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Abstract. The paper presents method of calculation of eigenfrequencies of the cracked reinforced concrete beams includ-
ing discreet model of crack. The described method is based on the stiff finite elements method. It was modified in such a 
way as to take into account local discontinuities – cracks. In addition, some theoretical studies as well as experimental 
tests of concrete mechanics based on discrete crack model were taken into consideration. The calculations were performed 
using the author’s own numerical algorithm. Moreover, other calculation methods of dynamic reinforced concrete beams 
presented in standards and guidelines are discussed. Calculations performed by using different methods are compared with 
the results obtained in experimental tests. 
Keywords: beam, crack, eigenvibrations, reinforced concrete, stiff finite elements method. 

 
1. Introduction 
Calculation of reinforced concrete structures requires 
special attitude because it involves interaction of two 
materials, such as concrete and steel used in this type of 
structures. Furthermore, reinforced concrete elements are 
overloaded and that causes their cracking and stiffness 
degradation. 

There are many theories regarding displacement and 
redistribution of internal forces in the cracked reinforced 
concrete beams (e. g. Branson 1977) and structures (e. g. 
Kobielak et al. 2010). The methods proposed describe 
performance of the reinforced concrete structures includ-
ing cracks. Typically, the cracking effect and its influence 
on the distribution of internal forces and deformations is 
taken into account globally by means of introduction of 
effective stiffness. This kind of approach assures simplic-
ity of calculations by analogy to homogenous structures 
without cracks. 

The experimental tests which were performed (Eibl 
et al. 1988; Jerath and Shibani 1985; Johns and Belanger 
1981; Müller et al. 1983; Wlazło 1987) proved that ap-
pearance of cracks has significant impact not only on 
steel – concrete bond (Khalfallah 2008), deflection and 
redistribution of the internal forces, but also on the dy-
namic parameters, such as: eigenfrequencies and damp-
ing. Progressive cracking causes lowering of eigenfre-
quencies of the reinforced concrete beams. Moreover, 
such cracking increases damping properties of element. 

Most papers dealing with the dynamics of the 
cracked reinforced concrete structures describe it globally 
basing on the dynamic substitutional stiffness of the 

cracked element (Jerath and Shibani 1985; Johns and 
Belanger 1981; Wittig 1977). 

Further, this sort of approach makes it possible to 
apply solutions concerning dynamics of homogenous 
structures (Baušys et al. 2008; Clough and Penzien 1993; 
Lewandowski and Grzymisławska 2009) and is character-
ized by the simplicity of calculations. Nevertheless, it 
limits observation of structure to the final, summary ef-
fects connected with the impact of the element overload-
ing on the dynamic properties. In addition, there are no 
explicit relations connecting dynamic and static stiffness 
assumed to calculate deflections. Some experimental tests 
prove that it is less or equal to effective stiffness (Wlazło 
1987) while others confirm it is bigger (Jerath and Shi-
bani 1985). 

The paper presents alternative approach based on 
discrete crack model. Calculations were performed using 
the author’s own numerical programme related to 
Mathematica® (Wolfram 1999; Glabisz 2003). In addi-
tion, the obtained records were compared with the exist-
ing results acquired in experimental tests. Discussion and 
comparison of the results was conducted according to the 
Polish Standard (1993) requirements for calculation of 
support structures for machines and Eurocode 2 (2004) 
directives. 

 
2. Stiff finite element method 
2.1. Homogenous beams 
Dynamic calculations of most of the structures with con-
tinuous mass distribution are connected with discretiza-
tion. Discretization methods can be divided into two 
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groups: mathematical (with global approximation of dis-
placement state – for ex. the Ritz method with local ap-
proximation of displacement state – elastic finite element 
method) and physical which refers to mass granulation 
that leads to classical discrete system. 

The second group includes stiff finite element 
method (Kruszewski et al. 1975). This method was first 
applied in naval industry. Later it was used by J. Langer 
(Langer 1980) for calculation of bar structures. Beam 
model consists of stiff mass discs which represent force 
of inertia of a structure. Discs are connected by elastic 
constraints (one rotation and two translation) responsible 
for elastic features of a structure. Movement of each mass 
discs is described by three general coordinates. In case of 
transverse vibrations which are considered in this paper, 
elastic constraints and general coordinates are reduced to 
two. Example scheme and calculation model of a beam 
divided into four elements are shown in Fig. 1. 

 

 
Fig. 1. Scheme and numerical model of homogenous beam 

 
Stiffness of constraints connecting mass discs is 

computed on the basis of potential energy from the fol-
lowing Eqs. (1), (2): 

 
el
EIk =ϕ , (1) 

 312
el
EIk =∆ , (2) 

where: EI – beam bending stiffness, le – length of finite 
element. 

Stiffnesses of constraints are grouped in diagonal 
matrix {k}, which for the case shown in Fig. 1 is given 
below: 
 },,,,,,,{}{ ∆∆∆∆= kkkkkkkkdiagk ϕϕϕϕ . (3) 

Global stiffness matrix [K] is calculated from the 
following equation: 
 ][A][A[K] kk ⋅⋅= }{kT , (4) 
where: [Ak] – transformation matrix. 

Transformation matrix [Ak] transforms general co-
ordinates vector q on relative transposition vector r. It 
has repeatable character and it can be easily generated 
automatically for optional boundary conditions. 

Inertia matrix [B] is a diagonal matrix. Masses of 
individual discs m correspond to translation coordinates 
while their mass inertia moments Jm correspond to rota-

tional coordinates. For the model shown in Fig. 1 inertia 
matrix is as follows: 
 } , , , , , , ,{ 12221 mmmmm JmJmJmJJdiag=[B] . (5) 

Eigenfrequencies ω are resulted from following ma-
trix equation: 
 0][ 2

=− BK ωDet . (6) 
The second way of solution is calculation of matrix 

[A] being converse product of matrix [B] and matrix [K]. 
Eigenvalues of matrix [A] are the squares of angular ei-
genfrequencies ω (7): 
 }{)()( 21 ωdiagevev =⋅=

− [K][B][A] . (7) 
 

2.2. The reinforced concrete cracked beams 
The presented approach enables to include local disconti-
nuities (among others cracks) in a discrete way (Musiał et 
al. 2009). Adequate division into finite elements allows 
the introduction of cracks by means of reduction of stiff 
rotation constraints while calculations are performed as 
for the homogenous beam. In this attitude the considera-
tion of cracks involves necessity of algorithm improve-
ments as in case of classical finite elements method 
(Jovicic et al. 2010). 

Stiffnesses of constraints kϕ, k∆ are commuted using 
the element stiffness in phase I (EII). The stiffness of 
rotation constraints is reduced and has value crkϕ  in the 
place where the cracks appear. The scheme and calcula-
tion model of the segment of beam with cracks is shown 
in Fig. 2. 

 

 
Fig. 2. Scheme and numerical model of the reinforced concrete 
beam with cracks 

 
The rotational susceptibility resulted from crack was 

estimated on the basis of elementary relations of geome-
try and strength of materials. The scheme as in Fig. 3 was 
considered. 

Forces acting in the cross-section (A–A) in the place 
of crack occurrence are shown in Fig. 4. Triangular stress 
distribution in compressed concrete was assumed. 
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Fig. 3. Considered model of beam with cracks 

 

 
Fig. 4. Forces acting in cross-section 

 
Figs 3 and 4 enable to formulate following expres-

sion allowing calculating the rotational susceptibility 
which is consequence of crack occurrence in static solu-
tion: 

 
)x)(dx(dAE
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rmzicr
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,ϕ , (8) 

where: ψz – coefficient describing violation of interaction 
between steel and concrete calculated according to (9), 
srm – average crack spacing, Es – Young’s modulus of 
steel, As1 – reinforcement cross-sectional area, d – useful 
beam height, xII – height of the compressed zone in phase II. 

 
M
Ms cr

z −= 3.1ψ , (9) 

where: s – 1.1 in case of immediate loading, 0.8 in case of 
long-term loading, Mcr – cracking moment, M – maxi-
mum moment up to which the cross-section was over-
loaded. 

It was proved with own experimental investigations 
that dynamic susceptibility is not equal to the static one. 
The dynamic susceptibility could be calculated with fol-
lowing expression: 

 
)x)(dx(dAE
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The used coefficient αd is connected with static to 
dynamic transition. It is calculated with following formula: 

 
2
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where: Ms – bending moment in considering place (crack) 
induced with static load. 

Assuming that the susceptibility of finite elements 
connections is a sum of susceptibilities resulting from the 
beam deformation (for phase I) and susceptibility result-
ing from the crack appearance the following relationship 
can be written: 
 icrIiII d)(kd −−− += ϕϕϕ

1 , (12) 

where: Ikϕ  – stiffness of rotation constraints calculated 
according (1) for the phase I (EII). 

Knowing susceptibility (12) stiffness of rotation con-
straints for the cracked cross-section can be computed: 
 1−= )(dk II-icr-i

ϕϕ . (13) 
 

3. Calculation methods based on bending stiffness 
The approach proposed in Polish Standards (Foundations 
and support structures for machines) referring to the sup-
port structures for machines recommends calculation of 
global stiffness of the bended element according to the 
Young’s modulus of concrete and inertia moment for the 
gross concrete cross-section but does not take into con-
sideration reinforcement. While this sort of approach 
seems to be quite correct in calculations performed for 
phase I, it is less convincing in case of the cracked beam. 
Assuming constant stiffness for the total scope of element 
work may cause errors. 

It is more reasonable to calculate frequency using 
the relationship given below which is recommended in 
Eurocode 2 (2004)  (14): 
 III αζζαα )1( −+= . (14) 

Parameter α is the one which is considered (for ex-
ample cross-section deformation, curvature, rotation or 
deflection) and αI and αΙI are the values of this parameter 
calculated under the assumption that cracks do not occur 
and for the completely cracked objects respectively, 
while ζ is coefficient of distribution. It is assumed in the 
paper that the parameter to be considered is eigenfre-
quency. It should be noted that element overloading is 
accompanied by the decrease of bending stiffness and 
resulting from this eigenfrequency. 

The approach based on calculation of dynamic stiff-
ness different from the static one is presented in ACI 
Journal (Jerath et al. 1985). Dynamic stiffness is ex-
pressed by the following formula (15): 

 


 


 −+


= II
cr

I
cr

CD IM
MIM

MEEI αα 1 , (15) 

where: EC – Young’s modulus of concrete, α – constant 
parameter (α = 0.6 – 0.8), II – inertia moment in phase I, 
III – inertia moment in phase II. 

Similarly as in case of the dependency (15) overload-
ing is accompanied by the decrease of element stiffness. 

As literature studies proved, the final approach pre-
sented gained the most popularity. Empirical dependen-
cies are drawn in order to include estimation of substitu-
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tional dynamic stiffness of element. Thus, application of 
closed solutions of the structure dynamics can be consid-
ered in calculations of the cracked reinforced concrete 
structures. 

 
4. Numerical example – verification and comparison 
4.1. Experimental studies 
In order to verify numerical analysis some experimental 
results were applied (Jerath and Shibani 1985). All units 
were presented in the mentioned paper in Anglo – Saxon 
system. They were transformed to SI system. Experimen-
tal tests were performed on the series of the beam ele-
ments such as shown in Fig. 5. The dynamic computa-
tional scheme is included in Fig. 6. 

 

 
Fig. 5. Analysed beam (dimensions in mm) 

 

 
Fig. 6. Computational dynamic scheme (dimensions in mm) 

 
The beam was struck at the center of span by a light 

hammer. Then the natural period was measured and ei-
genfrequency was calculated. Static load F was added 
slowly on each hanger. The beam was vibrated and the 
natural period was noted again. After each increment of 
static load the testing procedure was repeated. Increasing 
loading and degradation of the beam stiffness (progres-
sive crack propagation) caused the decrease of eigenfre-
quency. The rest of data (concrete and reinforcing steel 
properties mainly) taken to further analyses are included 
in the Table 1. 

 
Table 1. Input data 

Series Properties 1 2 3 
Compressive strength of concrete 
[MPa] 41.37 48.26 42.10 
Tensile strength of concrete [MPa] 4.00 4.33 4.04 
Modulus of elasticity of concrete 
[GPa] 30.48 32.89 30.68 
Yield strength of steel [MPa] 276 
Modulus of elasticity of steel [GPa] 200 201 200 
Self-weight of beam [kg] 251.3 271.8 279.4 
Spacing of cracks [mm] 175 160 150 

The spacing of cracks was not measured in the ex-
periment. It was calculated according to Eurocode 2 
(2004). Moreover, own experimental investigations 
proved that cracks’ spacing does not influence signifi-
cantly on eigenfrequencies of reinforced concrete beams. 

 
4.2. Results of numerical analysis 
Numerical analysis were carried out for the data as in 4.1. 
Calculations were performed using three methods: 

− according to Eurocode 2 (2004), 
− according to ACI, 
− according to Polish Standard, 
− using author’s own algorithm based on stiff finite 
elements method (SFEM) related to Mathe-
matica®. 

The obtained results are shown in diagrams of ei-
genfrequencies (Figs 7–9). Vertical axes illustrate load 
applied on one hanger. Horizontal axes correspond to 
eigenfrequency. The results of numerical analyses are 
presented with the results of the experimental studies 
(Jerath and Shibani 1985) for comparison. 

 

 
Fig. 7. Load vs eigenfrequency for beams of series 1 

 

 
Fig. 8. Load vs eigenfrequency for beams of series 2 
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Fig. 9. Load vs eigenfrequency for beams of series 3 

 
Diagrams (Figs 7–9) show quite noticeable decrease 

of eigenfrequency depending on the level of beam over-
loading. The results of the experiments and some of the 
theoretical charts (SFEM, ACI) demonstrate significant 
decrease of eigenfrequency when M ≈ Mcr. In case of the 
theoretical values it occurs at lower loading level. In au-
thors’ opinion it is consequence of internal cracks 
(Pędziwiatr 2008) which influence on interaction between 
steel and concrete was not taken into account in calcula-
tions. In studies following rule was observed: reinforce-
ment ratio is higher the decrease connected with first 
cracks occurrence is lower. 

In case of curves obtained on the basis of Euro-
code 2 (2004) the decrease of eigenfrequency at the 
cracking moment is not as clear as in case of the methods 
described above. When M = Mcr Eurocode 2 (2004) curve 
changes inclination angle abruptly (first derivative is not 
continuous). 

Polish standard (1993) allows assuming constant 
stiffness in whole range of beam work. Therefore the 
decrease of eigenfrequency is resulted only from the in-
crease of load on hangers (not from the stiffness degrada-
tion). 

 
5. Final conclusions and remarks 
The experimental tests carried out so far prove that ele-
ment overloading causes changes of dynamic characteris-
tics (eigenfrequencies, damping parameters). Thus in-
cluding this factor in calculations seems to be quite 
reasonable. 

The paper presents different methods of calculation 
of eigenfrequencies of the cracked reinforced concrete 
beams. It can be noticed according to some literature 
studies that the most popular approach is based on the 
global description of the effect (substitutional element 
stiffness). This sort of attitude makes it possible to use 
the closed solutions of the structure dynamics for simple 
static schemes. 

The author’s own method is the alternative approach 
which considers the crack morphology in a detailed way. 
It allows following processes connected with the influ-

ence of overloading on the eigenfrequencies of the 
cracked reinforced concrete beams. Moreover, in case of 
dynamic loads the influence of fatigue should be taken 
into account. The modified SFEM presented in the paper 
allows to consider this not only for concrete and steel as 
materials but for every single crack as well. It is known 
that dynamic load causes fatigue grow of crack width 
(Szata and Lesiuk 2009). 

Conducted comparative analyses shown that each 
presented method gave similar results. The obtained 
curves have similar character and in more or less precise 
way they resemble actual element work. The selection of 
method depends on intended accuracy and specifity level 
in calculations, conditions in which structure exists or 
calculation’s tool. The highest discrepancies were ob-
served in case of method proposed by Polish Standard. 
However, in authors’ opinion it could not be rejected in 
particular with regard to beams with high reinforcement 
ratio, where the differences are insignificant. Further-
more, the method recommended by Polish Standard 
(1993) is intended for common engineering calculations 
and quite simple in use. If higher precision is demanded 
or structure is more sophisticated the other methods based 
on the dynamic stiffness or stiff finite elements method 
can be used. 

Nowadays the described method based on SFEM is 
being developed. Theoretical studies coupled with ex-
periments are in progress. The own method will be veri-
fied in case of beams subjected to immediate and long – 
term vibratory loads. Authors are going to applied own 
method in random vibrations issues (Kamiński and Sza-
fran 2009). 
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GELŽBETONINIŲ SIJŲ TIKRINIAI DAŽNIAI – SKAIČIAVIMO METODAI 
M. Kamiński, M. Musiał, A. Ubysz 
S a n t r a u k a  
Straipsnyje pristatomas įtrūkusių gelžbetonio sijų tikrinių dažnių skaičiavimo metodas, įskaitant diskretinį įtrūkio modelį. 
Metodas pagrįstas standžių baigtinių elementų metodu. Jis buvo patobulintas siekiant įtraukti vietinius nevienalytišku-
mus – įtrūkius. Taip pat buvo įvertintos kai kurios betono mechanikos teorinės studijos ir eksperimentiniai bandymai, pa-
grįsti diskrečiu įtrūkių modeliu. Skaičiavimai buvo atlikti taikant autorių sukurtą skaitmeninį algoritmą. Be to, pristatomi 
ir aptariami kiti dinaminiai gelžbetoninių sijų skaičiavimo metodai, pateikti standartuose ir gairėse. Skaičiavimai, atlikti 
taikant skirtingus metodus, palyginami su rezultatais, gautais eksperimentinių bandymų metu. 
Reikšminiai žodžiai: sija, įtrūkis, tikriniai dažniai, gelžbetonis, standžių baigtinių elementų metodas 
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