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Abstract. Planners in construction accordingly have been trying to predict productivity which is a significant criterion for 
construction performances prior to commencement of operations. Many various methods solely based on deterministic 
calculations, simulation techniques, statistic methods, or other decision making tools, have been introduced so far. In 
terms of application, however, these methods depending on one estimation tool have several limitations of each method. 
The present study presented new predictive models: 1) Model A, combining simulation and a multiple regression (MR) 
technique, a general estimation technique based on statistic concepts and 2) Model B combining simulation and an artifi-
cial neural network (ANN) technique, a powerful tool for prediction in engineering basis. Quantified reliability compari-
sons between actual and predicted productivity data by the presented models were conducted in this study. It found that a 
predictive result by Model B was closer to actual productivity data than that by Model A was. Model B based on the ANN 
analysis, however, showed the difficulty in technical implementation with a view of practical applications. These com-
parisons revealed the reliability of the predictive results and the implementation efficiency of each model. This study ad-
dresses basic characteristics and technical comparisons of each methodology simulation-based MR or ANN techniques. 
The findings allow researchers to create or develop a new predictive methodology for specific operations with shortage of 
actual datasets collected from jobsites. Technical performance comparisons of results between MR and an ANN, represen-
tative estimation tools, enable users to select a more appropriate tool considering specific situations. The suggested meth-
odology in this study can also be extended to apply to not only earthworks but also other construction operations.  
Keywords: construction, productivity, earthmoving, simulation, neural network, regression. 

 
1. Introduction 
Productivity in construction is considered an important 
criterion to evaluate operational performance by specific 
construction activities. Productivity prediction prior to 
actual commencement of operations is an important task 
that planners or managers in construction have made a 
top priority from the viewpoint of management (Capachi 
1987; Schaufelberger 1998; Kandil and El-Rayes 2005). 

When basic planning is conducted, planners refer to 
their own experiences or historical data in order to predict 
productivity as accurately as possible prior to commen-
cement of site work. Reference manuals representing 
historical data of cost and productivity provide basic 
information that allows planners to predict the productivi-
ty. However, the information, which is comprised of ave-
rage values, provided by the reference manuals is not 

easily applied to various site conditions where numerous 
unexpected factors are at play (Schaufelberger 1998).  

The need for reliable prediction of construction pro-
ductivity has long motivated researchers to investigate 
appropriate methods. However, many methods created 
thus far have limitations such as unreliable prediction 
and, difficult implementation (Han 2005; Han and Halpin 
2005; Han et al. 2006). This study is conducted on the 
basis of the previous researches by Han and Halpin 
(2005), Han et al. (2006), Han et al. (2008) in order to 
resolve the problems and limitations on the suggested 
methodology combining simulation and multiple regres-
sion (MR) techniques.  

This study suggests new methods for productivity 
prediction with the use of construction simulation as a 
tool for data generation, and a MR analysis and an artifi-
cial neural network (ANN) analysis as tools for easy and 
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Fig. 1. Diagram of research method 

 
reliable prediction. This study is also capable of provi-
ding different characteristics and technical performance 
comparisons by two different estimation techniques, a 
MR and an ANN.  

An earthmoving operation was chosen as the const-
ruction activity used for the target operation in this study. 
The reason for selecting an earthmoving operation is that 
it is a fundamental operation of civil and architectural 
construction projects. In addition, it is simple and easy to 
collect data, since it is composed of relatively fewer dif-
ferent activities than are other construction operations. 
Over the past 100 years, earthmoving operations have 
involved the same basic work procedures (i.e., surveying, 
staking, excavating with an excavator or other equipment, 
hauling by a hauler, filling, and compacting by a compac-
tor or other equipment). These work procedures have not 
changed over time, although there have been minor upda-
tes to specifications of some equipment. Despite that 
similar or even identical procedures have been used for a 
lengthy period of time, it remains difficult to predict the 
productivity of this simple operation (Han and Halpin 
2005; Han et al. 2006; Han et al. 2008).  

This study created and developed a new prediction 
methodology that combines several tools: construction 
simulation and either MR analysis or an ANN analysis. 
Several steps are carried out: construction data collection, 
data generation, and productivity prediction based on 
estimation tools. For generation of data that serves as 
input data for implementing an estimation tool, a const-
ruction simulation was used in both estimation tools. MR 

and an ANN were employed as estimation tools using the 
generated data. Quantified comparisons of the prediction 
accuracy between the MR and the ANN techniques were 
also presented. A diagram illustrating the research me-
thod employed in this study is presented in Fig. 1. 

 
2. Method for productivity prediction 
Planners have relied upon three methods to predict produc-
tivity based on: 1) historical data; 2) references, such as RS 
Means cost data by Reed Construction Data, Inc. and 
equipment performance handbooks; 3) methods such as 
construction simulation or statistic analysis. Methods based 
on historical data or references are typically referred to as 
deterministic analysis (Kannan et al. 1997; Kannan 1999). 

 
2.1. Deterministic analysis 
Deterministic analysis was developed for simple calcula-
tion of the productivity of earthmoving operations based 
on equipment characteristics, equivalent grades, and the 
haul distance provided by performance handbooks pub-
lished by most manufacturers. A deterministic model 
primarily focuses on the use of time duration, which is a 
fixed or constant value, with the assumption that any 
variability in the task duration is ignored (Halpin and 
Riggs 1992). Authors described an example of a simple 
deterministic model for earthmoving operations, consist-
ing of a scraper for hauling and a pusher dozer for load-
ing. Deterministic analysis tends to overestimate actual 
field productivity.  
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2.2. Simulation techniques 
With rapid advances in computer technologies, research-
ers have tried to create simulation models to help con-
struction engineers predict construction productivity prior 
to commencing actual activities. Simulation models have 
been extensively developed and broadly used as man-
agement tools within manufacturing and business indus-
tries. The CYCLONE (CYCLic Operation Network) 
system approach was developed in the early 1970s. This 
system demonstrated potential for modeling and simula-
tion of repetitive construction processes. In 1982, Lluch 
and Halpin developed a microcomputer version of 
CYCLONE named MicroCYCLONE. Many improve-
ments to MicroCYCLONE have been developed in the 
past two decades. In general, a construction simulation is 
conducted in several steps (i.e., site observation, duration 
and resource data collection, modeling using CYCLONE, 
running simulation, and sensitivity analysis) (Kannan 
1999; Wang and Halpin 2004). Martinez and Ioannou 
created STROBOSCOPE (State ResSorce Based Simula-
tion of COnstruction ProcESSES), which adopts the 
CYCLONE methodology such as normal, queue, and 
combi activities (Martinez and Ioannou 1994; Ioannou 
and Martinez 1996). WebCYCLONE, another variation 
of the CYCLONE methodology, simplifies the simulation 
modeling process and makes it accessible to construction 
practitioners with limited simulation experience (Halpin 
and Riggs 1992).  

Simulation techniques are currently improved 
through many researches for overcoming practical limita-
tions to be applied to real operations. Symphony, one of 
simulation systems, developed by Hajjar and AbouRizk 
(2002) was the unified modeling technique under an in-
tegrated development environment (Hajjar and AbouRizk 
2002; Mohamed and AbouRizk 2005). Based on this 
technique, AbouRizk and his colleagues presented the 
developed simulation methodologies based on intelligent 
decision supports for easy usage by practitioners in fields 
(Mohamed and AbouRizk 2005, 2006; van Tol and 
AbouRizk 2006). Another effort pursuing more reliable 
predicting results was presented as a form of situation-

based simulation models based on the cause-and effect 
relationships by Choy and Ruwanpura (2006). These all 
research accomplishments were mainly focused on imp-
rovement of simulation techniques to be applied to const-
ruction field with more efficiency. The basic elements 
used in the CYCLONE method are shown in Table 1. 

 

2.3. Multiple regression analysis 
Regression analysis is the most commonly performed 
statistical procedure for prediction of certain tendencies 
based on observed datasets. The ultimate goal of a regres-
sion analysis is not only to find the values of parameters, 
but also to determine what type of mathematical function 
fits best. Using this tool, researchers have been able to 
investigate and understand the relationships between 
explanatory variables and a result called a response vari-
able (Devore 2000). 

Smith (1999) presented stepwise MR techniques to 
investigate the relationships between earthmoving opera-
tion conditions and productivity and to develop a deter-
ministic model allowing earthmoving operations to be 
planned for many different situations. This MR model 
using input data taken from four different highway const-
ruction projects demonstrated that there is a strong linear 
relationship between operation conditions and productivi-
ty (Smith 1999; Han et al. 2008). 

 
2.4. Artificial neural network technique 
An ANN is an extremely powerful tool that provides a 
computing environment in the form of a highly intercon-
nected network of many simple processing units capable 
of acquiring, representing, and applying mappings from 
one space of information as inputs to another space as 
outputs. An ANN is composed of simple processing ele-
ments, called neural network artificial neurons, an archi-
tecture comprised of connections between the elements, 
and weights associated with each connection. The ANN 
performs computations by propagating changes in activa-
tion between its processing elements over weighted con-
nections (Tsoukalas and Uhrig 1997). 

 Table 1. Basic CYCLONE elements (Halpin and Riggs 1992) 
Name Symbol Function 

Normal Activity  
This is an activity similar to the COMBI. However, units arriving at this element begin 
processing immediately and are not delayed. 

Combination 
(COMBI) Activ-

ity  
This element is always preceded by Queue Nodes. Before it can commence, units must be 
available at each of the preceding Queue Nodes. If units are available, they are combined 
and processed through the activity. If units are available at some but not all of the preced-
ing Queue Nodes, these units are delayed until the condition for combination is met. 

Queue Node 
 

This element precedes all COMBI activities and provides a location at which units are 
delayed pending combination. Delay statistics are measured at this element. 

Function Node  
It is inserted into the model to perform special function such as counting, consolidation, 
marking, and statistic collection. 

Accumulator 
 

 
It is used to define the number of times the system cycles.  

Arc  Indicates the logical structure of the model and direction of entity flow. 
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Shi (1999) demonstrated the use of an ANN to pre-
dict earthmoving production and presented an easy me-
thod for a user who does not have a background in com-
puter simulation to predict the productivity of 
earthmoving operations. However, the results of the neu-
ral network system were not validated through a compari-
son with actual data collected from job sites. In addition, 
there is a lack of information about the detailed compo-
nents, including the architecture of the network (Shi 
1999). Schabowicz and Hola (2007) and Hola and 
Schabowicz (2010) investigated recently the productivity 
of earthworks using ANN. These researches presented the 
efficiency of the ANN as a feasible tool capable of the 
productivity estimation in construction. This study su-
ggests the additional methodology of the input data gene-
ration using a simulation technique in case of the shortage 
of the collected construction data unlike other researches 
mentioned previously. 

 
2.5. Limitations of the conventional methods for  
productivity prediction 
Many studies have presented the limitations of existing 
productivity prediction methods. A deterministic analysis 
does not present actual productivity based on real situa-
tions such as idleness and loss of productivity due to 
random variation in the system activity duration (Halpin 
and Riggs 1992). While simulation methods are able to 
overcome these limitations, there are still considerable 
complexities involved in making necessary models re-
flecting actual operational situations. Mathematical rela-
tions between productivity and operating conditions can 
be determined through a MR analysis, and such relations 
would then be more easily applied than other techniques. 
A large amount of input datasets covering various actual 
conditions necessitates a reliable regression model. How-
ever, in reality, acquiring a large amount of actual data-
sets from various construction job sites presents practical 
challenges. Implementation by an ANN has the same 
limitation mentioned above in practical application 
caused by insufficient input datasets (Han et al. 2006; 
Han et al. 2008). It noted that limitations of the conven-
tional methods were mainly caused by the difficulty of 
actual data collection from jobsite.  

 
3. Data collection and data generation 
In compliance with the need of a new methodology ena-
bling straightforward prediction of productivity, this 
study suggests a methodology that combines a simulation 
method and an estimation tool, either a MR analysis or an 
ANN analysis. The simulation method is used for gener-

ating a large amount of data that is then used as input data 
in creating a MR model or an ANN model. The method-
ology of MR and an ANN respectively based on a con-
struction simulation provides a means of predicting pro-
ductivity as well as establishing the relationship between 
operating conditions and productivity. 

 
3.1. Data collection 
As the first phase, actual raw datasets were collected 
from construction sites where earthmoving was con-
ducted in West Lafayette and Lafayette, Indiana. Table 2 
describes the six construction projects where data collec-
tion was conducted (Han 2005; Han et al. 2008). 

 
Table 2. Descriptions of earthmoving projects 

Projects Fleet organization Haul distances in 
two ways (miles) 

Project A 1 excavator, 7 trucks 3 
Project B 1 excavator, 1 dozer, 2 

trucks 2.9 
Project C 1 excavator, 4 trucks 15.8 
Project D 1 excavator, 10 trucks 4.8 
Project E 1 excavator, 2 trucks 1.1 
Project F 1 excavator, 7 trucks 9.4 

 
From the projects described in Table 2, raw datasets 

were collected for four or five hours in two or three con-
secutive days at each jobsite. A total of 23 separate hour-
ly data including a series of multiple cycles were collec-
ted. Each dataset represents a remarkable sample of 
earthmoving operations involving both a two-link system 
composed of an excavator and trucks and a three-link 
system composed of an excavator, a dozer, and trucks. 
Video of the earthmoving operations in the jobsites was 
recorded, providing consistent observations for the analy-
sis of the event times of each piece of equipment. The 
event times analyzed in the video tapes made it possible 
to determine the cycles times of each activity using a stop 
watch analysis, interviews, and field measurement (Eve-
rett et al. 1998). Sieve analysis using soil samples taken 
from the jobsites provided basic information regarding 
the soil characteristics. The travel time, loading time, 
machine break time, and resurveying time were acquired 
through observations and analyses. Interviews with site 
personnel and field measurements provided the basic 
conditions of the jobsite, such as hauling distance, 
equipment capacity and the number of pieces of equip-
ment and probabilities of machine break and resurveying 
(Han 2005; Han et al. 2008). Table 3 summarizes the data 
collected from the selected jobsites. 

 
Table 3. Summary of data characteristics collected from the jobsites 

Methods of data collection Types of data collected 
Stop watch analysis using 
videotaping 

Machine break time, Resurveying time, Loading duration, Travel duration, Number of 
loading Site  

observations Interviews Equipment capacity (bucket of excavator), Number of equipment, Operators’ experi-
ence, Age of equipment 

Field measurements Soil conditions, Hauling distance, Probabilities of machine break and resurveying 
Calculations Hauling speed, Productivity 
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Fig. 2. One of CYCLONE simulation models for project A 

 

3.2. Simulation 
WebCYCLONE, a construction simulation tool, was run 
using the collected raw datasets. The data obtained from 
the simulation are used as preliminary data that are ex-
panded to a large number of datasets to be utilized as 
input datasets for implementing a MR or an ANN analy-
sis. Fig. 2 demonstrates one of the simulation models 
based on a dataset collected from the construction site for 
Project A.  

This simulation model was designed to measure the 
productivity in terms of truck-dumps per hour. It was 
noted in the simulation model that 4.55% of interruptions 
by the on-site surveyor were observed during the 
excavation process. These interruptions were due to re-
staking the knock-down stacks. This kind of interruption 
is generally observed in all sites where earthmoving is 
conducted. The result of the simulation model, which 
reflects actual situations, indicates that this interruption 
causes a delay of the cycle time and eventually lowers 
productivity. The duration associated with various cycle 
times, such as loading the earth to truck, trucks’ traveling 
and returning were assumed to fit a beta distribution. 
According to a study by AbouRizk and Halpin (1992), 
these distributions could be used in modeling random 
input processes of construction duration periods for simu-
lation studies. 

 
3.3. Comparison of actual data and simulated data 
In order to establish a reliable prediction method, the 
collected raw data were replaced by the data obtained 
from the construction simulation, since it is difficult for 
users to collect a sufficient amount of data by actual 
measurement and site observation from jobsites.  

The reliability and confidence of replacing the actu-
al data with the simulated data could be verified by statis-
tical analyses. The Wilcoxon signed rank test is a method 
for checking the similarity of two samples. It tests the 
median difference between pairs of datasets in two sam-
ples where a normal distribution is not assumed. Since 
the difference between two samples is calculated, the 
simulated data can be measured on an interval scale that 
corresponds to with the degree of difference from the 
actual data (Devore 2000).  

When the data consists of pairs of (X1, Y1)…, (Xn, 
Yn), the differences D1 = X1 – Y1,…,  Dn = Xn – Yn are 
checked with testing hypotheses on the expected diffe-
rence µD, by using the Wilcoxon signed-rank test on the 
Di’s (Devore 2000).  

A Wilcoxon signed-rank test of the difference 
between the actual data and the simulated data was con-
ducted using the SAS program. Based on the test assump-
tions, the null hypothesis and rejection regions for a level 
α test are as follows: 

Null hypothesis: H0: D (Xi–Yi: Absolute magnitude 
between Xi, the actual measurement, and Yi, the simula-
tion models) = 0; 

Alternative hypothesis: Ha: D (Xi –Yi) ≠ 0. 
The UNIVARIATE procedure provided by the SAS 

program was conducted to test the statistical values. The 
P values were used for investigation of acceptance or 
rejection of the null hypothesis.  

Halpin and Riggs (1992) illustrated that productivity 
values vary with the means by which those values are ob-
tained. According to their study, the productivity value 
obtained through actual measurement has approximately 
10% points of loss in deterministic productivity due to 
bunching caused by random travel times. In contrast with 
deterministic productivity, simulated productivity is esti-
mated with consideration of the bunching effect and  
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variances in travel times, and it generally has a higher va-
lue than the productivity value obtained through actual 
measurement. The value of the simulated productivity in this 
study was between that of the deterministic productivity and 
that of the actual productivity (Halpin and Riggs 1992).  

It is assumed that simulated productivity locates in 
five percentage points, which can be a criterion located 
between zero and 10% of the average range of differences 
by the deterministic productivity and the actual producti-
vity, higher than actual productivity based on the infor-
mation produced from the study by Halpin and Riggs 
(1992). A Wilcoxon signed rank test was conducted to 
compare two groups of datasets: the value of the simula-
ted productivity and the 5% higher value than the actual 
productivity (Han 2005; Han et al. 2008). Table 4 shows 
the results of the Wilcoxon signed rank test for the pairs 
of data described above. 

 
3.4. Data generation 
The comparison of simulated data and actual data based 
on a statistical methodology presented in the previous 
section showed that the simulation data could be used as 
a substitute for the limited amount of raw data collected 
from jobsites. The next step is to generate datasets using a 
simulation methodology. The generated datasets by the 
simulation serve as input data in estimation tools such as 
a MR and an ANN analysis. A guideline must be estab-
lished prior to input data generation (Han 2005). 

Interviews were conducted with site personnel and 
site observations were carried out to identify the main 
factors, which varied depending on actual site conditions 
and influenced productivity significantly. The following 
four factors among 17 factors listed in Table 3 were se-
lected: 1) the probability of resurveying, 2) the number of  

trucks, 3) the number of excavators, and 4) the resurvey-
ing time. All the other factors were assumed to have been 
invariable in a single dataset collected within one hour. 
Variable durations, such as the loading time and the tra-
vel time, were implemented using duration input modules 
in the simulation methodology. The probability of machi-
ne breakdown was excluded from the main variable fac-
tors, because the probabilities of this event were so low 
that they would not have influenced productivity (Han et 
al. 2008). 

− Several guidelines, listed below, for input data 
generation based on the simulation methodology 
were determined: 

− The low and high levels of the numbers of trucks 
and excavators in each dataset were determined 
by analyzing the collected datasets and through 
site observations;  

− The specific ranges of the low and high levels of 
the probability of resurveying/checking and the 
resurveying/checking time were determined from 
the actual values of the collected data and the 
mean values of distribution of all datasets in each 
system; and 

− The numbers of generated datasets derived from 
one actual dataset must be identical so that all the 
datasets were evenly reflected. 

To determine the low and high levels of the probabi-
lity of resurveying and the resurveying time, the best-fit 
distributions were investigated to find the mean value, 
which was assumed to function as the low or high level 
for data generation. Figs 3 and 4 show the best-fit distri-
butions, obtained via the Best Fit program, of the resur-
veying time and the probability of resurveying (Han and 
Halpin 2005; Han 2005; Han et al. 2008).  

 

Table 4. Results of Wilcoxon signed-rank test of all datasets 
Productivity No Project name Dataset Actual Simulation P-value Confidence level 

(%) 
1 18.53 19.10 
2 13.29 14.22 
3 24.51 26.00 
4 15.97 16.13 

1 Project A 
5 19.37 19.82 

0.0625 95 

1 5.01 5.08 
2 2.54 2.62 2 Project B 
3 3.33 3.40 

0.0625 95 
1 4.05 4.17 3 Project C 2 3.50 3.74 0.5000 95 
1 16.42 17.48 
2 8.09 8.38 
3 15.19 15.52 
4 18.14 18.56 

4 Project D 
5 16.04 16.12 

0.0625 95 

1 4.39 4.57 
2 3.26 3.37 5 Project E 
3 3.87 3.88 

0.2500 95 
1 15.46 16.14 
2 15.60 15.94 
3 14.31 16.90 
4 12.20 12.72 

6 Project F 
5 14.75 15.70 

0.0625 95 
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The mean values, which were derived from the best-
fit distributions shown in Figs 3 and 4, are listed in Tab-
le 5. The number of resources associated with the simula-
tion methodology was determined from the range of avai-
lability of such resources in the jobsites. This information 
was determined through interviews with site personnel. 
The low or high levels of the number of equipment were 
determined depending on the minimum or maximum 
number of equipment available at the jobsites. Based on 
the guideline described previously, one dataset collected 
from the actual jobsites generated 192 datasets (i.e., com-
binations of 2 x 2 x 3 x 16 for cases under the two-link 
system or 2 x 2 x 2 x 3 x 8 for cases under the three-link 
system). This process, therefore, generated 4,416 datasets 
(i.e., 23 actual datasets x 192 simulated datasets / one 
actual dataset) (Han 2005; Han and Halpin 2005). 

 

 
Fig. 3. Beta distribution of datasets for the probability of resur-
veying 

 

 
Fig. 4. Gamma distribution of datasets for resurveying time 

Table 5. The best fitted distribution and mean values of two 
main factors 

Factors Distribution Mean 
Probability of resurveying Beta 21.68% 
Resurveying time Gamma 14.43 min 

 
4. Productivity prediction modeling 
4.1. Model configuration 
As stated previously, a total of 17 factors that were pre-
sumably considered to affect the productivity were de-
termined by interviews and site observations, as listed in 
Table 2. During the interviews with site personnel, it was 
noted that data correlated with several factors among 17 
factors can be seldom collected depending on actual site 
conditions. Some factors that could not be identified be-
fore commencing actual operation were also included in 
these 17 factors. Owing to these problems the established 
methodology would not be appropriate for predicting the 
productivity, the ultimate goal of this study. Three model 
types were therefore considered and investigated in order 
to resolve these problems: 1) Model I: a full model with 
17 factors, 2) Model II: a reduced model with 10 factors, 
and 3) Model III: a reduced model with 7 factors (Han 
2005). 

Model I was associated with all 17 factors, which 
were regarded to affect the productivity. Accordingly, 
Model I was expected to yield the most reliable predic-
tion results. However, the factors that were included in 
Model I, such as the probability of resurveying and resur-
veying time, the probability of machine break time, ma-
chine break time, and so on, could not be identified befo-
re actual operations started or resumed. Thus, Model I 
was limited as a prediction tool. On the contrary, the 
reduced models, Models II and III, were expected to yield 
prediction results, because they were composed of only 
factors that could be identified prior to actual operations. 
The reduced models were separated into one model with 
sufficient information, named Model II, and one model 
with insufficient information, named Model III. The crite-
rion determining sufficient or insufficient information 
was whether three specific factors were included in the 
models or not. These three variables were excavator ope-
rator experience, excavator age, and truck age, which are 
considered in Model II. On the other hand, these three 
factors are not considered in Model III. These three fac-
tors may be identified or not, depending on different ma-
nagement levels (Han 2005; Han et al. 2008). The factors 
used in each model are shown in Table 6. 

 
4.2. Modeling by MR analysis 
A MR model provides the prediction of specific results, 
demonstrating the relationship between a response vari-
able, i.e., in the present study, the productivity of each 
dataset, and the explanatory variables, which are the fac-
tors (i.e., travel times, loading times, and hauling dis-
tance) affecting the productivity. In order to achieve the 
best-fitted regression model, three steps were conducted  



S. Han et al.  Technical comparisons of simulation-based productivity prediction methodologies by means of estimation tools... 

 

272 

Table 6. Variables used in three models 
Variables Models 

Descriptions Denotes I II III 
Haul distance A O O O 
Hauling speed B O X X 
Bucket capacity of excavator C O O O 
Number of loading D O O O 
Probability of machine break E O X X 
Machine break time F O X X 
Prob. of resurveying G O X X 
Resurveying time H O X X 
Soil conditions I O O O 
Loading duration J O X X 
Travel duration K O X X 
Number of trucks L O O O 
Number of dozers M O O O 
Number of excavators N O O O 
Experience of excavator’s 
operator O O O X 
Age of excavator P O O X 
Age of trucks Q O O X 
Productivity by simulation models O O O 

 
in this study: 1) step regression, 2) transformations, and 
3) ridge regression (Devore 2000; Neter et al. 1996; Han 
et al. 2008). 

Table 7 shows the finalized MR models (I, II, and 
III) obtained through the three steps mentioned above. 
They present mathematical relationships between the 
explanatory variables, denoted as predictors, and a res-
ponse variable. These mathematical relationships allowed 
the user to predict the productivity when input data ref-
lecting actual situations is provided prior to actual com-
mencement of site work (Han et al. 2008). 

 
4.3. Modeling by ANN analysis 
A well-trained ANN with sufficient input data can pro-
vide appropriate estimation results (Tsoukalas and Uhrig 
1997). The researches by Schabowicz and Hola 
(Schabowicz and Hola 2007, Hola and Schabowicz 2010) 
introduced the usage of ANN for productivity prediction 
based on a conjugate gradient algorithm (BPNN–CGB) 
with five input data; number of excavators, number of 

trucks, excavator bucket capacity, truck loading platform 
capacity, and type of road surface. 

As stated previously, the shortage of raw data, one 
of problems for usage of the ANN, was resolved by data 
generation based on a simulation. The architecture of the 
network used in this study was a multi-layer 
“feedforward” network. The ANN model in this study 
was designed with two hidden layers with 50 neurons and 
20 neurons, respectively, through numerous experiments. 
Two “tansig” functions were adopted as the first two 
transfer functions of the two hidden layers and one “pure-
lin” function was adopted as the function of the last out-
put layer. As a training algorithm, “resilient backpropaga-
tion (tainrp)” was adopted as it provides useful 
functionality for multi-layer networks. “Sigmoid” transfer 
functions compress an infinite input range into a finite 
output range. Most backpropagation algorithms tend to 
have small changes in the weights and biases even though 
the weights and biases are far from their optimal values. 
The purpose of the resilient backpropagation (Rprop) 
training algorithm is to eliminate these limitations (De-
muth and Beale 2001). Resilient backpropagation allows 
the network to approach the goal, denoted by the diffe-
rences between a target value and the output with a steep 
gradient.  

In addition, functions of pre-processing and post-
processing, named “premnmx and postmnmx” were ad-
ded in this study. These functions are useful to scale the 
inputs and targets such that they always fall within a spe-
cified range (Han 2005). Fig. 5 shows a basic diagram of 
the network, which was optimally designed for accomp-
lishing the goal of this study. 

 

 
Fig. 5. Diagram of basic design for ANN analysis 

 
Table 7. Variables and coefficients of MR models I, II, and III 
Models Regression Models 

I 

Y = 2.0584 + (1.2702 * G) + (0.1018 * L) + (–0.0729 * AI) + (0.0081 * AL) + (–0.0646 * BG) + (0.0443 * BI) + 
(0.0260 * BM) + (–0.0045 * CK) + (0.0185 * CL) + (–0.5733 * CM) + (–0.0042 * DH) + (–0.0252 * DI) + (–
0.1777 * EF) + (0.0028 * FN) + (1.5072 * GG) + (–0.1593 * GH) + (–0.5425 * GI) + (0.0420 * GK) + (–0.1206 * 
GL) + (0.0003 * HH) + (0.0051 * HJ) + (0.0007 * HK) + (–0.0014 * HL) + (–0.0013 * HO) + (0.0080 * HQ) + 
(0.0088 * IL) + (–0.4720 * IM) + (–0.0087 * JK) + (–0.0247 * JP) + (–0.0075 * LL) + (0.0087 * LM) + (0.0017 * 
LN) + (0.0642 * LO) + (–0.0776 * JM) 

II 
Y = 0.6912 + (0.0179 * L) + (–0.0049 * AC) + (0.0272 * AI) + (–0.0018 * AL) + (–0.0013 * DL) + (–0.0055 * 
DP) + (–0.0195 * IO) + (0.0013 * LL) + (–0.0014 * LM) + (–0.0003 * LN) + (0.0016 * LO) + (0.0156 * MM) + 
(–0.0230 * MO) 

III 
Y = 0.6984 + (-0.0028 * N) + (–0.0004 * AD) + (0.0314 * AI) + (–0.0018 * AL) + (–0.0137 * AM) + (–0.0078 * 
CC) + (–0.0042 * CL) + (–0.0044 * DD) + (–0.0430 * DI) + (–0.0009 * DL) + (0.0018 * DM) + (–0.0043 * IL) + 
(0.0013 * LL) + (–0.0020 * LM) 
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Fig. 6. Training result the model I in the fitted predictive model 
B using MATLAB Program 

 
 

 
Fig. 7. Validation result the model I in the fitted predictive 
model B using MATLAB Program 

 
For selection of datasets for training and validation, 

one-tenth of the datasets generated by the simulation 
models were used for validation and the remaining were 
used for training. For instance, a total of 4,416 datasets 
was divided into 3,975 datasets and 441 datasets for trai-
ning and validation, respectively. Model I is reviewed in 
Figs 6 and 7, which show the procedures and results ba-
sed on an ANN as an example. Model I was trained based 
on resilient backpropagation with pre-processing and 
post-processing with a 0.001 error goal and 20,000 
maximum epochs (Han 2005). 

Fig. 6 shows a goal graph showing 0.001 as the ran-
ge of the errors, which were the difference between the 
optimal target value and the output reaching the goal as 
0.001. 

Fig. 7 shows that the validation results were well-
fitted with the optimal target value. The R value of 0.997, 
shown in Fig. 7, is close to 1, which also indicates that 
the trained model reliably estimates the optimal result. 

 

5. Comparison of results by two prediction models 
5.1. Comparison of results by the fitted predictive 
model A: MR analysis 
The fitted predictive model A, a predictive model using a 
MR analysis, employs procedures based on the construc-
tion simulation, data generation, and a MR analysis. A 
comparison between raw data collected from jobsites and 
the results yielded by the fitted predictive model A is 
presented in this section. A comparison of these two val-
ues provides an assessment of the fitted predictive model. 
The comparison rates shown in Table 8 represent the 
percentage rates of the predicted productivity by the fitted 
predictive model A to the actual productivity measured 
directly from jobsites (Han et al. 2008). 

According to Table 8, the average comparison rates 
of model I, model II, and model III were 99.06%, 
91.23%, and 90.89%, respectively. The differences 
among the average comparison rates of each model also 
indicated that the factors that were included in model I 
and excluded in models II and III, i.e., the probability of 
resurveying and resurveying time, the probability of ma-
chine break time, machine break time, and so on, signifi-
cantly influenced the predicted results. The factors that 
were included in model II and excluded in model III, such 
as experience of excavator’s operator, age of excavator, 
and age of trucks, did not have a significant influence on 
the predicted results (Han et al. 2008). 

 
5.2. Comparison of results by the fitted predictive 
model B: ANN analysis 
The results by the fitted predictive model B using ANN 
analysis were compared to actual productivity calculated 
based on raw collected data. Table 9 presents a compari-
son of the actual productivity and the predicted produc-
tivity by the fitted predictive model B.  

As listed in Table 9, the average comparison rates of 
model I, model II, and model III were 103.06%, 98.80%, 
and 99.28%, respectively. Unlike the fitted predictive 
model A, there were not significant differences among 
the average comparison rates of model I, II, and III. Fo-
cusing solely on the average comparison rates of each 
model, the average comparison rate of model III was 
closer to 100% than was that of model I. The standard 
deviation of model I, however, is clearly less than those 
of model II and III. This observation indicates that the 
predictive results by model I, which was composed of all 
17 factors, was more precise and stable than those of the 
other models. 

 
5.3. Comparison of the predictive results between the 
fitted predictive models A and B 
As presented on previous, this study provided two com-
parisons of the fitted predictive models A and B. Accord-
ing to these comparisons, it noted that the predictive re-
sults of predictive model A in model I, which included all 
17 factors, were more reliable than those of model B. The 
predictive results in models II and III, however, showed
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Table 8. Comparison of the actual productivity and the predicted productivity by the fitted predictive model A 
Model I Model II Model III Actual Predicted Comparison Predicted Comparison Predicted Comparison Data sets 

Productivity Productivity Rate (%) Productivity Rate (%) Productivity Rate (%) 
1 18.53 18.60 100.38 13.71 73.99 13.52 72.94 
2 13.29 13.84 104.15 13.71 103.16 13.52 101.70 
3 24.51 22.32 91.07 13.71 55.94 13.52 55.14 
4 15.97 15.84 99.20 13.71 85.85 13.52 84.63 
5 19.37 17.85 92.14 13.71 70.78 13.52 69.78 
6 5.01 4.63 92.48 3.85 76.78 3.81 76.05 
7 2.54 2.51 98.83 3.85 151.44 3.81 150.00 
8 3.33 3.18 95.59 3.85 115.51 3.81 114.41 
9 4.05 3.62 89.47 3.27 80.73 3.22 79.61 
10 3.50 3.63 103.83 3.27 93.42 3.22 92.12 
11 16.42 16.63 101.30 12.72 77.45 12.83 78.15 
12 8.09 9.46 116.91 12.72 157.20 12.83 158.62 
13 15.19 15.01 98.82 12.72 83.72 12.83 84.48 
14 18.14 17.50 96.45 12.72 70.11 12.83 70.74 
15 16.04 14.55 90.69 12.72 79.29 12.83 80.00 
16 4.39 4.59 104.58 3.91 89.16 3.93 89.42 
17 3.26 3.23 99.15 3.91 120.06 3.93 120.42 
18 3.87 3.62 93.56 3.91 101.14 3.93 101.44 
19 15.46 15.77 101.99 11.84 76.58 11.79 76.29 
20 15.6 15.45 99.02 11.84 75.90 11.79 75.60 
21 14.31 16.25 113.55 11.84 82.74 11.79 82.42 
22 12.20 11.82 96.86 11.84 97.05 11.79 96.67 
23 14.75 14.52 98.41 11.84 80.27 11.79 79.96 

Average   99.06  91.23  90.89 
Standard deviation   6.72  24.74  24.84 

 
Table 9. Comparison of the actual productivity and the predicted productivity by the fitted predictive model B 

Model I Model II Model III Actual Predicted Comparison Predicted Comparison Predicted Comparison Data sets 
Productivity Productivity Rate (%) Productivity Rate (%) Productivity Rate (%) 

1 18.53 18.95 102.27 15.57 84.03 15.36  82.89 
2 13.29 14.32 107.75 15.57 117.16 15.36  115.58 
3 24.51 25.69 104.81 15.57 63.53 15.36  62.67 
4 15.97 15.75 98.62 15.57 97.50 15.36  96.18 
5 19.37 19.55 100.93 15.57 80.38 15.36  79.30 
6 5.01 4.85 96.81 4.01 80.04 4.09  81.64 
7 2.54 2.63 103.54  4.01 157.87 4.09  161.02 
8 3.33 3.50 105.11 4.01 120.42 4.09  122.82 
9 4.05 4.05 100.00 3.97 98.02 4.11  101.48 
10 3.50 3.83 109.43 3.97 113.43 4.11  117.43 
11 16.42 17.13 104.32 12.93 78.75 12.74  77.59 
12 8.09 8.09 100.00 12.93 159.83 12.74  157.48 
13 15.19 15.39 101.32 12.93 85.12 12.74  83.87 
14 18.14 17.88 98.57 12.93 71.28 12.74  70.23 
15 16.04 16.02 99.88 12.93 80.61 12.74  79.43 
16 4.39 4.36 99.32 3.92 89.29 4.08  92.94 
17 3.26 3.44 105.52 3.92 120.25 4.08  125.15 
18 3.87 3.80 98.19 3.92 101.29 4.08  105.43 
19 15.46 17.29  111.84 13.59 87.90 13.50  87.32 
20 15.60 16.04 102.82 13.59 87.12 13.50  86.54 
21 14.31 16.70 116.70 13.59 94.97 13.50  94.34 
22 12.20 11.91 97.62 13.59 111.39 13.50  110.66 
23 14.75 15.50 105.08 13.59 92.14 13.50  91.53 

Average   103.06  98.80  99.28 
Standard deviation   4.90  24.40  25.13 
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that predictive model B provides more reliable results 
than model A. This analysis indicates that model B would 
be more useful in productivity prediction, since models II 
and III composed of factors that can be identified before 
commencing actual operation, could be used for produc-
tivity prediction under actual site situations. However, the 
standard deviations of the comparison rates in Tables 8 
and 9 show that further improvement of both models is 
required.  

There are performance differences in the two esti-
mation tools in terms of implementation. The MR analy-
sis included in the fitted predictive model A eventually 
provided a mathematical relationship between the factors 
and the predictive productivity. This model would enable 
a user to obtain the predictive result by merely inputting 
the factors which is the information under specific site 
conditions. However, implementation of the fitted predic-
tive model B, which includes an ANN analysis, is diffi-
cult compared to predictive model A, since professional 
skill for running the MATLAB program (Demuth and 
Beale 2001) is required for implementation (Han 2005). 

 
6. Conclusions 
Productivity prediction is an important issue to construc-
tion managers and planners. A literature reviews con-
ducted in this study revealed that many studies have been 
performed to date with the goal of improving productivity 
prediction results. Most methodologies developed thus 
far were based on one of various methods, and present 
several limitations in terms of practical applications. This 
study accordingly presented a new methodology that 
combines methods that function correlatively. The meth-
ods used in this study were actual data collection, data 
generation using construction simulation, and estimation 
tools, that is, MR and ANN analysis. Two reliable esti-
mation tools, MR and ANN analysis, which have been 
widely used for prediction results in engineering, serve as 
the last step correlated to data collection and data genera-
tion. This study also presented the differences of basic 
characteristics and comparisons of technical performance 
yielded by MR and ANN analysis.  

The first step to produce the fitted predictive model 
was data generation, which was based on actual data 
collection from jobsites. This step enables the user to 
secure a sufficiently large quantity of input data to run the 
estimation tools, i.e., MR and ANN analysis. A construc-
tion simulation technique was used to overcome difficul-
ties in acquiring raw data and a Wilcoxon signed-rank 
test was conducted to replace the actual productivity cal-
culated based on raw data with the simulated productivi-
ty. The next step was implementation of estimation tools 
using the generated data as input data. This study provi-
ded fitted predictive models A and B using either MR or 
ANN analysis, respectively. Each predictive model was 
composed of models I, II, and III, which varied according 
to the factors included or excluded.  

Comparison between the actual productivity and the 
results yielded by fitted predictive model A showed that 
the average comparison rates were 99.06%, 91.23%, and 
90.89% of models I, II, and III, respectively. In contrast 

with the results obtained by fitted predictive model A, the 
average comparison rates of fitted predictive model B 
were 103.06%, 98.80%, and 99.28% of model I, II, and 
III, respectively. These results indicated that predictive 
model B was better fitted to the actual data than was mo-
del A. Implementation of predictive model B, however, is 
difficult in that running the MATLAB program demands 
specific skill. Implementation of predictive model A was 
relatively easier than that of model B, since the user can 
obtain predictive results by merely inputting the informa-
tion for each factor or explanatory variable. 

The fitted predictive models suggested in this study 
enable planners who presently are faced with the insuffi-
cient actual datasets, to carry out reliable productivity 
prediction by means of combination of the simulation 
either MR or ANN. This study also contributes to the 
research community by providing a new methodology 
that combines various methods and produces more reliab-
le prediction results than conventional predictive me-
thods. 
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IMITACINIŲ PRODUKTYVUMO PROGNOZAVIMO METODIKŲ TECHNINIS PALYGINIMAS, PASITELKUS VERTINIMO PRIEMONES, AKCENTUOJANT ĮPRASTUS ŽEMĖS DARBUS  
S. Han, T. Hong, G. Kim, S. Lee 
S a n t r a u k a  
Prieš prasidedant darbams statybų planuotojai mėgina numatyti produktyvumą, kuris yra reikšmingas kriterijus, lemiantis 
statybų efektyvumą. Jau pristatyta daug įvairių metodų, atskirai grindžiamų deterministiniais skaičiavimais, modeliavimo 
metodikomis, statistiniais metodais arba kitomis sprendimų priėmimo priemonėmis. Tačiau praktine prasme kiekvienas 
metodas, priklausantis nuo vienos vertinimo priemonės, turi kelis trūkumus. Šiame tyrime pristatomi nauji prognozavimo 
modeliai: 1) A modelis, siejantis modeliavimą ir daugianarės regresijos metodiką – bendrą vertinimo metodiką, pagrįstą 
statistikos sąvokomis; 2) B modelis, siejantis modeliavimą ir dirbtinio neuroninio tinklo (DNT) metodiką – galingą prog-
nozavimo priemonę inžinerijoje. Šiame tyrime, naudojant pristatytus modelius, pagal kiekybinius duomenis palygintas 
faktinių ir prognozuotų produktyvumo duomenų patikimumas. Paaiškėjo, kad naudojant B modelį išprognozuotas rezulta-
tas faktinius produktyvumo duomenis atitiko labiau nei A modelio atveju. Tačiau technine prasme B modelį, pagrįstą 
DNT analize, praktinėje aplinkoje sunku įdiegti. Šie palyginimai atskleidė, kad prognozuojami rezultatai yra patikimi, o 
kiekvieną modelį galima taikyti efektyviai. Šiame tyrime nagrinėjamos pagrindinės charakteristikos ir techniškai palygi-
nami kiekvienos metodikos imitaciniai daugianarės regresijos arba DNT metodai. Rezultatai moksliniams darbuotojams 
leidžia kurti arba plėtoti naują prognozavimo metodiką konkretiems procesams, kai trūksta faktinių duomenų, surinktų 
darbo vietose. Techninis rezultatų, gautų naudojant pavyzdines vertinimo priemones – daugianarę regresiją ir DNT, efek-
tyvumo palyginimas leidžia vartotojams pasirinkti konkrečiai situacijai tinkamesnę priemonę. Be to, šiame tyrime siūlomą 
metodiką galima išplėsti ir statybose taikyti ne tik žemės, bet ir kitiems darbams.  
Reikšminiai žodžiai: statybos, produktyvumas, žemės darbai, modeliavimas, neuroninis tinklas, regresija. 
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