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Abstract. Cartesian grid is a basic arrangement of points that form a regular orthogonal grid (ROG). In some applications, 
it is needed to evaluate all pairwise distances among ROG points. This paper focuses on ROG discretization of a unit hy-
percube of arbitrary dimension. A method for the fast enumeration of all pairwise distances and their counts for a high 
number of points arranged into high-dimensional ROG is presented. The proposed method exploits the regular and col-
lapsible pattern of ROG to reduce the number of evaluated distances. The number of unique distances is identified and fre-
quencies are determined using combinatorial rules. The measured computational speed-up compared to a naïve approach 
corresponds to the presented theoretical analysis. The proposed method and algorithm may find applications in various 
fields. The paper shows application focused on the behaviour of various distance measures with the motivation to find the 
lower bounds on the criteria of point distribution uniformity in Monte Carlo integration.

Keywords: full factorial design, design of experiments, pairwise distances, Audze-Eglãjs criterion, optimization, periodic 
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Introduction

The measuring of distances is fundamental to geospatial 
analysis (Tobler 1970). It is closely related to the concept 
of route. For example, the package gdistance (van Etten 
2012) was designed to determine grid-based distances and 
routes, and to be used in combination with other packages 
available within R (R Core Team 2016). Another appli-
cation of distance distributions between points in spatial 
processes can be found when modelling connectivity in 
wireless mobile systems such as cellular, ad-hoc and sen-
sor networks. Since connectivity can be expressed as a 
function of the distance between nodes, distance distri-
butions between points in spatial processes are of special 
importance (Moltchanov 2012).

The study of point distribution is also very relevant 
to the field of design of experiments (DoE) and statisti-
cal sampling for Monte Carlo integration. The present pa-
per primarily concerns the distribution of points relevant 
to statistical sampling for computer experiments (Iman, 
Conover 1980; Morris, Mitchell 1995), where the optimal 
placement of sampling points is an as yet unsolved prob-
lem.

In computer experimentation (Sacks et al. 1989), which 
is a powerful tool for the investigation of problems encom-

passing the randomness of observed phenomena, the task 
is to prepare a plan of the simulations that should be per-
formed, i.e. what is known as the Design of Experiments 
(DoE) should be carried out. A similar task is included in 
the response surface method first introduced by Box (1954) 
and since then improved and adapted in various ways (e.g. 
Bucher, Bourgund 1990; Gupta, Manohar 2004; Hamzah 
et al. 2017), where training points have to be placed ap-
propriately.

In Monte Carlo integration it is desirable to minimize 
the number of simulations (point count simN ) while mak-
ing sure statistical estimates remain of high quality. This 
is achieved by the uniform filling of the design domain, 
which is a unit varN -dimensional hypercube ( varN  is the 
number of input random variables), and the appropriate 
transformation of points of such a sampling plan in accord-
ance with the required probability distribution and mutual 
dependencies among the inputs. Individual simulations 
are then represented by design points placed within the 
hypercube. Designs for the placement of points inside the 
design domain that supposedly distribute the points uni-
formly are known as space filling designs (see e.g. Damblin 
et al. 2013).
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Designs with a general simN  and varN  that are sup-
posed to fill the hypercube uniformly are usually sought 
for via heuristic optimization (Morris, Mitchell 1995; Mor-
tazavi et  al. 2017; Siddiquea, Adelib 2016; Vořechovský, 
Novák 2009). There are many different criteria that are 
designed to measure this uniformity and are subject to 
minimization during such optimization. One of the crite-
ria that accentuate the space-filling property of the final 
design is the Audze-Eglãjs (AE) criterion (Audze, Eglãjs 
1977). Another example is the periodic version of the AE 
criterion, hereinafter referred to as the PAE criterion (Eliáš, 
Vořechovský 2016), which removes a major flaw of the AE 
criterion. Many other criteria have been defined with the 
aim of ensuring the uniform filling of a given space. They 
are often based on the evaluation of discrepancy, e.g. Cen-
tered 2L -discrepancy (Fang, Ma 2001), Wrap-Around 

2L -discrepancy (Fang, Ma 2001). Maximin or miniMax 
criteria (Husslage 2006; Johnson et al. 1990) may also be 
used. The criteria used for the illustration of application 
in this article are the Audze-Eglãjs (AE) criterion (Audze, 
Eglãjs 1977; Bates et al. 2003), or its generalization into the 
φ  criterion (Morris, Mitchell 1995) and the PAE criterion 
(Eliáš, Vořechovský 2016).

The effective control of an optimization algorithm is 
often conditional upon the knowledge of the lower bound 
of the optimization criterion (the minimum that can be 
reached during optimization) and the mean value. Vari-
ous means of optimization exist. For example, heuristic 
algorithms based on columnwise-pairwise exchanges (the 
shuffling of pre-sampled coordinates) (Li, Wu 1997; Mor-
ris, Mitchell 1995; Vořechovský, Novák 2009; Chen et al. 
2016; Huang et  al. 2016) can drastically profit from the 
knowledge of the minimum (or maximum in the case of 
maximization) of the objective function (e.g. the AE cri-
terion).

The available methods of filling a unit hypercube with 
points are basically divided into two types: deterministic 
and stochastic. Historically, non-random lattices (such 
as ROGs, triangular lattices or hexagonal lattices) have 
also been used as models for a  number of physical and 
environmental phenomena, e.g. elements of crystals, the 
placement of seedlings in the landscape, the locations of 
facilities in cities, etc. (Chu 2006). Therefore, the evalua-

tion of distances in regular lattices may be important in 
these fields of expertise as well. Deterministic methods 
place the design points in regular patterns and may ensure 
perfect space-filling. One such example is full factorial de-
sign (Chudoba et al. 2013; Montgomery 2006). It is a basic 
design that, in repeatable computer experiments, has only 
one representant for each location and explores combina-
tions of all factors with all levels for that factor.

In this paper, we consider such a Cartesian grid (reg-
ular orthogonal grid) of simN  points in a design domain 
that is a unit hypercube of dimension varN  (sometimes 
denoted as var[0,1]N ). In particular, we study the pairwise 
distances among all pairs of these simN  points. The list of 
the distances featured in such a  design is needed in the 
evaluation of many criteria concerning the optimality of 
that design (Maximin, miniMax, AE, PAE, φ criterion) 
(Audze, Eglãjs 1977; Bates et al. 2003; Eliáš, Vořechovský 
2016; Husslage 2006; Johnson et al. 1990; Morris, Mitch-
ell 1995). Due to the regularity and perfect space-filling 
of certain deterministic designs it is reasonable to expect 
these designs to provide a criterion value that is the mini-
mum or close to the minimum for a given configuration 
( )sim var,N N . The ROG designs studied in this paper are 
presumed to be optimal or near-optimal designs as regards 
many criteria related to uniformity, regularity, discrepancy 
and space-fillingness. It is supposed that they provide con-
servative estimates of the lower bounds on the design op-
timality criteria.

Since these deterministic designs are restricted just to 
specific numbers of design points ( varsim

NN N= , N  being 
a natural number expressing the number of different input 
values for each random input variable), the article also an-
ticipates the possibility of interpolation of the lower bound 
for an arbitrary simN  of a stochastic design.

This paper presents a method for the fast enumeration 
of all pairwise distances among points arranged into a reg-
ular orthogonal grid (ROG) in a unit hypercube and is or-
ganized as follows. Section 1 describes the ROG arrange-
ment of points. Section 2 provides an analysis of distances 
in ROG and identifies main transformations of simple 
distances identified by simple combinatorial operations. 
Section 3 presents the speed-up compared to naïve evalu-
ation of distances. Section 4 presents an application of the 

Figure 1. Regular grids of five points ( 5N = ) in unit cubes of var 1,2N =  and 3 dimensions
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method in determining the bounds of optimality criterion 
and design of computer experiments. 

1. Unit hypercube filled with regular orthogonal 
grid of points

A Grid or Mesh is defined as smaller shapes formed after 
the discretization of a geometric domain. A regular grid is 
defined as a  tessellation of varN -dimensional Euclidean 
space by congruent parallelotopes (e.g. bricks). Several 
types of gridding systems exist, e.g. hexagonal grids or 
triangular grids generalized to arbitrary dimensions. This 
paper considers a rectangular domain (a unit hypercube) 
and its division into a regular Cartesian grid. A Cartesian 
grid (ROG) of points is a special case where the elements 
are equal lines, squares, cubes, etc.

We consider a ROG of points arranged in the unit hy-
percube arranged such that the number of points reads: 

varsim
NN N= , (1)

where N  is the number of equidistant coordinates along 
each individual dimension.

It corresponds to a tessellation of a unit hypercube into 
simN  identical cubes; the points are placed in the inter-

sections of lines passing through their centroids. In this 
arrangement, the points form an orthogonal grid inside a 
unit hypercube the dimension of which is varN . Exam-
ples of such hypercubes are a  line ( var 1N = ), a  square  
( var 2N = ), a cube, etc. In this paper, ROG is considered 
such that the number of equidistant points, N , is identical 
along each edge.  Figure 1 shows examples of such ROGs 
for various dimensions. An i th point of ROG is a row vec-
tor with varN  coordinates: 

( )var,1 ,2 , ,, , , , ,i i i i v i Nx x x x= … …x . (2)

The coordinates are found within the unit hypercube: 
,0 1i vx≤ ≤ . All points then form a matrix x  (also referred 

to as the sampling plan in Section 4):

var

var

sim sim sim sim var

1,1 1, 1,1

,1 , ,

,1 , ,

v N

i i i v i N

N N N v N N

x x x

x x x

x x x

  
  
  
  = =   
  
  
    

x

xx

x

 



 



 

. (3)

The notation used in this paper is such that the number 
or symbol following the comma in the lower index stands 
for the dimension var1,v N∈〈 〉 .

When all the coordinates are multiplied by number N  
then the sampling plan becomes a matrix of rank numbers, 
π .  In this way the ROG is scaled from the unit hypercube 
in to a hypercube of length N . Individual points form row 
vectors of indices: ( )var,1 ,2 , ,, , , , ,i i i i v i N= π π π π π ,
where sim1, ,i N=   and , {1,2, , }i v Nπ ∈ … , see Figure  1 
left – the rank numbers are denoted on the top axis. 
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The uniform distribution of points within the unit hy-
percube is considered with the coordinates:

, sim
,

var

1
12
1

i v
i v

i N
x

v NN

π − ≤ ≤
=

≤ ≤
. (5)

The pairwise difference of points i  and j  is a row vec-
tor:

  ij i j= −δ π π , (6)

that consists of differences of rank numbers along individ-
ual dimensions: , , ,ij v i v j vδ = π − π . Using these differences 
in index numbers, the Euclidean distance between points 
i  and j  reads:

( )
var var2 2

, , ,
1 1

1
ij i v j v ij v

N

v

N

v
L x x

N= =
= − = δ∑ ∑ . (7)

The number of distances between all pairs of simN  
points is generally: 

( )sim simsim
p

1
2 2

 N N
N

N − 
= =  
 

. (8)

This number is 2
sim( )N  which implies its rapid 

growth with increasing discretization N  and the dimen-
sion varN . The calculation of distances between all pairs of 
points in ROG can be simplified.

2. Analysis of distances in ROG

The ROG is a collapsible arrangement and therefore the 
projections of pairwise distances along individual dimen-
sions imply repeated vectors of index differences ijδ . It is 
possible to obtain a list of all possible vectors of index dif-
ferences, ijδ , by considering only a limited list of vectors, 

tδ . This list contains vectors that exhaust unique vectors 
ijδ  irrespective of the order of elements. The number of 

such types of vectors is denoted as cN .  The vectors tδ  are 
indexed by “ t ” and their list is selected so as to represent 
distances from the point 1 (1, ,1)= …π . The point 1π  has 
the lowest possible indices and is placed in the “bottom 
left corner” of the hypercube. Therefore, we can write the 
vectors as:

1 1 c, 1  t t t t N≡ = − ≤ ≤δ δ π π . (9)

The considered set of points tπ  is selected to exhaust 
all points that fulfil:

, , var{ : for 1 }t v t wt v w Nπ ≥ π ≤ < ≤ . (10)

In other words, all vectors tπ  form all possible non-
increasing sequences of indices. Figure 2 illustrates the sit-
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uation for 3N =  and var 3N = . The full list of vectors tδ  
is divided into three lists of vectors of dimensions 1, 2 and 
3. It can be seen that the points in increasing dimensions 
progressively form a simplex.

We are now interested in obtaining the total number 
of such vectors tδ . For a given design with ( )var,N N , the 
number is equal to the number of ways to place N  types 
of elements into a vector of length varN  (number of mul-
tisubsets). These are combinations with repetition: 

( )
( )

varvar
c

var var var

1 !1
! 1 !

NN N
N

N N N
NN

N
+ −+ −   

=     = =   −    
. (11)

As can be seen from Figure  2, when var 3N N= = , 
the number of vector types is c 10N = . Eqn  (11) can be 
simplified by decomposing the factorial in the numerator 
and cancelling the ( )1 !N −  terms in the numerator and de-
nominator: 
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N i
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. (12)

Now, it is easy to write the bounds on cN  by taking 
either 0i =  (lower bound) or var / 2i N=  (upper bound): 

var
var

var
sim

c
var var var

( )
2

! ! !

N
N

N
N

N
N N N

NN +
=   . (13)

The lower bound on the left hand side provides a use-
ful estimate that quickly tends towards cN  with increas-
ing N . It helps to show that the number of vector types is 
much lower than the total number of pairs, pN . A direct 
comparison of Eqn (8) with the lower bound in Eqn (13) 
reveals that while pN  is proportional to 2

simN , the num-
ber cN  is proportional to simN  only. This fact is docu-
mented in Figure 4 (left), where the number of pairs, pN , is 
independent of dimension and steeply grows with increas-
ing simN . The number cN  slightly depends on varN ; how-
ever, the slope is half of that for pN .

To show a more complex example of vectors tδ , Ta-
ble 1 presents all vectors tδ  for 5N =  and var 3N = . The 
number of pairwise distances in such a grid is p 7,750N = , 
while the number of unique types of vectors is c 35N = . 
The table is accompanied by the corresponding Euclide-
an point distances in a unit hypercube, tL  (squared and 
multiplied by 2N ). Eqn (7) can be reused to calculate the 
Euclidean lengths using the index differences , ,ij v t v=δ δ : 

var
2
,

1
|| ||t t t v

v

N
N L

=
⋅ = = δ∑δ . (14)

With all possible vector types, tδ , and the associated 
distances, tL , we are now interested in obtaining the total 
number of occurrences of each vector type, denoted as tn . 
One can show that this number is a product of three coef-
ficients: 

p d n
c, 2t t t tn n n n t N= × × ≤ ≤ , (15)

where the three coefficients p
tn , d

tn  and n
tn  represent 

three types of spatial transformations of tδ : rotations, 
reflections and translations. Note that we index the vector 
types from 2t = ; this is because 1δ  is the null-vector. One 
can check that the number of pairwise distances (Eqn (8)) 
equals to the sum of all tn ’s:

c

p
im

2

s
2t

t

N N
N n

=

 
= =   

 
∑ . (16)

The coefficients are derived in the following subsec-
tions.

2.1. Number of permutations p
tn  of integer 

difference vectors

When considering a distance corresponding to a certain 
pattern tδ , it is important to count the number of ways 
to achieve this distance from the point 1π . In particular, 

p
tn  corresponds to the number of ways to rotate the vector 

around the point 1π  which is equivalent to renumbering 
the dimensions. In other words, one must consider how 
many times the differences ,t vδ  can be permuted. To make 

Figure 2. Enumeration of all vectors tδ  and the corresponding 
visualization in a 3D grid with 3N =  points along each 

dimension
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an example, ( )2 1,0,0=δ  corresponds to unit distance 
from 1π  along the first dimension. However, the same 
type of vector can also be placed along the remaining two 
dimensions ( ( )0,1,0  and ( )0,0,1 ), because we consider 
the metric to be isotropic. Basically, one has to count the 
number of different arrangements of indexes ,t vδ , some of 
which might be identical. In other words, one has to count 
the number of permutations with repetition: 

var var
1

,0 ,1 , 1
,

p

0

! !
! ! !

!
N

t t t N
k

t

t
k

N N
n n n

n
n

−
−

=

=
  

=
⋅

∏


, (17)

where ,t kn  are the numbers of repetitions of index differ-
ences k  in vector tδ . These numbers of repetitions can 
be counted as: 

( )
var

, ,
1

t k t v
v

N
n k

=
= δ −∑ 1 , (18)

where ( )x1  is an indicator function returning one if there 
is a match, i.e. a repetition ( 0x = ). Otherwise ( 0x ≠ ), the 
indicator function returns zero.

To explain how the formula works, we return to the 
example of vector ( )2 1,0,0=δ . The total number of per-
mutations of these three index differences is var !N , see the 
numerator in Eqn (17). However, since the zero difference 
is featured more than once, some arrangements in the per-
mutations are identical. In particular, the zero difference is 
repeated twice and therefore one has to consider that per-
mutations with repetition only count for different arrange-
ments. The numerator in Eqn (17) must be divided by the 
numbers of arrangements of indistinguishable differences.

One has to go through the list of all possible index 
differences, {0,1, , 1}k N∈ … − , that can occur in tδ  and 
count the number of occurrences for each k . In this exam-
ple, the zero difference yielding 2,0 2n =  is featured twice, 
the unit difference ( 2,1 1n = ) once and an index difference 
of two or higher ( 2,2 2,3 2,4 0n n n= = = ) zero times. There-
fore, the denominator reads 2! 1! 0! 0! 0! 2⋅ ⋅ ⋅ ⋅ = . Finally, the 
number of distinguishable arrangements of ( )2 1,0,0=δ  is 
therefore p

2 3!/ 2 3n = = , see Table 1. 
Figure 3 (left) illustrates that ( )11 3,2=δ  a 2D design 

has the same distance from 1π  as a vector ( )2,3 , so that 
p
11 2n = .

Figure 3. Illustration of the three types of transformation 
corresponding to p

tn , d
tn  and n

tn  for a grid with 5N =  and 
var 2N =

2.2. Number of space diagonals ( r -agonals) d
tn

The second coefficient, d
tn , corresponds to the number of 

reflections of each vector type, tδ . The vector tδ  forms 
a space diagonal ( r -agonal, i.e. the longest diagonal) of a 
hyperrectangle (sometimes called an n -orthotope or just 
a box). The dimension of such a diagonal tδ  can be quan-
tified as the number of nonzero index differences: 

( )
var

,
1

t t

N

v
v

r
=

= δ∑ 1 ,           var1 tr N≤ ≤ , (19)

Table 1. Enumeration of all vectors tδ  with their 
corresponding numbers tn  and the associated lengths in a unit 

hypercube for a 3D grid ( var 3N = ) with 5N =  points along 
each dimension

t tδ
p
tn d

tn n
tn tn ( )2tN L⋅ ( )2tN L⋅

1 (0, 0, 0) – – – – – –
2 (1, 0, 0) 3 1 100 300 1 1
3 (2, 0, 0) 3 1 75 225 4 4
4 (3, 0, 0) 3 1 50 150 9 4
5 (4, 0, 0) 3 1 25 75 16 1
6 (1, 1, 0) 3 2 80 480 2 2
7 (2, 1, 0) 6 2 60 720 5 5
8 (3, 1, 0) 6 2 40 480 10 5
9 (4, 1, 0) 6 2 20 240 17 2

10 (2, 2, 0) 3 2 45 270 8 8
11 (3, 2, 0) 6 2 30 360 13 8
12 (4, 2, 0) 6 2 15 180 20 5
13 (3, 3, 0) 3 2 20 120 18 8
14 (4, 3, 0) 6 2 10 120 25 5
15 (4, 4, 0) 3 2 5 30 32 2
16 (1, 1, 1) 1 4 64 256 3 3
17 (2, 1, 1) 3 4 48 576 6 6
18 (3, 1, 1) 3 4 32 384 11 6
19 (4, 1, 1) 3 4 16 192 18 3
20 (2, 2, 1) 3 4 36 432 9 9
21 (3, 2, 1) 6 4 24 576 14 9
22 (4, 2, 1) 6 4 12 288 21 6
23 (3, 3, 1) 3 4 16 192 19 9
24 (4, 3, 1) 6 4 8 192 26 6
25 (4, 4, 1) 3 4 4 48 33 3
26 (2, 2, 2) 1 4 27 108 12 12
27 (3, 2, 2) 3 4 18 216 17 12
28 (4, 2, 2) 3 4 9 108 24 9
29 (3, 3, 2) 3 4 12 144 22 12
30 (4, 3, 2) 6 4 6 144 29 9
31 (4, 4, 2) 3 4 3 36 36 6
32 (3, 3, 3) 1 4 8 32 27 12
33 (4, 3, 3) 3 4 4 48 34 9
34 (4, 4, 3) 3 4 2 24 41 6
35 (4, 4, 4) 1 4 1 4 48 3
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where ( )x1  is an indicator function returning one for 
nonzero integer differences ,i vδ  and zero otherwise. For 
a given dimension, tr , the number of various space diago-
nals in a hyper-rectangle is:

1d 2 trtn −= . (20)

For example, the number of space diagonals for vectors 
6 (1,1,0)=δ  and 7 (2,1,0)=δ  forming diagonals of a square/

rectangle is equal to d d
6 7 2r r= =  and the number of triago-

nals in 3 dimensional space with vectors 16 (1,1,1)=δ  or 
17 (2,1,1)=δ  (cube/cuboid) is d d

16 17 4n n= = .
Figure  3 (centre) illustrates that a two-dimensional 

vector ( )11 3,2=δ  is one of two possible diagonals in the 
same rectangle, so that of d

11 2n = .

2.3. Number of hyperrectangles n
tn

The last coefficient, n
tn , corresponds to all possible trans-

lations of a “sub-hyperrectangle” within the hypercube. 
The coefficient is a product of the numbers of ways to 
translate the hyperrectangle along each dimension: 

( )
var

n
,

1
t t v

N

v
n N

=
= − δ∏ . (21)

The vector ( )11 3,2=δ  featured in Figure  3 (left and 
centre) is shown to have n

11 6n =  possible placements with-
in the square shown in Figure 3 (right).

2.4. Histogram of pairwise distances

Equations (14) and (15) enable the evaluation of all pair-
wise distances (vector types tδ ) and their counts, tn , in 
an ROG. We note that the list of vectors tδ  may not rep-
resent the list of unique pairwise distances. The reason is 
that the sum of the squared projections of several different 
vectors tδ  may be the same, see e.g. vectors 4δ  and 20δ  
in Table 1. To obtain the most highly condensed list of dif-
ferent lengths and their frequencies possible, we propose 
sorting the vectors according to length and grouping the 
identical ones. The numbers of unique distances are plot-
ted by green lines in Figure 4 (left).

In Figure 5, histograms of all distances L , squared dis-
tances 2L  and distances raised to the power var 1N +  are 
presented for various dimensions varN . The reason for 
presenting var 1NL +  will become clear in Section 4. These 
histograms were obtained for a  high number of points, 

simN .

Figure 4. Left: number of pairwise distances. The number of all pairs, pN , (black line) is compared 
with the number cN  of vectors tδ  (blue lines) and the number of unique distances uN  (green line). 
The red dashed lines show the approximated formula sim var/ !N N  from Eqn (13); Right: computing 
times (black/blue lines). The enumeration of all pN  pairwise distances takes much longer than the 
enumeration of cN  distance pairs and their counts. The red dashed lines show Eqns (26) and (27)

Figure 5. Probability density functions (histograms) of a random pairwise distance (left), 
squared distance (middle) and a distance raised to var 1N +  (right) in a hypercube of 

dimension varN . The red lines are the exact density functions for a random pair of points
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When the number of points grows high  ( simN →∞ ), 
the average distances between two points can be seen as 
the distance between two points chosen at random in-
side a unit hypercube. The solution is trivial for var 1N =  
( E 1/ 3L =   ). For var 2N = , the mean distance reads

( ) ( )2 2 /15 ln 1 2 / 3 0.521405434+ + + ≈ . This number 
is a known constant available in the On-Line Encyclopedia 
of Integer Sequences (OEIS), which is published electroni-
cally at https://oeis.org, 2010, Sequence “A091505” (OEIS 
2010). Its explicit expression has already been provided 
by Ghosh (1951). For var 3N = , the mean distance reads 

( ) ( )4 17 2 2 3 ln 1 2 / 5 2ln 2 3 / 5
105 15 35
+ π

− − + + + + ≈

0.661707181 . This average distance is known as the Rob-
bins constant (Robbins, Bolis 1978), which is available 
in the OEIS as Sequence “A073012” (OEIS 2010). Aver-
age distances are available for dimensions var 4,5,6,7N =  
and 8 in the OEIS as Sequences “A103983, A103984, 
A103985, A103986 and A103987” (OEIS 2010). They 
read 0.7776656535, 0.8785309152, 0.9689420830, 
1.0515838734 and 1.1281653402, respectively (see also 
Bailey et  al. 2007; Weisstein n.d.). Table  1 in Anderssen 
et al. (1976) provides approximate values for var 9N =  and 
10: 1.19985 and 1.26748.

The distributions of distances L  for increasing dimen-
sion varN  tend towards Gaussian distribution. Anderssen 
et al. (1976) provided bounds for the average distance D  
depending on the dimension, varN :

var var

var

1 3E 1 2 1
3 6 3 5

L
N N

N

 
≤ ≤ + −    

  
. (22)

We have found a  tighter upper bound on the mean 
value that possesses correct asymptotic properties: E L    
tends towards var / 6N  as varN →∞ . The suggested 
bound reads:

var 1/ 3
E

6
N

L
−

   , (23)

and provides an exact value for var 1N =  ( 1
3

E L =   ). 
Gates (1985) derived an asymptotic formula: 

var

var
2
var

7 65E 1
6 40 896 

L
N

N
N

 
≈ − − +…      

 
. (24)

This formula is already very accurate for var 2N > .
The variance for var 1N =  reads simply D 1/18L =   .  

For higher varN , it is found within 1/16 and 1/18 and 
tends towards 7/120 as varN →∞ .

From this analysis, it is clear that the Euclidean dis-
tance of two points picked randomly from a unit hyper-
cube becomes virtually identical and deterministic in very 
high dimensions. The standard deviation stays approxi-
mately constant with increasing dimension varN  while 
the mean value keeps growing. The coefficient of variation 
of a  random distance L  is therefore asymptotically pro-
portional to var1/ N . In such a case the distance contrast 
decreases and it is said that the distances concentrate (Ag-
garwal et  al. 2001; Flexer, Schnitzer 2015). This distance 

concentration in high-dimensional spaces might lead to 
undesired effects in some applications such as the optimi-
zation of the design of experiments (Audze, Eglãjs 1977; 
Eliáš, Vořechovský 2016).

The squared distance, 2L , has a trivial mean value, 
var / 6N , and variance, var7 /180N . The central limit the-

orem tells us that the square of the distance is almost nor-
mally distributed for large varN .

3. Speed-up and implementation details

The proposed algorithm delivers the list of pairwise dis-
tances and their counts quicker than a naïve approach that 
simply evaluates the distances for all pairs of points. The 
reason for this is that the number of vector types in an 
ROG is considerably smaller than the number of all pairs.

The ratio between the number of pairs among the 
simN  points in the unit hypercube, pN  (see Eqn (8)), and 

the number of unique type vectors, cN  (Eqns (11), (12)), 
provides a hint about the speed-up associated with using 
the proposed methodology. Asymptotically the ratio reads: 

( ) ( )varvar var
si

p

c
m

! !
1 1

2 2
 NN N
N N

N

N
= − = − . (25)

We have implemented both the naïve approach and 
the suggested approach in C language and the computing 
times for various simN  and varN  have been measured. 
Figure 4 (right) displays the computing time of the naïve 
approach, ( )pt N , and the time taken by the suggested ap-
proach, ( )ct N . It is no surprise that the times taken by the 
naïve approach are proportional to the number of pairs, 

pN . The measured times are almost completely inde-
pendent of the dimension, varN , and the following for-
mula provides an excellent approximation of the time in 
seconds: 

12
p p 1 sim( )

2
C

t N N C N= ⋅ ≈ ⋅ , (26)

where the constant 1C  has been obtained by fitting the 
times measured with our hardware (Intel Core i7-860 
2.8 GHz) as 9

1 7 10C −= ⋅  [sec].
The computing times obtained with the proposed al-

gorithm seem to be proportional to the number of vec-
tors processed, cN , and they also depend linearly on the 
dimension: 

c c var 2( )t N N N C= ⋅ . (27)

The constant 8
2 1.5 10C −= ⋅  [sec] has been obtained by 

fitting the times measured using the same hardware and 
compiler as for the naïve algorithm.

By using the lower bound from Eqn (13) one can con-
clude that the computing time is asymptotically linear in 

simN :

( )
s

2
im

c
var

( )
1 !

N
N

N
t C= ⋅

−
, (28)

see the triangles in Figure 4 (right), while pN  is quad-
ratic in simN . For high simN  and varN , the speed-up is 
dramatic: 

https://oeis.org
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( )p
var sim

c

( )
1 ! 0.

(
 2

)

t N
N N

t N
≈ − ⋅ . (29)

The ratio between these two numbers increases very 
fast with an increasing number of simulations.

The analysis deals with the evaluation of distances and 
does not take into account the preparation of input arrays 
of coordinates ijx  or vector types iδ .

The prototype of an implementation of a function for 
the evaluation of pairwise distances and the number of 
their occurrences in a unit hypercube was made in Python 
programming language (van Rossum et al. 1991). The Py-
thon source code is presented in the Appendix.

4. Application

As mentioned in the Introduction, one of the possible ap-
plications of the proposed method and algorithm is in the 
field of the optimal placement of points used in Monte 
Carlo integration, which is one possible application of the 
Design of Experiments.

Monte Carlo sampling is the most general technique 
for estimation of probabilistic integrals, such as those rep-
resenting the statistical moments of functions of random 
variables (e.g. Kala et al. 2017; Strauss et al. 2017; Vahdati-
rad et al. 2015), sensitivity analyses or reliability analyses 
(see e.g. Kong et al. 2013; Liao et al. 2015).

Monte Carlo integration approximates an integral of 
a function f  as an average: 

( ) ( )
sim

var 10, sim1

1d
N

N

i
i

f
N

f
=  

≈ ∑∫ x x x , (30)

where 
sim1  { , , } N…x x  is a set of points in the design space

var0,1 N
    (a space of sampling probabilities). These points 
can be transformed into points in real space, where the 
function is evaluated. The ratio sim1/ N  is a weight that 
is supposed to be identical for all points as their chance 
of being selected is supposed to be equal. Therefore, the 
points must be uniformly distributed throughout the unit 
hypercube. The way of selecting individual points from 
the design domain influences the quality of the approxi-
mation. According to Koksma-Hlawka inequality (Fang, 
Ma 2001; Niederreiter 1992), the error of such an approxi-
mation depends on the character of the examined func-
tion (its bounded variation, ( )V f ) and the star discrep-
ancy of the set of integration points, ( )sim sim

*
1,  ,N ND …x x :

( ) ( )

( ) ( )

sim

var

sim sim

1 0sim ,1

*
1

1 d

, , .

N

N

N N

i
iN

f f

V f D

=   

− ≤

⋅ …

∑ ∫x x x

x x

 

(31)

As the character of the examined function is not under 
the analyst’s control, the only way to decrease the upper 
bound of the approximation error is to reduce the discrep-
ancy of the set 

sim1  { , , } N…x x . Therefore, uniform designs 
are sought. These can be obtained by optimizing an origi-

nally random design (either Monte Carlo or Latin Hyper-
cube Sampling) using various optimality criteria, either 
some type of discrepancy criterion or some other criterion 
aimed at ensuring the uniformity of the final design. The 
latter type of criterion is usually based on distances be-
tween pairs of points in the design domain (traditionally 
the inter-site distances are considered).

A very general example of such a criterion is the φ  cri-
terion. This criterion was first defined by Morris and 
Mitchell (1995), see also Damblin et al. (2013), Pronzato 
and Müller (2012): 

sim

1

, 1

p

p
ij

i j N
i j

L−
= …
<

 
 
 φ =
 
 
 

∑ , (32)

ijL  being the inter-site Euclidean distance of points i  and 
j  defined by Eqn (7).

A limit case of the φ  criterion for p →∞  is the Maxi-
min criterion (Johnson et al. 1990) (sometimes called the 
mindist criterion): 

sim
Mm , 1

min iji j N
i j

L
= …
≠

φ = . (33)

The value of this criterion must be maximized to ob-
tain a better design.

A specific case of the φ  criterion, in which 2p = , is 
the Audze-Eglãjs (AE) criterion defined earlier in Audze 
and Eglãjs (1977) as: 

sim sim

p

AE
2

1 1

1 1

iji j

N N

i
E

LN = = +
= ∑ ∑ . (34)

The use of this criterion has been presented in, e.g., 
Bates et al. (2003), Fuerle and Sienz (2011), Husslage et al. 
(2011), Janouchová and Kučerová (2013), Kovalovs and 
Rucevskis (2011), Liefvendahl and Stocki (2006), Vu et al. 
(2014). Note that the original formulation of the criterion 
does not feature standardization by the number of pairs 
considered (division by pN ).

An  improved version of the AE criterion, called the 
Periodic Audze-Eglãjs (PAE) criterion, has recently been 
published in Eliáš and Vořechovský (2016). It removes a 
major flaw of the standard AE criterion related to the pres-
ence of boundaries: 

sim sim

p

PAE
2

1 1

1 1

iji j i

N N

N
E

L= = +
= ∑ ∑ , (35)

here: ijL  is not the Euclidean distance of points in the 
design space, but a distance redefined as the distance be-
tween point i  and the nearest image of point j  in a peri-
odically extended space. Taking the nearest distance cor-
responds to folding and gluing the design domain varN  
times – compare L  and L  in Figure 6. The new definition 
of this length (modification of Eqn (7)) stands:

( )
var 2

2
, ,

1
min ,1ij ij v ij v

v

N
L

=

 = ∆ − ∆ ∑ , (36)
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where the projected distance along direction v  reads

, , ,| |ij v i v j vx x∆ = − . (37)

This distance may also be defined in terms of δ  in 
a similar manner as to δ  as presented in Eqn (7), then:

var
2 2

,2
1

1
ij ij v

v

N
L

N =
= δ∑ , (38)

where:
( )
( ),

min , for even
min , 1 for oddij v

N N
N N

 δ − δδ = 
δ − δ −

. (39)

The rightmost column in Table 1 presents the shortest 
squared distances 2

ijL  in a  periodic space (multiplied by 
2N ). These can be directly compared with the standard 

squared inter-site distances 2
ijL  used in the AE criterion.

The proposed algorithm for the evaluation of pairwise 
distances can be used without any modification. However, 
to get a list of unique distances in a  periodic space, the 
list of distances must be sorted according to the periodic 
length and some vector types must be merged as they be-
come identical to others. The number of unique period-
ic distances in a periodic space is roughly one half of the 
standard distances in a hypercube.

The modified formulation of AE and PAE criteria 
(Eqns (34) and (35)) can be viewed as the computation of 
the average inverse squared distance 21/ ijL  (or 21/ ijL ). The 
convergence of the average distance measures is studied 
for the orthogonal grid in Figure 7 (bottom left). We ar-
gue that this criterion, which can also be understood as 
the potential energy of a system of charged particles (Eliáš, 
Vořechovský 2016), changes its character for various di-
mensions varN  and also for various numbers of points, 

simN . In a 1D situation, the energy tends towards infin-
ity linearly with increasing point count simN N= . In 2D  
( var 2N = ), the energy tends towards infinity as ( )simln N . 
Such a divergence is not a power law and therefore vari-
ous sample sizes may yield dissimilar optimal patterns 
(self-similarity would be manifested through a power law 
dependence of the criterion on the point count). For 3D 
and higher varN , the energy tends towards a constant for 
increasing simN , see Figure  7 (bottom left). This means 
that for a given var 1N > , a higher number of points yields 
a different proportion between the long-range and short-
range interactions. This may not be desirable behaviour 
as the criterion in high dimensions and also for a  high 

number of points becomes insensitive to local clusters of 
points: it becomes dominated by long-range interactions.

Therefore, we also consider a modification of the crite-
rion where the inverse distances are raised to a power that 
might be dependent on the problem dimension, varN . The 
definition of such a criterion is analogous to the φ  criteri-
on but we suggest a reason for the selection of the distance 
power, p :

sim sim

p

AEp
n

1 1

1 1
p

i j i i

N

j

N

N
E

L= = +
= ∑ ∑ , (40)

and equivalently, the periodic version: 

sim simPAEp
n

1 1p

1 1
p

i j i ij

N N
E

LN = = +
= ∑ ∑ . (41)

It is suggested that the power be at least var 1p N= + .  
Why? With this power, the interaction is dominated by 
short-range forces. The convergence of the potential ener-
gy AEp

nE , or better PAEp
nE , towards infinity for a uniform 

distribution of points is a power law. Such a convergence 
signalizes the self-similarity of the problem (the absence of 
a length scale). In other words, a zoom into a sufficiently 
representative subdomain has all the features of the full 
design and the energy value can be easily scaled from the 
value corresponding to the smaller zoom.

This can be shown by studying the behaviour of the 
radial part of the integral of the potential over the volume 
V  of an varN  dimensional domain. The potential energy 
for a uniform design reads: 

var

var

1 dN

N
p

I V
L

= ∫ . (42)

After transformation into polar coordinates, one 
writes:

var

var

1 1d dN
p

N

I V J L
L

−= ϕ∫ , (43)

where J  is the Jacobian. The volume element is thereby 
given as:

( )
var

var var var

2
1 1

1
d d d sin i

i
i

N
N N NV L L

−
− − −

=
= ⋅ ϕ ϕ∏ . (44)

Therefore, the integral is performed over the product 
var 1N pL − − . Performing just the radial integration leads to

var 1
d

N

r p
LI L

L

−
= ∫ . (45)

Figure 6. Illustration of the modified metric (periodic distance L ) in the varN  
times “folded & glued” 2D design domain
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For 2p =  as used in the AE criterion, we obtain the 
behaviour described above. Using varp N=  leads to 

1/ d ln( )rI L L L= =∫ , which diverges logarithmically, 
and the interaction is still long-range. Using var 1p N= +  
yields 21/ d 1/rI L L L= =∫ , which is the desired asymp-
totic behaviour driven by short-range interaction. Using 
higher powers only increases the (asymptotically constant) 
ratio between short-range and long-range interactions.

Figure 5 (right) shows a qualitative change in the his-
tograms of lengths featured in the criterion. From Fig-
ure 7 right bottom, it can be seen that the mean value of 

var 11/ NL +  diverges linearly with increasing N , which is a 
common behaviour for any hypercube dimension, varN
. The power law divergence of the criterion (Eqn (40)) ob-
tained for ROG confirms the behaviour of the radial part 
of the integral, i.e. the short-range interaction dominates 
the potential energy, see Figure 7 (right bottom).

Using a different power in the definition of the criteria 
does not necessitate the re-evaluation of the list of vector 
types and pairwise distances. The same holds for the se-
lection of the definition of the metric itself (see the criti-
cism of the Euclidean length at the end of Section 2.4). In-
stead, a fractional norm instead the ubiquitous Euclidean 
norm can be used. Changing the distance norm is inde-
pendent of the presented algorithm and fast evaluation of 
the norm histogram can help when studying behaviour of 
various norms. When a different distance norm is used or 
a different power, p , the list of various vectors and their 
counts can be used to quickly enumerate any criterion of 
the ROG.

Conclusions

The paper presents a simple algorithm for the exact evalu-
ation of pairwise distances among all pairs of points form-
ing a regular orthogonal grid of points within a unit hy-
percube. The algorithm provides the distances and their 
counts considerably faster than a naïve algorithm based 
on the evaluation of all pairs of points. The speed-up is 
enabled by the regular structure of the orthogonal grid.

The paper shows how the algorithm can be used in the 
study of the behaviour of criteria concerning regularity, 
discrepancy or space-fillingness. In particular, since the 
regular orthogonal grid can be considered to be close to 
optimal point placement, the algorithm can be used for 
the fast estimation of the lower bound of various distance-
based criteria of design optimality for the possible sample 
sizes.
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Appendix

The prototype of the described algorithm written in Python programming language uses the standard Python libraries 
math, functools and itertools. The package itertools is used to create an iterator for cN  types of difference 
vectors tδ  using the function combinations_with_replacement. The function rog_lenghts for evaluation of 
pairwise distances in ROG takes three parameters. The first two arguments n, nvar are required to define the hypercube 
parameters. The last keyword argument periodic enables evaluation of distances in a periodically extended space as 
described in Section 4. The function returns two lists: i) lengths contains pairwise distances and ii) counts contains 
their counts.

Re-implementation in C language yields significant speed-up and enables the evaluation of larger designs. Python and 
C codes for evaluation of pairwise distances are available in the Github repository (Sadílek, Vořechovský 2017).

import math
import itertools
from functools import reduce

def rog_lengths(n, nvar, periodic=False):
    ‘’’
    Evaluate pairwise distances among points forming
    regular orthogonal grid in a hypercube.

    Parameters
    ----------
    n : int
        number of equidistant points
        along an individual dimension
    nvar : int
        number of input random variables
        (dimension of a hypercube)
    periodic : bool, optional
        evaluate lengths in a periodically extended space.
        Default is False.

    Returns
    -------
    lengths : list of floats
        pairwise distances among points
    counts : list of ints
        number of distances of the same type

    Examples
    --------
    >>> n = 3
    >>> nvar = 2
    >>> rog_lengths(n, nvar, periodic=False)
    ([0.3333333333333333, 0.6666666666666666, 0.47140452079103173, \
0.7453559924999299, 0.9428090415820635], [12, 6, 8, 8, 2])
     >>> rog_lengths(n, nvar, periodic=True)
     ([0.3333333333333333, 0.3333333333333333, 0.47140452079103173, \
0.47140452079103173, 0.47140452079103173], [12, 6, 8, 8, 2])
    ‘’’
    lengths = []
    counts = []
    # prepare iterator for difference vectors delta_t
    deltas = itertools.combinations_with_replacement(range(n), nvar)
    next(deltas) # skip the first null vector (0,...,0)
    # loop over difference vectors delta_t
    for delta_t in deltas:
        # sum of squared differences
        if periodic:
            # update delta_t for periodic space eq.(39) 
            h = [(dt - n // 2) > 0 for dt in delta_t]
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            delta_t_pae = [abs(hi * n - dt) for hi, dt in zip(h, delta_t)]
            length_t = sum([dt ** 2 for dt in delta_t_pae])
        else:
            length_t = sum([dt ** 2 for dt in delta_t])

        # number n_t^n    eq. (21) 
        ntn = reduce(lambda x, y: x * y, [n - dt for dt in delta_t])
        # number n_t^p    eq. (17)
        ntp = math.factorial(nvar)
        for k in set(delta_t):
            # frequencies of differences in the vector delta_t
            ntp //= math.factorial(sum([(dt - k) == 0 for dt in delta_t]))
        # number n_t^d eq. (20) 
        ntd = 2 ** (sum([dt > 0 for dt in delta_t]) - 1)
        # number n_t eq. (15)
        nt = ntn * ntp * ntd

        lengths.append(length_t)
        counts.append(nt)
    # calculate real lengths in unit hypercube eq. (7) or (38)
    lengths = [l ** 0.5 / float(n) for l in lengths]
    return lengths, counts


