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Abstract. Two critical decisions faced by bidders in competitive bidding include, firstly, whether or not to submit a bid, 
and secondly (if the answer to the first is ‘yes’) what markup value should be used on the submitted bid. In the construc-
tion industry, government agencies and private sector clients typically adopt competitive bidding to determine contract 
awards. Contractors also apply the same approach to bidding decisions. There are many variables that affect contractor 
decisions regarding whether to bid and the markup scale, which complicate the bidding decision process. This study pro-
poses a Multi-Criteria Prospect Model for Bidding Decision (BD-MCPM) to assist contractors to make decisions on 
bid/no bid and markup scale. Key factors of influence that impact bidding decisions were identified first. Second, Fuzzy 
Preference Relations (FPR) was employed to assess factor weights and determine bid/no bid. Finally, if a decision to bid is 
given, then the Multi-Criteria Prospect Model (MCPM), which links Fuzzy Preference Relations (FPR) and Cumulative 
Prospect Theory (CPT), is deployed to determine the markup scale that best conforms to primary decision maker (PDM) 
preferences. The applicability of this model was demonstrated in a real case study. 
Keywords: bidding decision making, bid/no bid, markup scale, bidding strategy, multi-criteria prospect model, cumula-
tive prospect theory, fuzzy preference relations. 

 
1. Introduction 
In the construction industry contractors typically earn 
construction contracts through either direct negotiation or 
competitive bidding. Government agencies and private 
sector clients most often employ competitive bidding, 
which commonly use the lowest bid price as the main 
award criterion. Usually the bid price includes cost of 
construction and a markup, the scale of which is typically 
determined using a percentage of construction costs. Size 
of markup impacts upon the profit, which serves as the 
primary motivator for a contractor to win and execute a 
contract (Dikmen et al. 2007). Research in the area of 
competitive bidding strategy models has been conducted 
since the 1950s (Friedman 1956). Numerous models have 
been developed, some of which were designed specifical-
ly for the construction industry. Despite the number of 
competitive bidding strategy models that have been de-
veloped, few of these are used in practice, largely as they 
do not address the practical needs of construction con-
tractors (Hegazy and Moselhi 1995; Shash 1995). There-
fore, there is a perceived need for models designed in line 
with actual construction contractor practices. In the bid 
process, once a determination is made to bid, the next 
step is to select an appropriate markup (Egemen and Mo-
hamed 2008). A successful contractor is the one that se-
lects the most optimal bid markup that secures both the 

contract and contract profitability (Shash and Abdul-Hadi 
1992). Bid markup decisions currently follow no accept-
ed standards or formal procedures, but rather consider 
contractor experience, intuition, and personal preferences, 
which are not conducive elements for building an effec-
tive approach for achieving the optimal bid markup 
(Chua and Li 2000). 

Cumulative prospect theory was proposed by Tvers-
ky and Kahneman (1992). Different from the classical 
theory, CPT adopted a concave-shaped utility function 
(UF) for gains and convex for losses and an inverse  
S-shaped probability weighting function (PWF) to desc-
ribe individual preferences for choosing between risky 
prospects. Wakker and Deneffe (1996) proposed a trade-
off (TO) method to improve probability distortions and 
misconceptions in utility elicitation. Many studies (Wu 
and Gonzalez 1996; Gonzalez and Wu 1999) have 
worked to elicit the PWF for particular subjects. Abdella-
oui (2000) used TO method concepts to propose a para-
meter-free method to elicited subjects’ UF and PWF. 
Bleichrodt and Pinto (2000) also leveraged the concept to 
propose a parameter-free method somewhat different 
from Abdellaoui’s study, which they applied successfully 
to medical decision making. Determining the relative 
weight of influencing factors is important in multi-criteria 
decision making (MCDM). For uncertain events, the 
decision maker will find it difficult to form a judgment by 
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relying on exact numerical values. FPR is a useful tool to 
express decision maker’s uncertain preference informa-
tion and define the relative weight of influencing factors. 
Significant attention has been given to fuzzy preference 
relations in previously studies (Orlovsky 1978; Nurmi 
1981; Tanino 1984; Kacprzyk 1986; Chiclana et al. 1998, 
2001, 2003; Fan et al. 2002; Xu and Da 2002, 2005; Her-
rera-Viedma et al. 2004). Wang and Chang (2007) adop-
ted FPR to forecast the probability of successful 
knowledge management. 

The usual practice is to make bid decisions based on 
‘intuition’, which can be described as a derivation of ‘gut 
feelings’, experience and guesswork (Ahmad 1990). This 
research combined FPR, CPT and MCDM to propose a 
Multi-Criteria Prospect Model for Bid Decision making 
(BD-MCPM) to help construction company decision 
makers derive optimal bid decisions. The proposed model 
incorporates three phases. Phase I identifies the factors 
that affect bidding decisions (i.e., bid/no bid and markup 
scale). Phase II introduces FPR to determine bid/no bid. 
Phase III uses FPR and CPT to calculate CPT values for 
given markup scale, then selects the markup scale with 
the highest CPT value.  

 
2. Literature review 
2.1. Currently available decision making models 
Contractors currently make bidding decisions using sev-
eral relevant models. Early mark-up scale estimation 
models (e.g., Friedman 1956; Gates 1967; Carr 1982) 
employed probability theory to predict the probability of 
winning a particular contract. However, as the bidding 
decision is a complex decision-making process affected 
by numerous factors, probability theory is unable to de-
scribe interactions between factors. 

Researchers have recently introduced bidding deci-
sion support systems based on artificial intelligence (AI), 
which permit consideration of identified factors of impor-
tance. Such systems include the expert system (ES) (Ah-
mad and Minkarah 1988; Tavakoli and Utomo 1989), 
case-based reasoning (CBR) (Chua et al. 2001), neural 
network (NN) (Li 1996; Moselhi et al. 1993; Hegazy and 
Moselhi 1994; Dias and Weerasinghe 1996; Li and Love 
1999; Li et al. 1999; Wanous et al. 2003), analytical hie-
rarchy process (AHP) (Seydel and Olson 1990; Cagno 
et al. 2001), and fuzzy set theory (Eldukair 1990; Fayek 
1998; Lai et al. 2002; Lin and Chen 2004). The ES is one 
of rule-based systems. The process of bid decisions are 
highly unstructured, uncertainty, and subjectivity. It’s too 
complicated to creating a set of clear rules that would be 
suitable for all/most cases. CBR requires a reasonably 
large set of cases data from which to draw knowledge to 
avoid generating inaccurate results. NN, also called artifi-
cial neural network (ANN), is similar to the CBR, with an 
important exception that the inference process is concea-
led from the decision maker. For such reasons,  
NN-derived conclusions are sometimes not particularly 
convincing to decision makers. AHP is a decision-making 
approach that structures multiple-choice criteria into a 
hierarchy and assesses relative importance of each.  

Unfortunately, AHP employs a complicated process to 
obtain consistent assessment results, which makes it 
unwieldy in practice. 

The complexity and hard-to-define nature of compe-
titive situations necessitates that most bid decisions rely 
heavily on decision maker intuition, experience and 
guesswork (Ahmad 1990). Fuzzy set theory provides a 
useful tool to handle decisions in which phenomena are 
imprecise and vague. Eldukair (1990) integrated fuzzy set 
theory with a multi-criteria model to select bidding cases. 
Subsequently, Fayek (1998) and Lai et al. (2002) used 
fuzzy set theory to choose optimal mark-up scales. Lin 
and Chen (2004) proposed an approach using fuzzy set 
theory to obtain a linguistics suggestion result for a 
bid/no-bid selection.  

Fuzzy preference relations (FPRs), which integrate 
fuzzy logic and AHP concepts, greatly improve on AHP 
in terms of relative weight evaluation. In BD-MCPM, the 
FPR is used to determine the relative weights of influen-
cing factors, and the CPT is used to evaluate the PDM’s 
preference. The BD-MCPM handles factors marked by 
relatively higher levels of vagueness to make complicated 
bidding decisions and determine PDM risk preference. 
Results conform to actual bid decisions generated based 
on decision maker intuition, experience and guesswork. 
Therefore, BD-MCPM can assist decision makers to 
identify projects with the greatest profit potential and set 
an optimal mark-up scale. 

 
2.2. Fuzzy preference relations 
Most decision processes are based on preference relations 
(PR), the most common representation of information in 
decision making. In PR, an expert assigns a value to each 
pair of alternatives that reflects the degree of preference 
for the first alternative over the second. Many important 
decision models have been developed using mainly two 
preference relation types: (1) Multiplicative Preference 
Relations (MPR) and (2) Fuzzy Preference Relations 
(FPR). 

Most decision processes are based on preference re-
lations, the most common representation of information 
in decision making. An expert assigns a value to each pair 
of alternatives that reflects degree of preference B as an 
alternative over others. Many important decision models 
have been developed using mainly: (1) multiplicative 
preference relations and (2) fuzzy preference relations 
(Herrera-Viedma et al. 2004). 

A multiplicative preference relation on a set of al-
ternatives X is represented by matrix A, with A usually 
assumed a multiplicative reciprocal:  
 [ ]ijA a X X= ⊂ × ;  (1) 
 { }njiaa jiij ...,,1,1 ∈∀=⋅ . (2) 

The aij indicate the preference ratio of alternative xi 
to xj. Saaty (1980, 1994) suggested measuring aij using a 
ratio scale 1–9. When aij = 1 indicates indifference 
between xi and xj, and aij = 9 indicates that xi is absolutely 
preferred to xj, then [ ]9,9/1∈ija . 
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Fuzzy preference relation B on a set of alternatives 
X is a fuzzy set on the product set X×X, characterized by 
membership function µB: X×X→[0,1]. Therefore: 
 { }[ ] ( , ) , 1, ...,ij ij B i jB b b x x i j n= =µ ∀ ∈ ;  (3) 

 { }1   , 1, ,ij jib b i j n+ = ∀ ∈ L ,  (4) 
where µB is a membership function and bij is the prefer-
ence ratio of alternative xi over xj. A bij at 0.5 denotes that 
xi and xj are indifferent, and a bij at 1 represents that xi is 
preferred absolutely to xj.  

The method (Herrera-Viedma et al. 2004) to trans-
formation multiplicative preference relations A to fuzzy 
preference relations B and obtain relative weights pre-
sents the following: 

(1) Get (n–1) values {a12, a23, …, a(n–1)n} of multip-
licative preference relations A; 

(2) Diagonal elements of A are values at 1.0, using 
the equation (5) to calculate the remaining elements in the 
upper right part of the diagonal: 

 ( 1) ( 1)
( 1)( 1)

i j i j
ij

i j

a a
a

a

− +

+ −

×
= . (5) 

Elements in the lower left part of the diagonal in 
were calculated using the equation shown below: 
 1

ij
ji

a
a
= ; (6) 

(3) Let Z = max[A], then transfer multiplicative pre-
ference relations A to a consistently MPR matrix C with a 
normal to interval [1/9, 9] with equation (7): 

 ( ) 91/ log Z
ij ijc a= ; (7) 

(4) Apply equation (8) to transform the consistent 
MPR matrix C to FPR matrix B: 
 9( ) (1 log ) 2ij ij ijb g c c= = + . (8) 

 
2.3. Cumulative prospect theory 
Consider a prospect (mutual fund) X  with outcomes 
1 1... 0 ...k k nx x x x+≤ ≤ ≤ ≤ ≤ ≤  that are associated with 

probability 1 1, , , , ,k k np p p p+L L . Cumulative prospect 
theory predicts that people will choose prospects based 
on the value (Tversky and Kahneman 1992): 

 ( ) -

1 1
( ) ( )

k n
i i i i

i i k
V X v x v x+

= = +

= π λ + π∑ ∑ , (9) 

where 0λ >  is a loss-aversion parameter and π  are deci-
sion weights calculated based on “cumulative” probabili-
ties associated with the outcomes. In particular, prospect 
theory assumes a probability weighting function 

[ ] [ ]:  0;  1 0;  1w+ →  for gains and a probability 
weighting function [ ] [ ]:  0;  1 0;  1w− →  for losses. In 

CPT the utility function ( )v x  is unchanged from the 
original PT (Tversky and Kahneman 1992; Tversky and 
Fox 1995; Gonzalez and Wu 1999), which is concave for 
gains and convex for losses, with the loss function as-
sumed to be steeper than the gain function ( 1β > ): 

 ( )( ) x
v x

x

α

α

= −β −
. (10) 

The decision weights employed in CPT are given by 
Tversky and Kahneman (1992): 
 ( ) ( )1 1   and  n nw p w p− +π = π = ; (11) 

 ( ) ( )∑ ∑
=

−

=

−−− −=π
i

j

i

j
jji pwpw

1

1

1
  for  ki ≤≤2  

and  (12) 

 ( ) ( )∑ ∑
= +=

+++ −=π
n

ij

n

ij
jji pwpw

1
  for  11 −≤≤+ nik , 

where probability weighting functions w−  and w+  are 
defined for probabilities associated with losses and gains, 
respectively, which may be experimentally estimated 
using the following formulae (Tversky and Kahneman 
1992; Camerer and Ho 1994; Wu and Gonzalez 1996): 

and 
( )( )
( )( )

1/

1/

( )
1

( ) .
1

x
w x

x x

x
w x

x x

δ−
δδ δ

γ+
γγ γ

=

+ −

=

+ −

 (13) 

For only gain conditions, equations (9) will transform to: 

[ ] ( ) ( ) ( )2
1 1 2 2 1 1 2 2

1
, ;  , j j

j
V p x p x v x v x v x+ + +

=

= π ⋅ = π ⋅ +π ⋅∑ .(14) 

 

3. Constructing a multi-criteria prospect model for 
bidding decisions 
3.1. Multi-criteria prospect model for bidding decision 
This study adopted BD-MCPM, which combined FPR and 
CPT, to modeling the construction company’s bidding 
decision processes using the three phases shown in Fig. 1. 

 

3.2. Phase I – preparation 
The bidding decision process generates two decisions: 
whether to submit or not submit a bid (bid/no bid) and, if 
so, the scale of the markup component of the bid 
(markup) (Egemen and Mohamed 2008). Many factors 
affect decision making in each phase. Phase I should first 
identify the key factors that influence a bidding decision 
and, based on such factors, collect and organize relevant 
project data/information. 
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Fig. 1. Flowchart of BD-MCPM 
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Table 1. Key influencing factors of bid/no bid decision 

Category No. Inferential Factor Literatures 
Questionnaire survey 
Average 
Score Factor 

1 2 3 4 5 6 7 8 9 10    
Client 1 Reputation of client    ● ● ● ● ●  ●   

2 Relationship with client ●   ●  ● ●  ● ● 6.55 BF6 
3 Financial capability of the client      ● ● ●     
4 Client requirements    ●  ●       
5 Fostering good relationship with regular clients          ●   

Other 6 Proportions to be subcontracted    ●  ●  ●     
7 Reputation of other consultants      ●  ●     
8 Relationship with other consultants      ● ●  ●    

Project 9 Nature of project ● ●   ● ●  ● ● ●   
10 Project size ●    ● ● ● ●   7.10 BF3 
11 Project period    ●  ● ●   ●   
12 Project complexity  ●  ●  ● ● ●   6.25 BF7 
13 Project location ● ●  ● ● ● ●      

Resources 14 Experience for similar project     ● ● ● ● ● ● 7.15 BF2 
15 Professional demands of the contract         ● ●   
16 Physical resources necessary to carry out project      ●       
17 Availability of qualified/experienced staff     ● ● ● ● ●  5.85 BF8 
18 Financial resources necessary to carry out project      ●       

Tender 19 Time available for tender preparation ●   ● ● ● ● ●     
20 Cost of bidding   ●   ●    ●   
21 Tender conditions    ●   ● ●     
22 Tendering method     ● ●  ●     
23 Adequacy of tender information  ●  ● ● ●       
24 Current workload in bid preparation        ●     

Contract 25 Type of contract    ● ● ●       
26 Contractual conditions ● ●  ● ●  ●  ●  6.75 BF4 

Company 27 Compliance with business strategy      ●    ●   
28 Current work load     ● ● ● ●  ● 6.70 BF5 

29 Availability of other projects ●    ● ● ● ● ●    
30 Promoting reputation      ●  ●     
31 Operational capacity        ●  ●   

Competitors 32 Number of competitors    ● ● ● ●   ● 5.25 BF9 
33 Competence of the expected competitors      ● ●      
34 Degree of competition ●     ● ●      
35 Perceived chances of being successful   ●   ●       

Financial 36 Client budget  ●     ●      
37 Financial situation    ●  ●  ●  ●   
38 Expected profitability   ●  ● ● ●   ● 7.20 BF1 
39 Expected cash flow     ● ● ●      
40 Confidence in the cost estimate       ● ●     
41 Projected break-even point for the contract      ●       

Culture 42 Local customs       ●  ●    
Market 43 Market conditions ● ●  ●    ● ●    
Risk 44 Expected risk ●  ●  ●  ●  ●  5.10 BF10 
Note: Literature (1) Cook (1985); (2) Skitmore (1985); (3) Marsh (1989); (4) Cooke (1992); (5) Shash (1993); (6) Odusote and  
Fellows (1992); (7) Wanous et al. (2000); (8) Chua and Li (2000); (9) Han and Diekmann (2001); (10) Lewis (2003) 
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3.2.1. Identify the key factors of influence in a bid 
decision 
Many studies designed to identify the factors that influ-
ence bidding decisions have been conducted in recent 
years. Some have adopted a contractor perspective. Oth-
ers have focused on conditions limited to a particular, 
localized situation. Still others have taken a multi-
national perspective. All have worked to identify key 
factors of influence at work on local contractor bid deci-
sions. The purpose of Phase I in the BD-MCPM was to 
identify, respectively, the key factors influencing bid/no 
bid and markup decisions. The identification process was 
a two step process, which first reduced the total potential 
number of factors by identifying and choosing only those 
referenced consistently in the literature in order to identi-
fy a shortlist of ‘pre-adapted’ factors. The second step 
incorporated these pre-adapted factors into a question-
naire, which was send to local contractors who were 
asked to assess the importance of each factor on a scale 
from 1 to 9 (1:very unimportant, 9:very important). Each 
factor was then assigned an importance score based on an 
average of submitted scores. Table 1 shows 44 factors 
identified in the literature as affecting bid/no bid decision 
making (Cook 1985; Skitmore 1985; Marsh 1989; Cooke 
1992; Odusote and Fellows 1992; Shash 1993; Wanous 
et al. 2000; Chua and Li 2000; Han and Diekmann 2001; 
Lewis 2003). Sixteen of these factors were prioritized as 
they were mentioned in five or more of the referenced 
articles. Ten of these prioritized factors received average 
scores of importance equal to or greater than 5, and were 
ranked from highest to lowest. 

Similarly, Table 2 shows the eight factors identified 
in the literature as affecting markup decisions (Odusote 
and Fellows 1992; Dozzi et al. 1996; Li 1996; Dulaimi 
and Shah 2002). A shortlist of those that were mentioned 
in two or more articles was then made, and those from the 
shortlist with average earned scores of importance equal 
or greater than 5 were ranked.   

 
Table 2. Key influencing factors for markup scale decision 

Category Inferential factor Factor 
Project Project size  MF5 
Resources Experience in similar project  MF6 
Company Need for work  MF1 

Current workload  MF3 
Competitors Number of competitors MF4 
Financial Expected profitability  MF8 
Market Overall economy MF7 
Risk Expected risk MF2 

 
3.2.2. Case collection 
A case study to test the ability of the BD-MCPM model 
to solve the above problem was conducted to illustrate the 
effectiveness of the approach in practice. The background 
of research participants were considered to be homogene-
ous in the sense that they were all qualified professionals 
in construction field with previous knowledge of bidding 
strategies and bidding procedures. Table 3 presents a 
summary of data collected on three actual projects.  
 

 
Table 3. Case study data 

Item Case 1 Case 2 Case 3 
Owner Housing and Urban Develop-

ment Corporation (HUD) 
Hanoi city people’s com-
mittee 

Infrastructure Development and 
Construction Corporation 
(LICOGI) 

Project Housing project Housing project Housing project 
2 units – 14 floors and 21 floor 1 unit – 21 floor 2 units – 14 floors and 17 floor 
Total Floor area 21960 m2 Total Floor area 19950 m2 Total Floor area 19558 m2 
Basement area 1588 m2 Basement area 1800 m2 Basement area 1500 m2 

Location Hanoi city, Vietnam Hanoi city, Vietnam HaiPhong city, Vietnam 
Estimated cost Approx. US $17,954,000 Approx. US $4,228,000 Approx. US$9,735,000 
Total duration 30 months 18 months 24 months 
Bidding system Open competitive bid Open competitive bid Open competitive bid 
Fund Self, customer mobilization 

fund, Agri Bank 
Self (government) Self, government, Viet Com Bank 

Contract type Lump sum Lump sum Lump sum 
Payment methods Local currency (VND) Local currency (VND) Local currency (VND) 
Timing of payments 2.5 months 2 months 2 months 
Prior project markup scale Common markup 3–6% Common markup 3–6% Common markup 3–6% 

The best case 20% gain The best case 20% gain The best case 20% gain 
The worst case 15% loss The worst case 15% loss The worst case 15% loss 
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3.3. Phase II – deciding to bid or not to bid 
The goal of Phase II was to make a decision whether or 
not to bid on a particular project. The 10 key factors that 
affect the bid/no bid decision were identified in Sec-
tion 3.2.1. By assessing the relative weights and risk 
scores for these factors, a bid/no bid score may be ob-
tained, which can then be used to make the decision 
whether to bid or not. 

 
3.3.1. Determining the relative weight of influencing 
factors for bid/no bid decisions 
The seven steps employed to determine the relative 
weight of identified factors of influence are described as 
follows: 

Step 1: Define linguistic variables. This study used 
9 linguistic terms {AM: Absolutely more important, VM: 
Very strongly more important, SM: Strongly more impor-
tant, WM: Weakly more important, EQ: Equally impor-
tant, WL: Weakly less important, SL: Strongly less im-
portant, VL: Very strongly less important, AL: 
Absolutely less Important } associated with real number 
{5, 4, 3, 2, 1, 1/2, 1/3, 1/4, 1/5} to compare correspon-
ding neighboring factors. 

Step 2: Obtain questionnaire input. Ten factors of 
influence [BFi(i=1,2,…,10)] were considered in making 
the bid / no bid decision. Via a questionnaire survey or 
interviews, the thk  evaluator assessed the relative intensi-
ty of importance of the two adjoining factors BFi and BFj 
to obtain 9 grades of importance 

( )[ ]1,9,...,2,1 +== ijiakij , where 1kija =  means indiffe-
rence between two factors, 2,3,4,5kija =  shows that fac-
tor BFi is relatively important to factor BFj, 

1/ 2,1/ 3,1/ 4,1/ 5kija =  and indicates that factor BFi is less 
important than factor BFj. Table 4 presents the relative 
importance of bid/no bid decision factors assessed by 
evaluator 1. 

 
Table 4. Questionnaire sheet for importance of influencing 

factors of evaluator 1 

Factor 
BFi 

Intensity of importance Factor 
BFj AM VM SM WM EQ WL SL VL AL 

BF1  X        BF2 
BF2     X     BF3 
BF3        X  BF4 
BF4       X   BF5 
BF5     X     BF6 
BF6       X   BF7 
BF7    X      BF8 
BF8       X   BF9 
BF9   X       BF10 

 

Step 3: Construct the MPR matrix. To construct the 
thk  evaluator’s MPR matrix kA , we first translated the 

linguistic terms of questionnaire results into real numbers 

kija  to fill proper diagonal elements, using Eqs (5) and (6) 
to calculate the remaining elements of MPR matrix. 

For example, from Table 4 we can obtain a set of 9 
values { 1

1 2=4a , 1
2 3=1a , 1

3 4=1/4a , 1
4 5=1/3a , 1

5 6=1a , 
1
6 7=1/3a , 1

7 8=2a , 1
8 9=1/2a , 1

9 10=3a }, the MPR matrix of 
evaluator 1’s may be constructed as follows: 

.

133.067.033.033.000.100.300.1200.1200.3
3100.200.100.100.300.900.3600.3600.9
50.12/1150.050.050.150.400.1800.1850.4
00.300.12100.300.300.900.3600.3600.9
00.133.067.03/1100.100.300.1200.1200.3
00.133.067.033.01100.300.1200.1200.3
33.011.022.011.033.03/1100.400.400.1
08.003.006.003.008.008.04/1100.125.0
08.003.006.003.008.008.025.01125.0
33.011.022.011.033.033.000.100.441

1

























=A

 

Let Z = max[Ak], a consistently MPR matrix Ck with 
a normal to interval [1/5, 5], the transform function show 
in Eq. (15) will change to Eq. (16) : 

 ( ) 51/ log Zk kij ijc a= . (15) 

For example, the maximum value of evaluator 1’s 
1A  MPR matrix was 36. Applying Eq. (15), a consistently 

MPR matrix 1C  may be obtained as follows:   

.

00.161.083.061.000.100.164.105.305.364.1
64.100.137.100.164.464.168.200.500.568.2
20.173.000.173.020.120.197.166.366.397.1
64.100.137.100.164.164.168.200.500.568.2
00.161.083.061.000.100.164.105.305.364.1
00.161.083.061.000.100.164.105.305.364.1
61.037.051.037.061.061.000.186.186.100.1
33.020.027.020.033.033.054.000.100.154.0
33.020.027.020.033.033.054.000.100.154.0
61.037.051.037.061.061.000.186.186.100.1

1

























=C

 

Step 4: Transform the consistent MPR matrix to a 
fuzzy preference relation matrix. The consistent MPR 
matrix [ ]1/ 5,5k

ijc ∈ , the transform function shown in 
Eq. (8) will change to Eq. (16) shown below: 
 5( ) (1 log ) 2ij ij ijb g a c= = + . (16) 

Applying Eq. (16), the evaluator 1’s FPR matrix B1 

may be obtained as follows:  

.

50.035.044.044.050.050.065.085.085.065.0
65.050.060.050.065.065.081.000.100.181.0
56.040.050.040.056.056.071.090.090.071.0
65.050.060.050.065.065.081.000.100.181.0
50.035.044.035.050.050.065.085.085.065.0
50.035.044.035.050.050.065.085.085.065.0
35.019.029.019.035.035.050.069.069.050.0
15.000.010.000.015.015.031.050.050.031.0
15.000.010.000.015.015.031.050.050.031.0
35.019.029.019.035.035.050.069.069.050.0

1

























=B
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Step 5: Aggregate the FPR matrix for all evaluators. 
The opinions of different evaluators were aggregated to 
obtain an aggregated weight for each factor of influence. 
kijb  was employed to denote the fuzzy preference rela-

tionship value of the thk evaluator to assess factors i and j. 
This study used an average value method to integrate the 
judgment values of m evaluators and obtain the averaged 
FPR matrix B . The average function is shown below: 

 ( )1 21 m
ij ij ij ijb b b b

m
= + +…+ . (17) 

For example, kijb  for 3 evaluators were 1
12 0.69b = , 

2
12 0.72b = , and 3

12 0.78b = . Equation (17) was then applied 
to generate 12 0.73b = .  The same approach was used to 
obtain an averaged FPR matrix B , as follows: 

.

50.038.053.043.043.038.058.074.062.038.0
62.050.065.055.055.050.070.086.074.051.0
47.035.050.039.040.035.055.071.059.036.0
58.045.061.050.050.046.066.081.069.046.0
57.045.060.050.050.045.065.081.069.046.0
62.050.065.054.055.050.070.086.074.050.0
42.030.045.034.035.030.050.066.054.031.0
26.014.029.019.019.014.034.050.038.015.0
38.026.041.031.031.026.046.062.050.027.0
62.049.064.054.054.050.069.085.073.050.0

























=B

 

Step 6: Normalize the aggregated FPR matrix. 
Using R to indicate the normalized aggregate FPR matrix, 
the value of element rij can be obtained using the function 
shown below:  

 10

1

 ,    1,2, ,10ij
ij

ij
i

br j
b
=

= =

∑
L . (18) 

For 12 0.73b = , 
10

1
6.21ij

i
b
=

=∑  when 2j = , applying 
equation (18), we can then get r12=0.118 and, in the same 
manner, obtain normalize averaged FPR matrix R as 
follows: 

.

099.0099.0099.0121.0099.0099.0099.0099.0099.0099.0
124.0131.0122.0125.0128.0131.0120.0116.0119.0131.0
093.0091.0094.0090.0092.0091.0094.0096.0095.0091.0
114.0119.0114.0114.0117.0119.0112.0110.0112.0119.0
113.0118.0113.0113.0116.0118.0112.0109.0111.0117.0
123.0130.0122.0124.0127.0130.0120.0115.0118.0129.0
083.0078.0084.0078.0081.0078.0086.0089.0087.0079.0
052.0037.0055.0042.0044.0037.0059.0067.0061.0038.0
076.0068.0077.0070.0072.0069.0079.0084.0081.0069.0
122.0129.0121.0123.0125.0129.0119.0115.0118.0128.0

























=R

 

Step 7: Obtain relative weights. Given that 
iWB  de-

notes the priority weight of influencing factor i, the prio-
rity weight of each factor may be obtained using the 
following function: 

 

10

1
10 10

1 1

ij
j

i
ij

i j

r

WB
r

=

= =

=

∑

∑∑
. (19) 

In Case 1, 
10 10

1 1
=10ij

i j
r

= =

∑∑  and 
10

1
=1.228ij

j
r

=

∑  for 1i = , 

applying equation (19) obtains a relative weight for influ-
encing factor BF1 of 0.123. Following the same process, 
the relative weights of influencing factors in Case 1 as 
assessed using three evaluators were obtained as 
WBi={0.123, 0.074, 0.049, 0.082, 0.124, 0.114, 0.115, 
0.093, 0.125, 0.101}. 

 
3.3.2. Assessing the risk score for factors of influence 
in bid/no bid decision making 
 
Risk score RSi represents the degree of risk in the factor of 
influence BFi, which has been subjectively established by 
PDM using predetermined scores {0 – No risk, 25 – Low 
risk, 50 – Moderate risk, 75 – High risk, 100 – Prohibitive 
risk}. For Case 1, the value of risk associated with influ-
encing factors using PDM is illustrated in Table 5. 

 
Table 5. Risk assessment by PDM on influencing factors of 

Case 1 

No Influencing factor  RSi 
0 25 50 75 100 

1 Expected profitability   X   
2 Experience for similar  

project  X    
3 Project size   X   
4 Contractual conditions  X    
5 Current workload    X  
6 Relationship with client  X    
7 Project complexity    X  
8 Availability of quali-

fied/experienced staff  X    
9 Number of competitors  X    
10 Expected risk   X   

 
3.3.3. Deciding to or not to submit a bid 
A total bid/no bid score may then be calculated by sum-
ming degrees of significance: 

 
10

1
B i i

i
V WB RS

=

= ×∑ .  (20) 

If 50BV ≤ , then a “bid” decision is recommended. 
Applying equation (20) to bid/no bid scores for cases 1 
through 3 returned, respectively, total scores of 43.8, 52.9 
and 45.3. As such, the contractor should bid on Case 1 
and Case 3 and proceed to Phase III (the markup phase) 
for both.  
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3.4. Phase III – deciding appropriate markup 
Once a decision to bid has been made, the next step is to 
determine appropriate markup sizes for bidding projects. 
Firstly, the PDM assign a set of markup scales. The eval-
uator then determines the relative weight of each factor of 
influence (see also Section 3.2.1) for each special markup 
scale. The resulting assess the probability of winning 
project for specify markup scale. The determining pro-
cess is illustrated below. 

 
3.4.1. Assign specific scale of markup 
In construction projects, the scale of a markup is deter-
mined based on relevant contractor policies and project 
type. In general, markups tend to represent 3% ~ 7% of a 
project’s total estimated cost, although in certain cases, 
markups may be in the 10% ~ 15% range or higher. This 
study adopted 5 frequently used markup scales {M1=3%, 
M2=4%, M3=5%, M4=7%, M5=10%} as examples. 

 
3.4.2. Determine relative weight of influencing factors 
for special markup scale 
The eight key factors previously identified as affecting 
markup scale decision making (MFi) are listed in Table 2. 
These also represent factors of influence on outcome 
implementation. Assigning weights to each factor is done 
in the same manner as that described in Section 3.3.1. 
The only difference was the associated factors of influ-
ence used. The relative weight of each influencing factor 
MFi, assessed using 3 evaluators, were obtained and rep-
resented as WMi ={0.078, 0.078, 0.064, 0.123, 0.191, 
0.118, 0.150, 0.198}. 

 
3.4.3. Forecast probability of winning project using 
markup scale 
As bids typically involve multiple potential contractors, 
assessing the probability of bid success over competitors 
at a particular markup level is critical. Of course, markup 
scale may be expected to correlate inversely to probabil-
ity of bid success. FPR was used here to forecast project 
bid success in the same manner as in Section 3.3.1. 

For each case and defined markup scale, evaluators 
used linguistic terms to judge subjectively the relative 
importance of each factor in winning a bid and in losing a 
bid MFi. 

For example, in Case 1, when the markup was set to 
3%, Evaluator 1 assessed the relative importance to 
win/lose case probability to be { }1 5, 4, 4, 3, 5, 4, 5, 4uvb = . 
Using questionnaire results, a 2×2 pair-wise comparison 
MPR matrix could then be constructed with two outco-
mes (“win” and “lose”) for each factor of influence. The 
pair-wise comparison MPR matrix Bk for each influen-
cing factor was then constructed (see Table 6 below). 

Applying the same process described from step 4 to 
7 in Section 3.3.1., derived the average rating PRi, which 
described the potential for winning in light of the identi-
fied factors of influence MFi. For example, in Case 1, at a 
markup of 3%, win probability ratings for relevant factors 

of influence MFi may be obtained using PRi ={0.81, 0.76, 
0.79, 0.69, 0.78, 0.76, 0.83, 0.76}.  

 
Table 6. Evaluator 1’s pair-wise comparison MPR matrix for 

case 1 and markup scale 3% 

Influencing 
factor 

MPR Bk 
 Win Lose 

MF1 Win 1 5 
Lose 1/5 1 

MF2 Win 1 4 
Lose 1/4 1 

MF3 Win 1 4 
Lose 1/4 1 

MF4 Win 1 3 
Lose 1/3 1 

MF 5 Win 1 5 
Lose 1/5 1 

MF 6 Win 1 4 
Lose 1/4 1 

MF 7 Win 1 5 
Lose 1/5 1 

MF 8 Win 1 4 
Lose 1/4 1 

 
Finally, for a specify markup scale, the forecast pro-

bability of winning PM may be obtained using the 
following function: 

 
8

1
i i

i
PM WM PR

=

= ×∑ , (21)  

where WMi and PRi denote the relative weights and the 
probability ratings of winning for identified markup scale 
factors of influence ( )1 2 8iMF  , i  , , ,∈ L .  

Using the example of Case 1 at a 3% markup and 
the value for WMi obtained in Section 3.4.2., we may 
apply equation (21) to obtain a win probability forecast 
PM = 78%. In the same manner, the win probability fore-
cast at 4%, 5%, 7% and 10% markups were 71%, 63%, 
43% and 25%, respectively, for Case 1. In Case 3, win 
probability forecasts were 77%, 68%, 60%, 46% and 28% 
for defined markups in the 3~10% range. 

As defined in the model construct, probability of 
winning a project is kept and probability of losing a project 
is ignored, the latter yields a prospect value equal to 0. 

 
3.4.4. Elicit the PDM utility function for the markup 
scale 
This study adopted the TO method proposed by Wakker 
and Deneffe (1996) to elicit the PDM utility function for 
the markup scale. This paper will not describe the mech-
anisms by which such was accomplished, as the method 
has been described previously in the literature (Bleichrodt 
and Pinto 2000; Abdellaoui 2000; Abdellaoui et al. 
2005). The elicited result for the PDM utility function is 
shown in Fig. 2.  
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Fig. 2. Elicited PDM’s Utility function curve of Markup scale 

 
3.4.5. Elicit the PDM probability weighting function 
Bleichrodt and Pinto (2000) proposed a method to elicit 
PWF based on the TO method. This method first set 
' 0.5p ≤  for low probabilities and ' >0.5p  for high proba-

bilities, then chose two prospects which were queried to 
subjects in order to assess an outcome. For probabilities 
' 0.5p ≤ , subjects were asked to assess an outcome zy 

such that the difference between ',  ;  1 ',i jp x p x −   and 
[ ]',  ;  1 ',k rp x p z−  with k i jx x x≥ ≥ , , ,k ix x and jx  are 
elements of the standard sequence elicited in 3.4.4. The 
weighting of probabilities ( )'w p  were determined using: 

 ( ) ( ) ( )
( ) ( ) ( ) ( )' j r

j r k i

u x u z
w p

u x u z u x u x

−=  − + −   
. (22) 

For probabilities ' >0.5p , subjects were asked to as-
sess an outcome zs such that there is indifference between 
[ ]',  ;  1 ',m np x p x−  and ',  ;  1 ',s qp z p x −   with 
m n qx x x≥ ≥ , ,  ,  m nx x  and  qx  are elements of the 

standard sequence. Weighting of probabilities ( )'w p  
were determined by: 

 ( ) ( ) ( )
( ) ( ) ( ) ( )' n q

s m n q

u x u x
w p

u z u x u x u x

−=   − + −   
. (23) 

This study used the same probabilities 
' ={0.10, 0.25, 0.50, 0.75, 0.90}p  as those in Bleichrodt’s 

study to elicit PDM’s PWF. In the elicitation procedure, 
the PDM may be used to assess an outcome for the two 
prospects in probabilities that range from 0.10 to 0.90. If 
the first assumption assumes a low setting probability 'p , 
then the PDM will be asked to assess zy for the prospect 

of ',  ;  1 ',i jp x p x −   and [ ]',  ;  1 ',k rp x p z− , and apply 
equation (23) to calculate ( )'w p . If ( )' 0w p ≥  and 

( )' 'p w p≥ , then 'p  represents a low probability. 
Otherwise, 'p  should be high probability, and PDM will 
be asked in the same 'p  again to assess zs with prospects 
[ ]',  ;  1 ',m np x p x−  and ',  ;  1 ',s qp z p x −  , and apply 
equation (28) to calculate ( )'w p . Other probabilities of 

'p  are assumed at a high probability to elicit ( )'w p . 
Fig. 3 shows the elicited PWF of the PDM in this study. 

 

 
Fig. 3. Elicited PDM’s probability weighting curve 

 
3.4.6. Determine the prospect value of the markup scale 
Under CPT and FPR, the Prospect Value ( )CPT iV M  at a 
specified markup scale Mi may be determined using the 
CPT equation: 
 ( ) ( ) ( )CPT i i iV M U M W PM= × , (24) 
where ( )iU M  and ( )iW PM  may be found by interpola-
tion: 

( ) ( ) ( ) ( )1
1

i j
i j j j

j j

M M
U M U M U M U M

M M +
+

−  = − + − ;(25) 

( ) ( ) ( ) ( )1
1

i j
i j j j

j j

PM PM
W PM W PM W PM W PM

PM PM +
+

−  = − + − . (26) 

The calculated CPT value for each markup scale in 
Case 1 and Case 3 were listed in Table 7. 

 
3.4.7. Comparison and decision making 
Selecting the highest markup scale CPT value (Table 7) 
determined the markup scale in each case (i.e., 5% for 
Case 1 and 7% for Case 3). Estimated profit and bid price 
for Cases 1 and 3 were calculated and are shown in Ta-
ble 8. Under circumstances in which contractors may only 
choose one case on which to bid, other consideration fac-
tors may be brought into play (e.g., duration, funding re-
quirements, etc.). 
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Table 7. CPT value for each markup scale of Case 1 and Case 3 

Case Markup scale 
M(n) 

Markup scale Utility 
Value U(M(n)) 

Probability of Winning 
P(M(n)) 

Probability Weight 
PW(M(n)) 

Prospect Value 
VCPT 

Decision Markup 
scale 

1 

3% 0.252 78% 0.682 0.172  

5% 
4% 0.345 71% 0.611 0.211  
5% 0.400 63% 0.554 0.221  
7% 0.508 43% 0.424 0.215  
10% 0.643 25% 0.330 0.212  

3 

3% 0.252 77% 0.668 0.168  

7% 
4% 0.345 68% 0.590 0.203  
5% 0.400 60% 0.532 0.213  
7% 0.508 46% 0.439 0.223  
10% 0.643 28% 0.345 0.222  

 

 

Table 8. Profit and bid price for Case 1 and Case 3 

Case Estimated Cost (USD) 
Decision 
Markup scale 

Profit 
(USD) 

Bid price 
(USD) 

1 17,954,000 5% 897,700 18,851,700 
3 9,735,000 7% 681,450 10,416,450 
 

4. Discussions 

BD-MCPM was used successfully to help PDM deter-
mine which case(s) should be bid and the optimal 
markup. Knowing competitor markup scales prior to 
tender submission would be helpful in modifying the 
markup recommendations generated by BD-MCPM and 
allow for adjustments critical to winning the bid (markup 
adjustment downward) or increasing profit (markup ad-
justment upward). In practice, however, it is difficult to 
elicit a competitor’s UF and PWF. Therefore, an effective 
methodology with which to infer such represents a valua-
ble direction for future research. 

 
5. Conclusions 

This study developed a Multi-Criteria Prospect Model for 
Bidding Decision (BD-MCPM) to help contractors de-
termine whether to submit a bid and, when the answer is 
in the affirmative, set an optimal markup scale. Research 
contributions include: 

1. Identification of ten and eight key influencing 
factors used by contractors in Vietnam to make decisions, 
respectively, on bid/no bid and mark-up scales using 
literature review and questionnaire survey techniques. 

2. Introduction of a new Multi-Criteria Prospect 
Model for Bidding Decision (BD-MCPM), which combi-
nes fuzzy preference relations (FPR), cumulative prospect 
theory (CPT), and Multi-Criteria Prospect Model 
(MCPM). The BD-MCPM is a systematic bidding model 
designed to help construction companies make strategic 
bid / no bid decisions and to determine the optimal mar-
kup scale for each project bid. 

3. FPR using only a small number of expert input va-
riables provides consistency in fuzzy preference relations 
that simplifies the process of evaluating relative factor 
weights to deciding bid/no bid phase and forecast probability 
project win for specific mark-up size. Moreover, applying 

FPR to evaluation and forecasting can connote the characte-
ristic of evaluator’s “experience” and “guesswork”. 

4. CPT evaluates the primary decision maker’s risk 
prospects in terms of utility functions and probability 
weighting functions. CPT calculates preference values for 
assigned mark-up scales and probability of a project win 
based on prior forecasts. It further selects the mark-up 
scale delivering the optimal preference value so that the 
decision maker can make an optimal decision that takes 
into account the PDM’s intuition. 

5. The study validated the BD-MCPM using actual 
bidding projects obtained from construction companies in 
Vietnam and successfully helping the PDM to select ca-
ses on which to bid and to set optimal markup scale. 
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STATYBOS ĮMONĖS APSISPRENDIMAS DALYVAUTI KONKURSE NAUDOJANT DAUGIAKRITERINĮ 
PERSPEKTYVŲ MODELĮ  

M.-Y. Cheng, C.-C. Hsiang, H.-C. Tsai, H.-L. Do 

S a n t r a u k a  

Ketinantiems dalyvauti konkurse reikia priimti du lemiamus sprendimus: ar teikti pasiūlymą ir kokį antkainį nurodyti 
pasiūlyme. Statybų sektoriuje valstybės įstaigos ir klientai iš privačiojo sektoriaus paprastai konkursus skelbia siekdami 
išrinkti laimėtoją, su kuriuo pasirašoma sutartis. Rangovai sprendimus dalyvauti konkurse vertina taip pat. Rangovų ap-
sisprendimą dalyvauti konkurse ir pasirinktą antkainį lemia ne vienas kintamasis, ir tai apsunkina apsisprendimo dalyvauti 
konkurse procesą. Šiame tyrime pristatomas daugiakriterinis perspektyvų modelis apsisprendimui dalyvauti konkurse 
(BD-MCPM), kuris rangovams padės apsispręsti, ar dalyvauti konkurse ir kokį antkainį pasirinkti. Pirmiausia buvo 
nustatyti pagrindiniai veiksniai, kurie daro įtaką apsisprendimui dalyvauti konkurse. Po to, naudojant neraiškiuosius prio-
ritetinius ryšius (angl. Fuzzy Preference Relations, FPR), buvo įvertinti veiksnių reikšmingumai ir nustatyta, dalyvauti ar 
nedalyvauti konkurse. Pagaliau, jeigu nusprendžiama dalyvauti konkurse, naudojant daugiakriterinį perspektyvų modelį 
(MCPM), kuris neraiškiuosius prioritetinius ryšius susieja su kaupiamąja perspektyvos teorija (angl. Cumulative Prospect 

Theory, CPT), nustatomas antkainio lygis, kuris labiausiai atitinka pagrindinio sprendimus priimančio asmens pageidavi-
mus. Praktinis šio modelio naudingumas pademonstruotas atliekant atvejo tyrimą. 

Reikšminiai žodžiai: apsisprendimas dalyvauti arba nedalyvauti konkurse, antkainio lygis, pasiūlymų teikimo strategija, 
daugiakriterinis perspektyvų modelis, kaupiamoji perspektyvos teorija, neraiškieji prioritetiniai ryšiai. 
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