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Abstract. The establishment of the real stress-strain state of the structure is one of the most important problems for de-
signing and undertaking the reconstruction of building constructions as well as making calculations for the purpose of op-
timizing cross-sections of various structural elements. This task can be achieved by analysing the structure as a geometri-
cally nonlinear system (refusing an assumption of small displacements) and taking into consideration plastic deformations. 
Modern computer technologies and mathematical tools enable us to perform strength analysis of space structures and to 
increase the accuracy of stress-strain state analysis. The present paper develops a technique for constructing a finite ele-
ment tangent matrix for the nonlinear analysis of the space frame structure aimed at determining plastic deformations. The 
mathematical models of the problems based on static and kinematic formulations using the dual theory of mathematical 
programming were created for analysis. Strength conditions presented in construction codes and specifications AISC-
LRFD and suggested by other researchers (e.g. Orbison’s strength conditions) are used in the formulations of the analysed 
problems. The mathematical models of the considered problems are tested by calculating a two-storied space frame. The 
results of the performed analysis are compared with data obtained within the studies conducted by other researchers. 
Keywords: elastic-plastic space structure, geometrical nonlinearity, tangent stiffness matrix, second–order analysis, 
MatLAB. 

 

1. Introduction 

The evaluation of the real stress-strain state of the struc-
ture is one of the most important problems of designing, 
reconstructing and optimizing calculations of the cross-
sections of different structural elements. An acceptably 
accurate evaluation of the state can be obtained by ana-
lysing the structure as an elastic-plastic geometrically 
nonlinear system. For a long time, calculations have been 
made for structures considered to be geometrically linear 
systems behaving in the elastic or quasi–elastic phase. 
The results obtained from these calculations differ from 
the real behaviour of the structure. Recent editions of 
construction specifications (Eurocode 3 2006; STR 
2.05.08:2005 2005) often include various nonlinear cal-
culations. For example, it can be mentioned that the pres-
ently used definition “plastic hinge” or “plastic behav-
iour” is more frequently found not only in theoretical 
works (Atkočiūnas et al. 2008; Chen, Toma 1993; Ikrin 
2005; G.-Q. Li, J.-J. Li 2007) but also in literature or 
handbooks describing construction standards and specifi-
cations (Trahair et al. 2008). 

The discretization of the structure is another aspect 
of calculation that should be mentioned. Considering real 
objects, we may conclude that they are rather complicated 
space structures and may be divided into simpler ele-
ments, such as plane frames and separate beams or co-
lumns. The simplification of a structure in this way  

decreases computational accuracy connected with the 
general work of structure and actions of loads. 

Powerful modern computer technologies enable us to 
perform strength analysis of space structures, which signif-
icantly increases the accuracy of deformed state analysis. 
Modern commercial programs of structure analysis widely 
used for design include nonlinear calculation subprograms 
and calculation kernels. Mathematical computation pack-
ages have been also developed, and thus enable us to solve 
various high-level mathematical problems one of which is 
associated with the analysis of geometrically nonlinear 
elastic-plastic space structures and can be solved by using 
the possibilities provided by computation packages 
(Jankovski, Atkočiūnas 2010; MathWorks Inc. 2010). 

Modern computation packages allow us to develop a 
tangent stiffness matrix of the finite element of the space 
structure (Popov et al. 2010; Karkauskas 2007; Karkaus-
kas, Popov 2009b) based on the regularities of tangent 
stiffness matrices of a general finite element (Karkauskas, 
Popov 2009a). 

The problems of analyzing geometrically nonlinear 
elastic-plastic space structures were very popular among 
researchers in the last decade (Chiorean 2009; Chiorean, 
Barsan 2005; Kim, Kang 2002; Kim, Lee 2002; Kim 
et al. 2004, 2001; Van Long, Dang Hung 2008; Ngo-Huu 
et al. 2007; Richard Liew et al. 2000; Thai, Kim 2009). 
They developed and validated various types of second-
order inelastic analysis for steel frames. 
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Research tasks are as follows: 
1. To develop mathematical models for the dual 

formulation problem of analyzing geometrically 
nonlinear elastic-plastic space structures when 
strength conditions are written in terms of func-
tional relations. 

2. To develop mathematical models for analyzing 
the dual formulation problem of geometrically 
nonlinear elastic-plastic space structures when 
strength conditions are written in terms of linear 
functional relations. 

3. To develop a technique for constructing a tan-
gent stiffness matrix for a space finite frame  
element. 

4. To consider strength conditions given for com-
plex stress-strain state in construction codes and 
specifications and works of various researchers; 

5. To estimate the stress-strain state of geometrical-
ly nonlinear elastic-plastic space structure based 
on the formulated analysis problems. 

6. To perform numerical realizations and compare 
the derived results with the previously obtained 
data presented in works by other authors. 

 
2. The problem of analyzing residual internal forces  
As accepted in our research, displacements of element 
nodes are considerably larger than element dimensions. 
At the same time, an element form does not change and 
element strains remain small. Thus, we consider a prob-
lem when construction displacements are relatively large 
and strains are small. Thereby, we make an assumption 
that complementary energy is the convex function. An 
extreme energy principle (Čyras 1983; Čyras et al. 2004) 
was used to obtain residual internal forces of the elastic-
plastic system in the real mode. This principle is formu-
lated as follows: 

„Considering all statically admissible vectors of re-
sidual forces at the step to be considered, the actual vec-
tor is one for which the increment of complementary  
energy is minimum“. 

Additional strain energy is expressed as the square 
value of residual internal forces: 
 [ ]1 .

2
T

r r n rU D= S S  (1.1) 
The vector of statically admissible residual internal 

forces, when a single load is applied to the structure, 
should satisfy the equation of equilibrium: 
 [ ] [ ] .n r n eA A= −S F S  (1.2) 

Strength conditions, in a general case, are expressed 
by the vector function: 
 ( )0, , 1.e r ≤f S S S  (1.3) 

Thus, the nonlinear mathematical programming 
problem, corresponding to the above formulated extreme 
energy principle, can be expressed as follows: 

 

find 
 [ ]1min ,2

T
r r n rU D= S S  (2.1) 

subject to 
 [ ] [ ] ,n r n eA A= −S F S  (2.2) 
 ( )0, , 1.e r ≤f S S S  (2.3) 
Further, this mathematical model will be referred to as 
the static formulation of the problem analyzing residual 
internal forces. 

In such formulation, [ ]nD  is n×n quasidiagonal 
flexibility matrix of the finite elements of the structure 
considering variations in the geometry of the structure; 
[ ]nA is m×n matrix of coefficients of equilibrium condi-
tion considering variations in the geometry of the struc-
ture; F  is the vector of external forces applied to discrete 
model nodes of the structure; eS  is the vector of internal 
forces of an elastic response of the structure; rS  is the 
vector of residual internal forces of the structure; 0S  is 
the vector of limiting internal forces of the structure; n is 
the number of internal variables of the forces; m is the 
degree of structure’s freedom (DOF). 

Problem (2.1)–(2.3) belongs to the class of convex 
mathematical programming problems where all the com-
ponents of the strength function are convex functions. 

 
3. The problem of analyzing residual displacements 
The residual deformation state of an elastic-plastic system 
is determined based on the kinematic formulation of the 
analysed problem obtained using the duality theorem of 
mathematical programming. For dealing with this issue, 
the Lagrange function is suggested for problem (2.1)–
(2.3). To express this function, the following multipliers 
were used: for strength conditions, nonnegative multipli-
ers ≥λ 0were chosen while for static equations multipli-
ers ru (residual displacements) having any sign were 
used. Thus, the Lagrange function for extreme problem 
(2.1)–(2.3) is expressed as: 
( ) [ ] ( )( )

[ ] [ ]( )
0

1, , , , 12
.

T T
r r r n r e r

T
r n e n r

L D

A A

= + − −

− −

S λ u S S λ f S S S

u F S S
(3.1) 

Constraints on the dual problem are stationary con-
ditions of function 4 based on variables Sr (i.e. the first derivatives of the Lagrange function equated to zero) of 
the initial problem (2.1)–(2.3). In this case, stationary 
conditions of the Lagrange function are expressed as: 
 ( ), ,r r

r

L∂ =
∂
S λ u

0
S

 (3.2) 
or 

 [ ] ( ) [ ]0, ,

,

.

T
Te r

n r n r
r

D A
 ∂+ − = ∂ 

≥

f S S S
S λ u 0

S
λ 0

 (3.3) 
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By transposing both sides of the equation, we can 
write: 

 [ ] [ ] ( )

[ ] ( )

0

0

, ,

, , .

e rT T T
r n r n

r
T T
r n e r

A D

D

 ∂= + = ∂ 
 + ∇ 

f S S S
u S λ

S

S λ f S S S
 (3.4)  

The new Lagrange function obtained by substituting 
dependence [ ]T

r nAu  into equation (3.1) is expressed as: 

( ) [ ] ( )( )
[ ] ( )

[ ] ( )
[ ] ( )( )
[ ]

( )

0

0

0

0

0

1, , ,2
, ,

, ,
1 , ,2

, , ( ).

T T
r r n r e r

T T T
r r n e e r e

T T
r n r e r r

T T
r n r e r

T T
r r n e
T

e r e r

L D

D

D

D

D

≡ − − +
 − − ∇ − 

 − ∇ = 
− − − +

− −
 ∇ + 

S λ S S λ 1 f S S S

u F S S λ f S S S S

S S λ f S S S S

S S λ 1 f S S S

u F S S

λ f S S S S S

 (4) 

Thereby, the objective function of the dual problem 
is the Lagrange function (4). The dual problem for (2.1)–
(2.3) is a convex mathematical programming problem 
expressed as follows: 

find 

[ ] ( )( )
[ ] ( )

0

0

1max , ,2
, , ( ),

T T T
r n r e r r

T T
r n e e r e r

D

D

− − − + −
 − ∇ + 

S S λ 1 f S S S u F

S S λ f S S S S S
(5.1) 

subject to 

[ ] ( ) [ ]0, , ,

TT
n r e r n rD A + ∇ − = S f S S S λ u 0  (5.2) 

 .≥λ 0  (5.3) 
Strength conditions in construction codes and speci-

fications (AISC 2005; Eurocode 3 2006) are usually de-
fined by linear functions. In a general case, these bounda-
ry conditions can be expressed as: 
 [ ] 0( ) ,Φ + ≤e rS S S  (6) 
where: [ ]Φ  is t n×  matrix of the coefficients of strength 
conditions; t  is the number of strength conditions. 

Then, the problem of residual internal forces can be 
expressed as: 

find 

 [ ]1min ,2
T

r r n rU D= S S  (7.1) 
subject to 

 [ ] [ ] ,n r n eA A= −S F S  (7.2) 
 [ ] [ ]0 .r eΦ Φ≤ −S S S  (7.3) 

A kinematic formulation of this problem can be ob-
tained as follows: 

find 

[ ] [ ]0
1max ,2

T T T T
r n r r r n eD D− − + −S S λ S u F S S  (8.1) 

subject to 
 [ ] [ ] [ ] ,

TT
n r n rD AΦ+ − =S λ u 0  (8.2) 

 .≥λ 0  (8.3) 
The vectors of residual internal forces rS  and re-

sidual displacements ru  can be obtained using equations 
(7.2) and (8.2): 

[ ] [ ] [ ][ ] [ ]( ) [ ][ ]
[ ] )[ ] [ ] [ ]
[ ][ ] [ ]( ) [ ]( )

[ ] [ ]( )

11 1 1

1 1

11

,

T T
r n n n n n n n

TT
n n n

T
n n n n e

T
n e

D A A D A A D

D D A

A D A A

G H A

Φ

Φ

−
− − −

− −

−
−

= −
+ ×

− =
   + −  

S

λ

F S

λ F S

 (9) 

[ ][ ] [ ]( ) [ ][ ] [ ]
[ ][ ] [ ]( )
[ ][ ] [ ]( ) [ ]
[ ][ ] [ ]( ) ( )

11 1

11

11

11
,

T T
r n n n n n

T
n n n

TT T
n n n e

T
n n n e

A D A A D

A D A

A D A H

A D A

Φ

Φ

−
− −

−
−

−
−

−
−

= +

−

 = + 
−

u λ

F

S λ

F S

  (10) 

where: 
[ ] [ ] [ ][ ] [ ]( ) [ ][ ]11 1 1T T

n n n n n n nG D A A D A A D
−

− − −  = − 
[ ] 1nD −  is the influence matrix of residual internal forces; 

[ ] [ ] [ ][ ] [ ]( ) 11 1T T
n n n n nH D A A D A

−
− −  =   is the influ-

ence matrix of residual displacements. 
Then, expressions (9) and (10) are substituted into 

equation (8.1). Problem (8.1)–(8.3) is modified by per-
forming appropriate mathematical operations. In this 
case, it is the extreme problem of the convex quadratic 
function in the orthant of nonnegative vector λ : 

find 

[ ] [ ] [ ]( )
[ ] [ ]( )

0
1max
2

TT T
e

T
n e

G

H A const

Φ Φ Φ

Φ

  − − + 
  − + 

λ λ λ S S

λ F S
 (11.1) 

subject to 
 ,≥λ 0  (11.2) 
where: 
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[ ][ ] [ ]( )
[ ] [ ][ ] [ ]( ) [ ]
[ ][ ] [ ]( ) [ ]

11

11

11

1
2
1
2

TT
n n n

T TT
e n n n n n e

TT
n n n n e

const A D A

A A D A A

A D A A

−
−

−
−

−
−

= +

−

F F

S S

F S

  

is the member having no influence on the solution of 
problem (11.1)–(11.2), which in the case of the optimal 
problem solution, is equal to zero. 

Problems (2.1)–(2.3), (5.1)–(5.3), (7.1)–(7.3), (8.1)–
(8.3) and (11.1)–(11.2) are nonlinear convex mathemati-
cal programming problems with the variables represented 
by vectors rS , λ  and ru . The solution to these problems 
allows us to determine real internal forces and displace-
ment vectors, i.e. real stress-strain state using formulas: 
 ,

.

e r

e r

= +

= +

S S S
u u u

 (12) 

 
4. The space frame element 
The tangent stiffness method can be applied to solving 
the problem of the stress-strain state analysis of geomet-
rically nonlinear elastic-plastic space structure (Karkaus-
kas, Popov 2009a). For this purpose, the stiffness matrix 
of the finite element should be constructed. 

The investigated element of the space frame struc-
ture is shown in Fig. 1. It is accepted that the nodes of the 
element can have displacements considerably larger than 
dimensions of the element; however, the form of the ele-
ment does not change. Element strains remain small. The 
element is subjected to compression, tension and bending 
in two perpendicular planes as well as to torsion. 

The vector of the nodal forces of the finite element 
in the local coordinate system consists of the following 
components (Fig. 1): 

 
.

x y z

x y z

k ax ay az a a a
T

bx by bz b b b

F F F F F F

F F F F F F

ϕ ϕ ϕ

ϕ ϕ ϕ

′ ′ ′ ′ ′ ′ ′= 
′ ′ ′ ′ ′ ′ 

F
 

The vector of nodal displacements of the finite 
space frame element is dual to the above introduced vec-
tor: 
 [

]
1 2 3 4 5 6

7 8 9 10 11 12

k k k k k k k
T

k k k k k k

u u u u u u

u u u u u u

′ ′ ′ ′ ′ ′ ′=

′ ′ ′ ′ ′ ′

u

.
  

This vector consists of horizontal, vertical, angular and 
torsional displacements. Positive directions of nodal forc-
es and displacements are shown in Fig. 1. 

All moments as well as angular and torsional dis-
placements are denoted by double arrows following the 
right hand rule (Fig. 1). 

The space frame finite element has twelve degrees 
of freedom in the local coordinate system. Linear and 
torsional displacements of any point of the element along 

and about local axis x′  (element elongation or shorten-
ing) are described by linear functions ( )kxu x′  and ( )kx xϕ ′ . 
Linear displacements along local axes y′  and z′  are 
described by nonlinear functions ( )kyu x′  and ( )kzu x′ , 
respectively. Hermitian polynomials are usually used for 
approximating these functions (Barauskas 1998). 

Hence, the vector of displacements for any point of 
the frame element  

( ) ( ) ( ) ( ) ( ) T
k kx ky kz kxx u x u x u x xϕ ′ ′ ′ ′=  u  can be expressed by the nodal displacements of the ele-

ment as follows: 
 ( ) [ ] '( ) ,=k k kx N xu u  (13) 
where [ ]( )kN x  is the matrix of Hermitian polynomials 
(Barauskas 1998; Barauskas et al. 2004). 

Then, the total longitudinal and lateral deformations 
for the space frame element can be obtained in the fol-
lowing way (Čyras et al. 2004): 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2 2

22

2 2

1 1
2 2

,

,

kykx kz
k

kykz

kx kx
k

u xu x u x
x

x x x

u xu x
y z

x x
x x

x y z
x x

ϕ ϕ

′∂ ′ ′∂ ∂ = + + −    ∂ ∂ ∂  
′∂′∂⋅ − ⋅∂ ∂

∂ ∂= ⋅ + ⋅∂ ∂

ε

γ  

(14) 

where y  and z  are distances of the point from the neu-
tral beam axis in the cross section of the element. 
 

kl

y

z
x

1,k axu F′ ′
2 ,k ayu F′ ′

3,k azu F′ ′

y′

z′

x′

4 , xk au F ϕ′ ′

6 , zk au F ϕ′ ′

5, yk au F ϕ′ ′

7 , ,k axu F N′ ′

8 ,k byu F′ ′

9 ,k bzu F′ ′

10 , ,

xk bu F Tϕ′ ′

12 , ,

zk b zu F Mϕ′ ′

11, ,

yk b yu F Mϕ′ ′

N

α
β
γ

Fig. 1. Internal forces and nodal displacements of the space 
frame finite element in local coordinate system x y z′ ′ ′  

 
The total longitudinal and lateral deformations ex-

pressed by nodal displacements can be obtained: 

 

( ) ( ) ( )
( ) ( )

( )
( ) ( ) ( )

5 11

12 9

10

8 8

1
2

1
2

,
,

T
k k k k

T
k k k

k

k k k

x C x C x

C x y C x
z C x

x y C x z C x

′ ′ ′= + +      
′ ′ ′− −      

′  
′ ′= +      

ε u u u

u u u

u

γ u u

 (15) 
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where ( )5C x   , ( )8C x   , ( )9C x   , ( )10C x   , 
( )11C x    and ( )12C x    are matrixes of the coefficients 

obtained by differentiating an appropriate row of the 
element in the matrix of Hermitian polynomials. 

By substituting deformation expression (15) into the 
Hook’s law ( ) ( )k kx E x= ⋅σ ε  and ( ) ( )k kx G x= ⋅τ γ , 
we can obtain the expression of longitudinal and lateral 
stresses by nodal displacements. 

Then, the expressions of stresses and defor-
mations are substituted into the expression of the 
vector in light of the internal forces of the element 
(Karkauskas, Popov 2009a). As a result, the finite ele-
ment tangent stiffness matrix is obtained: 
 [ ] [ ] [ ],e g uk k k kτ  ′ ′ ′ ′= + +   (16) 

where [ ]ek ′  is the stiffness matrix of small finite element 
displacements in the local coordinate system well-known 
and found in literature (e.g. Saouma 2000); gk ′   is the 
geometrical stiffness matrix of the finite element in the 
local coordinate system; [ ]uk′  is the stiffness matrix of 
the initial finite element displacements in the local coor-
dinate system. 

To obtain a tangent stiffness matrix in the global 
coordinate system, a matrix of element direction cosines 
abT is constructed. Thus, the tangent stiffness matrix of a 

finite element in the global coordinate system is ex-
pressed as: 
 [ ] [ ] [ ][ ] ,T

ab abk T k Tτ τ′=  (17) 
where 
[ ]

2 2
2 2 2 2

2 2 2 2

cos cos cos
cos cos cos coscos cos

cos cos cos cos
cos cos0

cos cos cos cos

abT

α β γ
α β β γα γ

α γ α γ
γ α

α γ α γ

=
    − − + + +  −  + +   
is the matrix of direction cosines for any nonvertical fi-

nite element (Saouma 2000); [ ]
0 cos 0

cos 0 0
0 0 1

abT
β

β
  = −   

  

is the matrix of direction cosines used for a strictly verti-
cal finite element (Saouma 2000) during the first calcula-
tion iteration; α , β  and γ  are the angles between local 
axis x′  and global axes x , y  and z respectively (Fig. 1). 

Quasidiagonal matrix Kτ    is constructed based on 
the tangent stiffness matrices of individual finite ele-

ments. The tangent stiffness matrix for the whole struc-
ture is expressed as: 
 [ ] [ ] [ ],τ τ =  TK H K H  (18) 

where [ ]H  is the matrix of correspondence between the 
finite element displacements of the structure and the dis-
placements of the whole structure. This matrix defines 
finite element displacements corresponding to the dis-
placements of the whole structure. 

The above matrix is incorporated into the equilibri-
um equations written in terms of increments: 
 [ ]∆ ∆ ,τ =K u F  (19) 
where ∆F  and ∆u  are the vectors of all nodal load in-
crements of the structure and global displacement incre-
ments. 

The numerical realization of the tangent stiffness 
method is performed by using the load control method of 
Newton-Raphson described in detail in works of 
Karkauskas (2007) and Karkauskas and Popov (2009a). 

 
5. Strength conditions 
The main task in formulating the problem of analysis is 
associated with choosing strength conditions. For space 
structures, it is significant to use strength conditions in-
cluding not only tension-compression strength but also 
the strength of the structural element bending about both 
axes. Strength condition for a complex stress-strain state 
is usually given in construction codes and specifications 
regulating the design of building structures (AISC 2005).  

 

Fig. 2. The full plasticisation surface according to AISC-LRFD 
strength conditions (Kim et al. 2001) 

 
According to construction specifications AISC-

LRFD (Kim et al. 2001; Aminmansour 2000; AISC 
2005), the double-axis plastic strength surface of the 
beam-column element (presented graphically in Fig. 2) is 
expressed by the equation given below: 

 
, ,

, , ,

, ,

, , ,

8 81 ,9 9
2 2 ,9 9

≥ + +

≥ +

j y j z j

y j yp j zp j

j y j z j

y j yp j zp j

P M M
P M M

P M Msubject to P M M

(20.1) 
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, ,

, , ,

, ,

, , ,

1 ,2
2 2 ,9 9

≥ + +

< +

j y j z j

y j yp j zp j

j y j z j

y j yp j zp j

P M M
P M M

P M Msubject to P M M

(20.2) 

where jP  is longitudinal force applied to the element of 
the structure at the j-th cut; 

,y jP  is limiting longitudinal 
force for the structural element under tension or compres-
sion at the j-th cut; 

,y jM  is the bending moment of the 
“weak axis” of the cross-section at the j-th cut of the 
structural element; 

,yp jM  is the limiting bending moment 
of the “weak axis” of the cross-section at the j-th cut of 
the structural element; 

,z jM  is the bending moment of 
the “strong axis” of the cross-section at the j-th cut of the 
structural element; 

,zp jM  is the ultimate bending moment 
of the “strong axis” of the cross-section at the j-th cut of 
the structural element. 

All the above-mentioned limiting values of internal 
forces are obtained according to requirements for construc-
tion specification (AISC 2005). Local stability is achieved 
when compression members are loaded up to their critical 
forces. The values of the critical stresses of the compres-
sion member are obtained according to the codes. Once 
critical stresses are determined, critical forces are comput-
ed. The global stability of the whole construction can be 
checked in the following way. The determinant of the tan-
gent stiffness matrix is obtained under condition of con-
struction when strains are calculated. In case it is negative, 
there is loss of stability in all construction. 

The problem of analysis may have two variants 
when strength conditions (20.1)–(20.2) are used. The first 
variant means that conditions (20.1)–(20.2) are used 
without any changes. This version of the problem can be 
written in terms of static (2.1)–(2.2) or kinematic formu-
lation (5.1)–(5.3). The second variant implies reduction in 
strength conditions to one ultimate bending moment by 
multiplying both sides of conditions (20.1)–(20.2) by one 
of ultimate bending moments, for example, 

,zp jM : 

 
, , , , ,

, , ,

8 8 ,9 9
2 2 ,9 9

≥ + +

≥ +

zp j y j j y j y j z j

y j j y j y z j

M c P m M M

subject to c P m M M
(21.1) 

 
, , , ,

, , ,

1 ,2
2 2 ,9 9

≥ + +

< +

zp y j j y j y j z j

y j j y j y z j

M c P m M M

subject to c P m M M
(22.2) 

where 
, , ,y j zp j y jc M P= ; 

, , ,y j zp j yp jm M M= . 
These expressions of AISC-LRFD strength condi-

tions are given in terms of the linear function. The elastic-
plastic analysis of the structure under such strength  
conditions can be performed using the formulations of 
problem (7.1)–(7.3), (8.1)–(8.3) or (11.1)–(11.2). 

Though strength conditions are provided by con-
struction codes and specifications, the efforts of various 
researchers were mad,e to accurately reflect a complex 
state of strains. An example is Orbison’s full plastifica-
tion surface of the cross-section (presented in Kim et al. 
(2001), Chiorean, Barsan (2005)) described as follows: 

2 2 4 2 2 6 2
, , , ,
4 2
, ,

1 1,15 3,67 3,0
4,65 ,

≥ + + + + +j z j y j j z j j y j

z j y j

p m m p m p m

m m
 (23) 

where: 
,j j y jp P P= ; 

, , ,z j z j pz jm M M=  (a “strong“ 
element cross-section axis (Fig. 3)); 

, , ,y j y j py jm M M=  
(a “weak“ element cross-section axis (Fig. 3)). 

Orbison’s plastic surface is shown in Fig. 3. 

 

Fig. 3. Full plastification surface according to Orbison’s 
strength conditions (Kim et al. 2001) 

 
All above-mentioned conditions do not take into 

consideration the effect of torsional strains on the com-
plex state of strains. Consequently, to get comprehensive 
information about strength, some torsional strength con-
ditions should be used. Torsional strength condition given 
by Eurocode 3 (2006) is expressed by the equation: 

 1,0,≤Ed

Rd

T
T

 (24) 

where: EdT  is torsion moment applied to the structural 
element; RdT  is torsion strength specified for the struc-
tural element. 

The torsion strength of the cross-section specified in 
works by Ikrin (2005) and Trahair et al. (2008) is esti-
mated by the formula: 
 ,τ=Rd y tT W  (25) 
where: yτ  is yield shear strain; tW  is the modulus of 
torsion evaluated for the open-end thin-walled cross-
section in the following way: 

 
max

,=
t

t
IW
t  

(26) 

where: tI  is torsion constant; maxt  is the maximum thick-
ness of the considered cross-section. 
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6. Numerical realization 

MATLAB mathematical modelling software was chosen 
for the numerical realization of the problems faced in the 
analysis. This program along with the Optimization 
Toolbox allows us to solve various problems of complex 
optimization. To deal with a problem of analyzing geo-
metrically nonlinear elastic-plastic structure expressed 
employing mathematical model (7.1)–(7.3) when strength 
conditions are given in linear dependences, optimization 
tool “quadprog”, which can solve the problems of quad-
ratic programming, should be used. The following equa-
tion is used for solving the considered problem: 

find 

 [ ]1min
2

T T
x

H +x x f x  (27.1) 
subject to 

 
[ ] ,

,

,

 ≤  =  ≤ ≤
eq eq

A

A

x b

x b

lb x ub

 (27.2) 

where: x  is the vector of variables dealing with the opti-
mization problem; [ ]H  is a symmetric matrix of coeffi-
cients of quadratic terms in the quadratic equation; f  is 
the vector of coefficients of linear terms in the quadratic 
equation; [ ]A  is the matrix of coefficients of linear ine-
quality constraints; b  is the vector of absolute terms of 
linear inequality constraints; eqA    is the matrix of coef-
ficients of linear equality constraints; eqb  is the vector of 
absolute terms of linear equality constraints; lb  is the 
vector of the lower bounds of variables dealing with the 
optimization problem; ub  is the vector of the upper 
bounds of variables dealing with the optimization problem. 

The problem of analyzing geometrically nonlinear 
elastic-plastic structure expressed by mathematical model 
(2.1)–(2.3) when strength conditions are expressed in 
terms of nonlinear dependences should be solved by op-
timization tool “fmincon” that finds the minimum of the 
constrained nonlinear multivariable function. The equa-
tion for solving the problem is as follows: 

find 
 ( )min ,

x
f x  (28.1) 

subject to 

 

( )
( )
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,
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,

,

 ≤    =  ≤  =  ≤ ≤
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eq eq

c

c

A

A

x 0

x 0

x b

x b
lb x ub

 (28.2) 

where: x  is the vector of variables dealing with the opti-
mization problem; ( )f x  is the objective function of the 

optimization problem; ( )c  x  is the matrix of nonlinear 
inequality constraints expressed by functions; ( )eqc  x  
is the matrix of nonlinear equality constraints expressed 
by functions; [ ]A  is the matrix of coefficients of linear 
inequality constraints; b  is the vector of absolute terms 
of linear inequality constraints; eqA    is the matrix of 
coefficients of linear equality constraints; eqb  is the vec-
tor of absolute terms of linear equality constraints; lb  is 
the vector of the lower bounds of variables dealing with the 
optimization problem; ub  is the vector of the upper 
bounds of variables dealing with the optimization problem. 

It should be mentioned it is sufficient to use 
MATLAB to solve the problem of direct optimization, 
and thus obtain variables helping with solving the prob-
lem of dual formulation. 

 
7. Two-storied space structure 
A two-storied space frame structure was chosen for the 
numerical realization of the above-mentioned mathemati-
cal models. This structure was studied by Kim et al. 
(2003) (testing the full-size model made of real steel pro-
files was described) and Kim and Lee (2002) (the analy-
sis of a discrete computer-generated model in the envi-
ronment of program ABAQUS was presented). In the 
latter research, the obtained results were compared with 
data obtained in the former research. 

Structural elements are modelled using the profiles 
of type H150×150×7×10. The overall dimensions of the 
frame (Fig. 4) are as follows: width in the direction of 
axis x is 2.5 m, length in the direction of axis y – 3.0 m, 
height from the column element base to the second floor  
 

 

Fig. 4. A discrete model of the two-storied space frame:  
a – plane view; b – isometric view 



Journal of Civil Engineering and Management, 2011, 17(4): 558–568 

 

565

level – 1,76 m and height from the second floor level to 
the roof is 2,2 m. The geometrical and physical parame-
ters of the cross-section of any structural element are 
constant through its full length. The yield strength of all 
structural elements – 320 MPa while the elastic modulus 
is 221 GPa and the shear modulus is 85 GPa. The model 
of the structure is subjected to the action of three various 
types of loads presented in Table 1. 

Two calculations were performed for every load 
case. The first calculation was made applying Orbison’s 
strength conditions (23) and the second – AISC-LRFD 
standard strength conditions (20.1)–(20.2) or (21.1)–
21.2). The results obtained in the performed two-storied 
space frame analysis were compared with data presented 
in work by Kim and Lee (2002). 

 
Table 1. Load cases of the analysed frame 

Load 
case 

Vertical 
load 

Horizontal 
load (H1) 

Horizontal 
load (H2) 

1 P P/5 P/10 
2 P P/4 P/8 
3 P P/3 P/6 
 
Fig. 5 shows the sequence of plastic hinge formation 

and the shape of a deformed frame under ultimate load. 
Plastic hinges initially occur in the columns along axis 1 
near supports. With an increase in loads, plastic hinges 
spread over the tops of these columns, whereas later – 
over the columns along axis 2. Since horizontal loads are 
asymmetrical, torsional forces are induced and the first 
floor columns of the frame deform in a twisting mode. 
The sequence of plastic hinge formation corresponding to 
the load ratios is shown in Table 2 considering various 
strength conditions when analyzing the problem. The data 
were obtained in the first case of the load choosing value 
P equal to 675 kN. Load-displacement curves along glob-
al axis x for nodes A and B and all load cases are shown 
in Figs 6–11. 

The carried out analysis revealed that under Orbi-
son’s strength conditions (23), the results closely ap-
proached data obtained by Kim and Lee (2002). A greater 
deviation from the results presented in this work could be 
observed when strength conditions specified by AISC-
LRFD construction code (20.1)–(20.2) or (21.1)–(21.2)  
 
Table 2. A comparison of plastic hinge load ratios for a two-

storied space frame 
Sequence 
of hinge 
formation 

Load ratio (AISC-LRFD) Load ratio (Orbison) 
1 0,423 0,740 
2 0,432 0,754 
3 0,514 0,882 
4 0,530 0,889 
5 0,543 0,918 
6 0,562 0,943 
7 0,666 0,945 
8 0,681 0,965 

 

Fig. 5. The shape of a deformed two-storied space frame under 
ultimate load for the first case of the load 
 
were used. These conditions are more strict or conserva-
tive than those of Orbison’s strength. It can be explained 
by the fact that AISC-LRFD is the construction code 
regulating structural steel design. While applying such 
standards, it is usually assumed that the structure works 
only within elastic work limits. The characters of load-
displacement diagrams and its comparison allow making 
a conclusion that construction work is obtained by the 
proposed algorithm and agree well with Kim et al. (2003) 
results. 

The results of calculating the values of limit forces 
are presented in Table 3. When performed calculations 
suggest the underestimated load carrying capacity of the 
frame applying Orbison’s strength criterion in comparison 
with the results provided by Kim and Lee (2002), the dif-
ference makes from 13.5% to 21.5%. The produced error 
employing the linear yield surface of the AISC-LRFD code 
is from 36.8% to 41.1%. Such differences can be caused by 
accurately measured geometrical imperfections in the pro-
file and physical parameters and are presented in works by 
Kim et al. (2003). For example, yield limits obtained for 
vertical elements were 320 MPa for flanges and 311 MPa 
for the web. For horizontal elements, yield limits made 
344 MPa for flanges and 327 MPa for the web. In this 
work, the calculation model is more idealized. There are no 
changes in the geometry of the profile cross-section or 
physical parameters in light of element length. 

 
Table 3. The values of limit forces at nodes “A” and “B”  

No
de

s 

(Kim et al. 2002) results Proposed algorithm results 
Full-size 
test  

results 
ABAQUS 
calculation 
results 

Orbison 
strength 
conditions 

AISC-LRFD 
code strength 
conditions 

I load type 
“A” 151,8 kN 151,5 kN 130,0 kN 95,0 kN 
“B” 75,1 kN 75,7 kN 65,0 kN 47,5 kN 

II load type 
“A” 169,5 kN 171,9 kN 144,5 kN 106,8 kN 
“B” 84,7 kN 85,8 kN 73,0 kN 53,4 kN 

III load type 
“A” 204,0 kN 198,1 kN 160,0 kN 120,0 kN 
“B” 99,1 kN 101,9 kN 80,0 kN 60,0 kN 
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Fig. 6. A load-displacement curve of node A in the first case of 
the load  

 

 
Fig. 7. A load-displacement curve of node B in the first case of 
the load  

 

Fig. 8. A load-displacement curve of node A in the second case  
 

 

Fig. 9. A load-displacement curve of node B in the second case  
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Fig. 10. A load-displacement curve of node A in the third case  
 

 

Fig. 11. A load-displacement curve of node B in the third case  

8. Conclusions 

Mathematical models and a technique for constructing a 
tangent stiffness matrix for space finite elements were 
developed for analyzing the dual formulation problem of 
geometrically nonlinear elastic-plastic space structure. 
The observed different strength conditions for a complex 
stress-strain state were used in the development of math-
ematical models for analyzing the considered problem.  

Numerical realization was performed to obtain the 
real stress-strain state of a two-storied space frame. The 
validity of the formulation of the analysed problem was 
checked by comparing the obtained results with data 
presented in literature. 

In further research, mathematical models developed 
for the analysis of the above discussed problem will be 
used for considering optimization problems with complex 
constraints. 
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TAMPRIAI PLASTINIŲ GEOMETRIŠKAI NETIESINIŲ ERDVINIŲ RĖMŲ ANALIZĖ 
R. Karkauskas, M. Popov 
S a n t r a u k a  
Projektuojant ar rekonstruojant konstrukcijas, atliekant jos elementų skerspjūvių optimizavimo skaičiavimus, vienas iš 
svarbiausių uždavinių – konstrukcijos tikrojo įtempto deformuoto būvio (ĮDB) nustatymas. Tai galima pasiekti atliekant 
konstrukcijos kaip geometriškai netiesinės sistemos (atsisakant mažų poslinkių prielaidos) analizę, įvertinant plastines de-
formacijas. Taikant šiuolaikines kompiuterines technologijas ir matematinį aparatą, tapo įmanoma vykdyti erdvinės  
konstrukcijos stiprumo analizę ir padidinti konstrukcijos ĮDB analizės tikslumą. Tuo tikslu šiame darbe toliau plėtojama 
tangentinės standumo matricos sudarymo metodika erdvinės rėminės konstrukcijos netiesinei analizei, įvertinant plastines 
deformacijas. Naudojant matematinio programavimo dualumo teoriją sudaryti analizės statinės ir kinematinės formuluočių 
uždavinių matematiniai modeliai. Naudojamos AISC-LRFD normatyviniuose dokumentuose pateiktos ir kitų autorių 
(pavyzdžiui, Orbison) pasiūlytos stiprumo sąlygos. Suformuluoti analizės uždavinių matematiniai modeliai buvo aprobuo-
ti skaičiuojant dviejų aukštų erdvinį rėmą. Gauti analizės rezultatai palyginti su eksperimentiniais ir kitų autorių analiti-
niais rezultatais. 
Reikšminiai žodžiai: tampriai plastinė erdvinė konstrukcija, geometrinis netiesiškumas, tangentinė standumo matrica, an-
trosios eilės analizė, MatLAB. 
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