile 
of D. The most probable values (summit of the PDF sur-
face) corresponding to the unconditional joint distribu-

Figure 6. The conditional distribution of TC and UC given the value of D
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tion of UC and TC are ¥1178/m2 and ¥3.52e6. Given the 
5th and 95th percentile of D, the most probable values of 
both UC and TC become larger (¥1598/m2 and ¥1.49e7) 
and smaller (¥1098/m2 and ¥3.09e6), respectively, as 
shown in the contour below the PDF surface. The mode 
of the conditional joint distribution of UC and TC is dif-
ferent from that of univariate conditional distribution of 
UC or TC given the same value of D. For example, when 
D is set to its 5th percentile, the mode of UC or TC cor-
responding to the univariate conditional distribution is 
respectively ¥1619/m2 or ¥1.50e7, while the mode of UC 
and TC becomes ¥1598/m2 and ¥1.49e7, respectively, if 
they are jointly investigated. This difference implies the 
influence of the positive dependence between UC and TC 
on the distribution modeling. 

4.3. Conditional distribution of D given UC and TC

Conversely, the possible duration under specific budget-
ary cost can be analyzed. Similarly, the conditional distri-
bution of D is illustrated with UC and TC being their 5th 
(UC =  ¥997/m2, TC = ¥3.56e6) and 95th (UC = ¥2274/m2, 
TC  =  ¥2.61e7) percentile. As illustrated in Figure  8, a 
limited budget can increase the likelihood of longer con-
struction duration while sufficient financial support can 
decrease this likelihood. In particular, the mode of uncon-
ditional distribution of D is 484 days. If both UC and TC 
are set to their 5th percentile (or 95th percentile), the mode 
of D becomes to 675 days (or 385 days). This result quan-
tifies the budgetary influence on construction duration.

Figure 7. The unconditional and conditional joint distribution of TC and UC: (a) unconditional PDF; (b) unconditional CDF; 
(c) conditional PDF given the 5th percentile of D; (d) conditional CDF given the 5th percentile of D; (e) conditional PDF given 

the 95th percentile of D; (f) conditional CDF given the 95th percentile of D
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4.4. Conditional statistics

Based on the conditional distribution, the conditional 
statistics of construction duration and cost are calculated 
using Eqns (15) and (16). Table 7 tabulates some expec-
tations and variances corresponding to the conditional 
distribution investigated above. The results illustrate that, 
with the increase of the cost, the expectation of duration 
decreases, which is consistent with the construction prac-
tice that shortening duration will cause an increase of the 
budget. However, this model provides a practical method 
to quantify this influence. For example, if the duration 
needs to be substantially shortened from 837 days to 355 
days, the increase in total cost is expected to be ¥1.394e7. 
The model can therefore serve as an effective tool to sup-
port the owner and clients to estimate the changes of cost 
caused by shortening the construction time. The capabil-
ity of the model not only results in reduced likelihood of 
an unreasonable schedule plan but also lowers the risk of 
an infeasible balance between budget and duration. As a 
result, owners can make rational decisions for project de-
velopment and management with the aid of this model.

Conclusions

This paper proposes a probabilistic model based on the 
Nataf distribution to address the dependent uncertain-
ties associated with building cost and duration. This was 
demonstrated and tested with a sample of 77 of residential 
buildings completed between 2011 and 2016 in China. The 
uncertainties of total cost, unit cost, and duration were 
quantified by univariate distribution fitting, while their 
stochastic dependence is inferred from the dataset by 
maximum likelihood estimation. The goodness of fit test 
indicates that the collected data conform well to the de-
veloped Nataf distribution. The conditional distribution of 
cost or duration given new observations was derived and 
the calculation of conditional expectation and variance is 
illustrated. 

Based on the established distribution, the stochastic re-
lationship between cost and duration is explored by inves-
tigating their respective conditional distribution given the 
5th and 95th percentiles of the other variables. The results 
show how the distribution of TC and/or UC changes as the 
duration varies and vice versa. Moreover, it is illustrated 

Figure 8. Conditional distribution of D given UC and TC

Table 7. Example results of conditional expectation and variance

Expectation Variance

( )| =355 1797UC D = ( )| =355 1.96e5UC D =

( )| =837 1288UC D = ( )| =837 8.44 4UC D e=

( )| =355 1.958 7TC D e= ( )| =355 8.0940e13TC D =

( )| =837 5.6441e6TC D = ( )| =837 7.9535e12TC D =

( )| =997, 3.56 6 795D UC TC e= = ( )| =997, 3.56 6 6.85 4D UC TC e e= =

( )| =2274, 2.61 7 392D UC TC e= = ( )| =2274, 2.61 7 4.88 3D UC TC e e= =
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how owners or clients can use the developed model to esti-
mate the conditional expectation and variance of cost such 
that the risk of cost increasing due to shortening construc-
tion time can be assessed. 

The multivariate distribution is established by mode-
ling the uncertainty of each random variable and its sto-
chastic dependence respectively. In general, the proposed 
model can update the uncertainty of project performance 
when new project information becomes available and it 
benefits on decision making in project management from 
a risk perspective. Quantifying the cost changes as a func-
tion of duration helps the planner to select the reasonable 
duration and prepare for the possible schedule crashing. 
Further research needs to be conducted by adding more 
explanatory factors to establish a more sophisticated  
model.
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