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Abstract. Multi-Attribute Utility Theory (MAUT) is an evaluation scheme which is very popular by decision makers for 
evaluating their judgments. According to MAUT, the overall evaluation U(x) of an object x is defined as a weighted addi-
tion of its evaluation with respect to its relevant value dimensions. The recent years have witnessed a huge concentration 
and interest in intelligent buildings’ performance that is increasingly evidenced in building design and construction. Intel-
ligent buildings (IBs) are also under assessment according to their IB related characteristics and actual circumstances. For 
this aim, in this paper a fuzzy multiple attribute utility model for intelligent building assessment is proposed and three al-
ternative intelligent buildings for a business center in Istanbul are evaluated. 
Keywords: Multiple attribute, utility model, fuzzy, decision making, intelligent building, assessment. 

 
1. Introduction 
The word “intelligent” was first used to describe build-
ings in the United States at the beginning of the 1980s. 
The concept of “intelligent building” was stimulated by 
the development of information technology and increas-
ingly sophisticated demand for “comfort living environ-
ment and requirement for increased occupant control of 
their local environments” (Wong et al. 2005). The defini-
tion of intelligent building (IB) has been evolving with 
different emphasis, mainly driven by the development of 
relevant technologies and the changing needs for the built 
environment. European Intelligent Building Group 
(EIBG) defines IBs  as “Intelligent building is one that 
incorporates the best available concepts, materials, sys-
tems and technologies integrating these to achieve a 
building which meets or exceeds the performance re-
quirements of the building stakeholders, which include 
the owners, managers and users, as well as the local and 
global community”. The Intelligent Buildings Institute 
(IBI) defines IB as “Intelligent building is one that pro-
vides a productive and cost-effective environment 
through optimization of its four basic components – struc-
ture, systems, services and management – and the interre-
lationships between them” (SAVE 2010). IBs should be 
sustainable, healthy, and technologically aware, meeting 
the needs of the occupants and business, and should be 
flexible and adaptable to deal with change (ALwaer, 
Clements-Croome 2010). 

The lifespan of buildings is composed of a series of 
interlocking processes, starting from initial architectural 
and structural design, through to actual construction, and 
then to maintenance and control as well as to eventual 

demolition or renovation of buildings. Inside this lifespan, 
essential requirements are generated from considerations 
of social, environmental, and economic issues for high 
efficient energy-saving building systems in compliance 
with building codes and regulations. In this regard, build-
ing assessment is becoming popular in order to have a 
standard method to evaluate new and existing building 
design. For example, the U.S. Green Building Council 
developed the Leadership in Energy and Environmental 
Design Green Building Rating System as a voluntary, 
consensus based national standard for developing high-
performance, sustainable buildings. The Japan Sustaina-
ble Building Consortium developed the comprehensive 
assessment system for building environmental efficiency 
system as a new environmental assessment system to 
meet both the political requirements and market needs for 
achieving a sustainable society. The Building Research 
Establishment Ltd. (BRE) from UK developed the Build-
ing Research Establishment Environmental Assessment 
Method to assess the environmental performance of both 
new and existing buildings. Meanwhile, intelligent build-
ings (IBs) are also under assessment according to their IB 
related characteristics and actual circumstances. For ex-
ample, the Asian Institute of Intelligent Buildings devel-
oped an IB Index system to specifically assess the per-
formance of IBs; and the BRE developed a matrix tool 
called MATOOL for assessing the performance of intelli-
gent buildings (Chen et al. 2006).  

Decision-making is the process of selecting one or a 
few alternatives that should be the most favorable one(s) 
to objective(s). It can also be defined as “Decision-
making means the selection of the best alternative from 
numerous alternatives” (Tupenaite et al. 2010). There is a 
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considerable amount of scientific literature discussing on 
decision making problems from different perspectives and 
it is possible to meet many different techniques to solve 
these problems. In this paper, one of these techniques 
Multiple Attribute Utility Theory (MAUT) is used.  

The main difference of MAUT from the other multi-
attribute methods is its usage of utility functions. Utility 
functions can be applied to transform the raw perfor-
mance values of the alternatives against diverse criteria, 
both factual (objective, quantitative) and judgmental (sub-
jective, qualitative), to a common, dimensionless scale. 
The core of multiattribute utility theory is the use of a 
pragmatic aggregation function for combining the single-
utility functions from each of the system components. The 
general expression of this aggregation is a multiplicative 
form. Such forms allow for an interaction or synergy be-
tween the components under consideration, just as we 
desire in the evaluation of security systems. 

Keeney and Raiffa (1976) employed the utility con-
cept into complex decision problems involving multiple 
attributes and multiple conflicting objectives, and provided 
a systematical approach of multiple attribute utility theory 
(MAUT) for multicriteria decision making (MCDM) prob-
lems. One purpose of the multiple criteria decision making 
approach is to represent symbolically the decision maker’s 
preferential behavior for a given problem from which the 
best alternative for implementation can be selected. The set 
of solutions may consist of many alternatives where each 
alternative is represented by a set of criteria (attributes) 
which are conflicting. The decision maker (DM) is faced 
with the selection of alternatives that are associated with 
incommensurate and conflicting objectives. MAUT aims to 
simplify the tasks of verifying assumptions, determining an 
appropriate mathematical function (the “utility function”) 
to model the DM’s preferential behavior, and assessing that 
function. There are many approaches to describe the deci-
sion maker’s preferential behavior. Among such methods 
are those that use mathematical forms to capture and por-
tray the decision maker’s preferences and emulate his/her 
preferential responses to given scenarios. A well-known 
mathematical form which has been investigated by many 
researchers is the linear or additive function (Malakooti, 
Subramanian 1999). 

In recent years, some papers have concentrated on the 
assessment of intelligent buildings. ALwaer and Clements-
Croome (2010) used a consensus-based analytical hierar-
chical process (AHP) model for multi-criteria decision-
making to identify key issues related to sustainable intelli-
gent buildings. They developed a conceptual model for the 
selection of the appropriate key performance indicators 
(KPIs). Wong and Li (2008) proposed a multicriteria deci-
sion-making model using the analytic hierarchy process 
(AHP) approach to evaluate the selection of IB systems. 
Kolokotsa et al. (2007) proposed a methodology for the 
buildings’ intelligence assessment through the development 
of a matrix tool. Chen et al. (2006) developed an analytic 
network process (ANP) based multicriteria decision-
making model which was called IBAssessor for lifespan 
energy efficiency assessment of IBs. Hong et al. (2006) 
presented a Knowledge-oriented Information Visualization 

(KIV) approach to facilitate the implementation of building 
rating systems for the post-assessment of IBs.  

Fuzzy sets theory proves very convenient for search-
ing solutions of the problems containing elements of hu-
man subjectivity, such as making decisions in order to 
intelligent building assessment choose construction con-
tractors. Models using fuzzy sets have many advantages. 
This paper handles the multiattribute utility theory 
(MAUT) under fuzziness. 

The fuzzy set theory is used to represent the linguis-
tic evaluations of decision makers (DMs). In this paper, a 
fuzzy multiple attribute utility model for intelligent build-
ing assessment is proposed and three building alternatives 
from Istanbul, Turkey are evaluated. 

The rest of this paper is organized as follows: Multi-
ple attribute utility models are briefly introduced in Sec-
tion 2 and a literature review for decision making process 
by using MAUT is also given in this section. Section 3 
includes a fuzzy multiattribute utility model proposal. An 
application for intelligent building assessment is given in 
Section 4. The obtained results and future research direc-
tions are indicated in Section 5. 

 
2. Multiple attribute utility models 
Multiple attribute utility theory (MAUT) was developed 
by Keeney and Raiffa (1976). One important class of 
methods in multicriteria decision making (MCDM) is 
based on constructing a utility or value function ( )U x , 
which represents the overall strength of support in favor 
of the alternative x . This approach is known as multiat-
tribute utility theory (MAUT) (Beliakov, Warren 2001). 
A MAUT analysis of alternatives explicitly identifies the 
measures that are used to evaluate the alternatives, and 
helps to identify those alternatives that perform well on a 
majority of these measures, with a special emphasis on 
the measures that are considered to be relatively more 
important (Butler et al. 2001).  

In general, the utility U(x) = U(x1, x2, x3, …, xn), of 
any combination of outcomes (x1, x2, x3, …, xn) for n attrib-
utes (X1, X2, X3, …, Xn) can be expressed as either (i) an 
additive or (ii) a multiplicative function. The utility func-
tion for each pair of attributes is stated as follow: 

( ) ( ) ( ) ( )1 1 2 2 3 3,  ,  ,...,  n nU x U x U x U x  (Canada, Sullivian 
1988). 

MAUT is used to assess the decision-makers’ prefer-
ence structure and model it mathematically with a multiple 
attributes utility function. This multiple attributes utility 
function is then applied to help the decision maker reach an 
optimal decision. The usage of MAUT in the literature has 
been briefly summarized in the following. De Melo Brito 
et al. (2010) developed several decision models by using 
different multi-criteria methods. They integrated utility 
functions with the variable interdependent parameters 
method to evaluate alternatives through an additive value 
function regarding mean time to repair, contract cost, and 
the geographical spread of the candidate’s service network, 
the candidate’s reputation and the compatibility of compa-
ny cultures. Zhang and Xing (2010) presented a fuzzy-
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multi-objective particle swarm optimization (PSO) to solve 
the fuzzy time-cost-quality tradeoff (TCQT) problem. They 
described the time, cost and quality as fuzzy numbers and a 
fuzzy multiattribute utility methodology incorporated with 
constrained fuzzy arithmetic operations was adopted to 
evaluate the selected construction methods. They applied 
PSO to search for the TCQT solutions by incorporating the 
fuzzy multi-attribute utility methodology. Nishizaki et al. 
(2010) proposed a method for the sensitivity analysis of 
multiattribute utility functions in multiplicative form, tak-
ing into account the imprecision of the decision maker’s 
judgment in the procedures for determining attribute 
weights. Streicher-Porte et al. (2009) applied MAUT to the 
supply of computers to schools in Colombia by evaluating 
three different supply scenarios. Wang et al. (2009) intro-
duced net promoter score technology to help firms target 
satisfied or passive consumers, and allow them to highlight 
the additional value to consumers of environmentally-
friendly products. To achieve the above goals, MAUT was 
used to develop an aggregated fulfillment level in relation 
to obtaining such products. Yang et al. (2009) developed a 
new hybrid methodology to explain the role of Bayesian 
Networks in MAUT. They proposed a novel utility func-
tion, which can appropriately represent the risk results pro-
duced and avoid the arguments resulting from exclusive 
states expressed by linguistic variables with fuzzy nature 
and the ignorance/incomplete representation of context 
dependency between decision attributes. Cirtita and Ilieş 
(2009) proposed a tool to define the best network alterna-
tive in downstream supply chain, based on MAUT, creating 
a value function with scalable importance criteria coeffi-
cients. Abouelnaga et al. (2009) used MAUT to optimize 
the selection process for energy alternatives which are nu-
clear, hydroelectric, gas/oil, and solar in Egypt. Jiménez 
et al. (2009) considered the situation where there was the 
least knowledge of the alternative consequences or perfor-
mances, i.e. when there is no knowledge whatsoever of the 
performance of several alternatives for some attributes, i.e. 
neither a precise performance nor a probability distribution 
can be specified in MAUT. Zhang (2008) proposed a 
framework of multi-objective simulation optimization for 
optimizing equipment-configurations of earthmoving oper-
ations by integrating an activity object-oriented simulation, 
MAUT, a statistical approach like the two-stage ranking 
and selection procedure and particle swarm optimization 
algorithm. The MAUT was applied to evaluate the perfor-
mances generated through simulation by considering mul-
tiple criteria and the preference of decision-makers. Kai-
numa and Tawara (2006) extended the range of the supply 
chain to include re-use and recycling throughout the life 
cycle of products and services and proposed the MAUT 
method for assessing a supply chain. Xu and Huang (2006) 
proposed a quantitative setup plan evaluation system driven 
by MAUT coupled with manufacturing error simulation to 
serve three purposes: (i) to clarify what is optimality of 
setup plans, (ii) to provide a systematic method of evaluat-
ing setup plan alternatives quantitatively, and (iii) to incor-
porate in existing automatic setup planning systems a hu-

man interface to fulfill their potential values. Jiménez et al. 
(2003) described a decision support system based on an 
additive or multiplicative multiattribute utility model for 
identifying the optimal strategy. Butler et al. (2001) de-
scribed the application and detailed of how they used the 
simulator, MAUT, and statistical ranking and selection to 
select the best project configuration of possible configura-
tions. Sohn et al. (2001) proposed a method to aggregate 
multi-stakeholder opinions and assimilate the public opin-
ions during the course of the decision making process. The 
analytic hierarchy process (AHP) and MAUT were em-
ployed, and for uncertainty analysis, a fuzzy set based ap-
proach was adopted in the aggregation phase. Malakooti 
and Subramanian (1999) developed a generalized decom-
posable multiattribute utility function for representing the 
decision maker’s preferential behavior. Malakooti (1989) 
introduced a quasi-concave nonlinear multiple attribute 
utility function to rank multiple criteria alternatives. 

 
3. A fuzzy multiatribute utility model 
The fuzzy set theory (FST) was first proposed by Zadeh 
(1965). FST is a departure from classical two-valued sets, 
that uses linguistic variables and a continuous range of 
truth values in the interval [0,1], rather than strict binary 
(true or false) decisions and assignments. FST has the abil-
ity to deal with complex problem, which contain ambigui-
ties. In addition, reasoning with such ambiguous concepts 
may not be clear and obvious, but rather fuzzy. FST also 
provides the mathematical tools to handle ambiguous con-
cepts and reasoning, and finally produces crisp answers for 
these types of problems with subjectivity. Another im-
portant aspect of FST is that it uses linguistic variables, 
thus performing computation with words. If a traditional 
mathematical approach towards sustainability assessment 
were adopted, such as cost-benefit analysis or algebraic 
formulas, then certain factors, which are impossible to 
quantify, would be left out. There are, however, aspects of 
sustainability, which cannot be quantified and yet are very 
important as, for example, values and opinions. In this area 
of human thought fuzzy logic performs successfully (Zim-
mermann 1991; Abouelnaga et al. 2009). In this paper, FST 
is integrated with MAUT and a fuzzy multiple attribute 
utility model for intelligent building assessment is pro-
posed. The fuzzy MAUT model can be detailed as below. 

The fuzzy utility ( ) ( )1 2 3,  ,  ,  ..., nU x U x x x x=� � � � �  can 
be expressed as a any combination of outcomes 
( )1 2 3,  ,  ,  ..., nx x x x� � � �  for n attributes ( )1 2 3,  ,  ,  ..., nX X X X� � � � . 
The first stage is the determination of the fuzzy scaling 
factor ( )ik� . To find the scaling factor ik� , the following 
question is asked: “Around what probability P�  are you 
indifferent between”: 

 i. The consequence giving a P�  probability at 
( )* * * * *

1 2 3,  ,  ,...,  nx x x x x=� � � � �  and ( )1 P− �  probability at 
( )0 0 0 0 0

1 2 3,  ,  ,...,  nx x x x x=� � � � � ; 
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Fig. 1. Illustration of the question to determine the scaling factor ik�  
 

ii. The consequence ( )0 0 * 0 0
1 1,  ... , ,  , ,...,  i i i i nx x x x x− +

� � � � � . 
These options are illustrated in Fig. 1 (Canada, Sul-

livian 1988). The result of such an assessment is that 
iP k= �� . 
To calculate the other scaling factors, the following 

question is asked successively: 
“Select a level of ( )ie.g. iX x′� �  for attribute i and a 

level of ( )je.g. jX x′� �  for attribute j so that you are indif-
ferent between”: 

i. An outcome yielding ix′�  and 0
jx�  together, and 

ii. An outcome yielding jx′�  and 0
ix�  together. 

Then Eq. (1) is used to solve for either ik�  or jk� , de-
pending on which is unknown: 
 ( ) ( ) i i i j j jkU x k U x′ ′=� �� � . (1) 

The rank ordering of the ik� ’s can be done by asking 
the decision maker (DM), for instance, whether DM pre-
fers ( )* 0

1 1,  x x��  or ( )* 0
2 2,  x x��  where 0

1x
�  means all x�  attrib-

utes other than 1x� are at their respective worst values. If 
the former is preferred, 1 2k k>� � , and if the latter is pre-
ferred, 2 1k k>� � .  

 
3.1. Fuzzy additive utility model 
The condition of applying the additive utility function is 
that the attributes should be additively independent. This 
will be true if ( )1

1,  1,  1n
ii
k

=
=∑ �  in the model as given in 

Eq. (2). The utility ( )U x�  of any combination of out-
comes for n attributes ( )1 2 3,  ,  ,  ..., nX X X X� � � �  can be ex-
pressed as follows: 

 ( ) ( ) ( )0

1 1
,

n n

i i i i i
i i

U x U x x kU x
= =

= =∑ ∑ ��� � � , (2) 

where ( )0,i iU x x��  is the fuzzy utility of the outcome for the 
ith criterion ix� , and the worst possible outcome for the 

complement of the ith attribute 0
ix
� . ( )i iU x�  is the fuzzy 

utility of the outcome ix�  for the ith attribute; ik�  is the 
fuzzy weight for the ith attribute and can be defined as: 

 ( )* 0
,  ,i i ik U x x=� ��  for 1,  2,  ...,  i n=  attributes. (3) 

 
3.2. Fuzzy multiplicative utility model 
The utility ( )U x�  of any combination of outcomes of n 
attributes can be obtained from Eq. (4):  

 ( ) ( ) ( ) ( )
1

1,  1,  1 1,  1,  1
n

i i i
i

KU x KkU x
=

 + = + ∏ �� � � . (4) 

Solving for ( )U x�  gives: 

 ( )
( ) ( ) ( )

1
1,  1,  1 1,  1,  1

n

i i i
i

KkU x
U x

K
=

 + − =
∏ �� �

�
�

, (5) 

where: ( )U x�  is normalized by ( )0 0 0 0
1 2 3,  ,  ,  ..., nU x x x x =� � � �  

(0, 0, 0)  and ( ) ( )* * * *
1 2 3,  ,  ,  ..., 1,  1,  1nU x x x x =� � � � ; ( )i iU x�  is 

a conditional utility function of iX�  normalized by 
( ) ( )0 0,  0,  0i iU x =�  and ( ) ( )* 1,  1,  1i iU x =� , for 
1,  2,  ...,  i n= ; ( )* 0

,i i ik U x x=� �� ; and K�  is a scaling con-
stant which provides Eq. (6): 

 ( ) ( )( )
1

1,  1,  1 1,  1,  1
n

i
İ

K Kk
=

+ = +∏ �� � , (6) 

where: ( ) ( )1, 1, 1 0,  0,  0K− − − < <� . 
 

4. Application 
Istanbul is simultaneously located on the two continents 
and it is known as a link between east and the west. Is-
tanbul has always been the center of trade and commerce 
due to its strategic location. The rapid development of the 
service sector, demand for high-rise office buildings in 
Istanbul, has led to the completion of many high rises in 
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the recent years. Most of these high rises are IBs and all 
the future high rises are planned to be IBs thereafter. 
Since the assessment of an IB requires the consideration 
of many attributes, a fuzzy multiple attribute utility model 
for intelligent building assessment is proposed for a busi-
ness center project in this paper. The criteria which are 
determined from a literature survey (ALwaer, Clements-
Croome 2010; Wong, Li 2008; Chen et al. 2006) and 
decision makers’ ideas are used for IBs assessment. 
These attributes are shown in Table 1.  

 
Table 1. Intelligent building assessment attributes 

Main  
Attributes Sub-Attributes 

Engineering 
(C1) 

Functionality (C11) 
Safety and structure (C12) 
Working efficiency (C13) 
Responsiveness (C14) 
Office automation (C15) 
Power supply (C16) 
System integration (C17) 

Environmental 
(C2) 

Energy consumption (C21) 
Water and Water Conservation (C22) 
Materials used, Durability and Waste (C23) 
Land use and Site selection (C24) 
Greenhouse Gas Emissions (Pollution) 
(C25) 
Indoor Environmental Quality (C26) 

Economical 
(C3) 

Economic performance and affordability 
(C31) 
Initial costs, operating and maintenance 
costs (C32) 
Life cycle costing (C33) 

Socio-Cultural 
(C4) 

Functionality, Usability and Aesthetic 
aspects  (C41) 
Human comfort (C42) 
Health and sanitation (C43) 
Architectural considerations – cultural 
heritage integration and the compatibility 
with local heritage value (C44) 

Technological 
(C5) 

Work efficiency (C51) 
Use of high-tech system (C52) 
Use of advanced artificial intelligence (C53) 
Telecom and data system-Connectibility 
(C54) 
Security monitoring and access control 
system (C55) 
Addressable fire detection and alarm  
system (C56) 
Digital addressable lighting control system 
(C57) 

 
Three intelligent building alternatives for a business 

center project are evaluated with respect to these attrib-
utes and the hierarchical structure which is shown in 
Fig. 2. The building alternatives are coded as IB–A,  
IB–B, and IB–C, respectively. 

The local and global weights and ranks of selection 
attributes are obtained by using AHP. The obtained re-
sults are shown in Table 2. 

 
Fig. 2. The hierarchical structure for intelligent building as-
sessment 

 

 
Fig. 3. The linguistic scale for utilities  

 
The utilities of the all attributes are assigned by us-

ing a linguistic scale which is shown in Fig. 3. The best 
and worst utilities are determined by using this linguistic 
scale. The scaling factors ik , and utilities are obtained as 
fuzzy numbers from this scale. 

Three types of decision maker are defined in the lit-
erature. Risk neutral means a situation in which a deci-
sion maker effectively ignores risk in making investment 
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decisions. Given two investments with different levels of 
riskiness, a risk neutral decision maker considers only the 
expected return from each investment in intelligent build-
ings. As such, being risk neutral differs significantly from 
both risk averse and risk taker. Fig. 4 illustrates the 
membership function based utility curves of risk averse, 
risk neutral and risk taker decision makers. In our case, 
the decision makers who are composed of two professors 
from Civil Engineering Department, one professor from 
Mechatronics Engineering Department, and two top man-
agers of construction sector, are risk neutral since the 
market conditions in Turkey are stable and present nei-
ther the chance gaining huge amount of money nor loos-
ing it in a short time period. 

The two types of questions to obtain the scaling fac-
tors are asked: “What probability P�  of all attribute out-
comes at their best levels (C11*, C12*,…, C15*, C16*, …, 
C56*, C57*) versus probability ( )1 P− �  of all attribute out-
comes at their worst levels (C110, C120,…, C150, C160, …, 
C560, C570) would be as desirable as “Office automation” 
at its best level and all other attributes at their worst levels 
(C110, C120, …, C15*, C160, …, C560, C570)”? The com-
promised answer from the decision makers was around 
0.02. Hence ( )1 0.01,  0.02,  0.03k =� . The next step is to  

ask the second question: “What office automation level, 
given functionality level at its worst, C110, (i.e. VL) would 
be as desirable as what functionality level, given the office 
automation level at its worst, C150, (ie. VL)”? The com-
promised answers from the decision makers were as fol-
lows: ( )1 Aproximately 50 50, 55, 60x′ = =�  for office 
automation and ( )2 Aproximately 85 80, 85, 90x′ = =�  for 
functionality. 

 

 

Fig. 4. Utility curves of various decision makers 

Table 2. The local and global weights & ranks of attributes for intelligent building assessment 
  Local Global 

Main Attributes Sub-Attributes Weight Rank Weight Rank 

Engineering (C1) 
(0.368) 

Functionality (C11) 0.327 2 0.12 2 
Safety and structure (C12) 0.042 6 0.015 20 
Working efficiency (C13) 0.107 3 0.039 8 
Responsiveness (C14) 0.067 5 0.025 16 
Office automation (C15) 0.347 1 0.128 1 
Power supply (C16) 0.025 7 0.009 25 
System integration (C17) 0.085 4 0.031 11 

Environmental (C2) 
(0.136) 

Energy consumption (C21) 0.074 6 0.01 24 
Water and Water Conservation (C22) 0.078 5 0.011 23 
Materials used, Durability and Waste (C23) 0.345 1 0.047 7 
Land use and Site selection (C24) 0.276 2 0.037 9 
Greenhouse Gas Emissions (Pollution) (C25) 0.103 4 0.014 21 
Indoor Environmental Quality (C26)   0.124 3 0.017 19 

Economical (C3) 
(0.041) 

Economic performance and affordability (C31) 0.143 3 0.006 27 
Initial costs, operating and maintenance costs (C32) 0.179 2 0.007 26 
Life cycle costing (C33) 0.678 1 0.028 14 

Socio-Cultural (C4) 
(0.106) 

Functionality, Usability and Aesthetic aspects  (C41) 0.126 4 0.013 22 
Human comfort (C42) 0.337 1 0.036 10 
Health and sanitation (C43) 0.273 2 0.029 13 
Architectural considerations – cultural heritage integration 
and the compatibility with local heritage value (C44) 0.264 3 0.028 15 

Technological (C5) 
(0.349) 

Work efficiency (C51) 0.150 3 0.052 5 
Use of high-tech system (C52) 0.321 1 0.112 3 
Use of advanced artificial intelligence (C53) 0.144 4 0.05 6 
Telecom and data system- Connectibility (C54) 0.172 2 0.06 4 
Security monitoring and access control system (C55) 0.088 5 0.031 12 
Addressable fire detection and alarm system (C56) 0.056 7 0.02 18 
Digital addressable lighting control system (C57) 0.069 6 0.024 17 
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These fuzzy values are defuzzified by using Liou and 
Wang’s (1992) integral value and their membership values 
are obtained from the linguistic scale in Fig. 3. Then the 
scaling factor for functionality is calculated as below: 

( ) ( )2 2 2

1 2 2

2

2

 ;
(0.01, 0.02, 0.03) (50, 55, 60) (80, 85, 90);
(0.01, 0.02, 0.03) 0.67 0.33;

(0.02, 0.04, 0.06).

i i ikU x k U x
U k U

k
k

′ ′=

⊗ = ⊗
× = ×

=

� �� �

�

�

�

 

The fuzzy scaling factors for the other attributes are 
obtained by the same way and they are shown in Table 3.  

Since ( )1
1,  1,  1n

ii
k

=
≠∑ � , the fuzzy multiplicative 

model is suitable for intelligent assessment of buildings.  
The compromised outcomes from the decision mak-

ers for building alternatives and their utilities are obtained 
as shown in Table 4.  

Then the fuzzy scaling constant K� , is determined as 
( )0.0003,  0.0002,  0.0001K = − − −� . The fuzzy utility 

values for intelligent building alternatives are calculated 
as given in Table 5. 

The graphical representations of membership func-
tions for building alternatives are illustrated in Fig. 5. 

Table 3. The fuzzy scaling factor values and ranking of the  
sub-attributes 

Sub-
Attributes Rank Utility  

Range ik�  
C15 1 VL–VH (0.01, 0.02, 0.03) 
C11 2 VL–VH (0.02, 0.04, 0.06) 
C52 3 VL–VH (0.03, 0.06, 0.09) 
C54 4 VL–VH (0.06, 0.12, 0.18) 
C51 5 VL–VH (0.09, 0.18, 0.27) 
C53 6 VL–VH (0.06, 0.12, 0.18) 
C23 7 VH–VL (0.18, 0.36, 0.54) 
C13 8 VL–VH (0.06, 0.12, 0.18) 
C24 9 VL–VH (0.02, 0.04, 0.06) 
C42 10 VL–VH (0.0067, 0.013, 0.02) 
C17 11 VL–VH (0.0034, 0.0065, 0.01) 
C55 12 VL–VH (0.002, 0.0033, 0.01) 
C43 13 VL–VH (0.001, 0.0017, 0.01) 
C33 14 VH–VL (0.001, 0.0017, 0.01) 
C44 15 VL–VH (0.0015, 0.00255, 0.015) 
C14 16 VL–VH (0.0015, 0.00255, 0.015) 
C57 17 VL–VH (0.003, 0.0051, 0.03) 
C56 18 VL–VH (0.006, 0.0102, 0.06) 
C26 19 VL–VH (0.012, 0.0204, 0.12) 
C12 20 VL–VH (0.024, 0.0408, 0.24) 
C25 21 VL–VH (0.048, 0.0816, 0.48) 
C41 22 VL–VH (0.024, 0.0408, 0.24) 
C22 23 VL–VH (0.012, 0.0204, 0.12) 
C21 24 VH–VL (0.036, 0.0612, 0.36) 
C16 25 VL–VH (0.036, 0.0612, 0.36) 
C32 26 VH–VL (0.036, 0.0612, 0.36) 
C31 27 VL–VH (0.036, 0.0612, 0.36) 

  ( )410.4,555.1,820.0~
1
=∑ =ni ik  

 
 

Table 4. The outcomes and utilities for building alternatives 
 IB–A IB–B IB–C 
 ix

~  ( )ii xU ~  
ix
~  ( )ii xU ~  

ix
~  ( )ii xU ~  

C15 Approximately 55 0.667 Approximately 60 1.000 Approximately 65 0.667 
C11 Approximately 60 1.000 Approximately 60 1.000 Approximately 70 0.333 
C52 Approximately 65 0.667 Approximately 65 0.667 Approximately 65 0.667 
C54 Approximately 65 0.667 Approximately 60 1.000 Approximately 70 0.333 
C51 Approximately 50 0.333 Approximately 60 1.000 Approximately 65 0.667 
C53 Approximately 25 0.667 Approximately 60 1.000 Approximately 70 0.333 
C23 Approximately 60 1.000 Approximately 60 1.000 Approximately 70 0.333 
C13 Approximately 45 1.000 Approximately 50 0.333 Approximately 70 0.333 
C24 Approximately 70 0.333 Approximately 70 0.333 Approximately 70 0.333 
C42 Approximately 50 0.333 Approximately 60 1.000 Approximately 70 0.333 
C17 Approximately 54 0.600 Approximately 55 0.667 Approximately 66 0.400 
C55 Approximately 70 0.333 Approximately 74 0.067 Approximately 75 1.000 
C43 Approximately 73 0.133 Approximately 75 1.000 Approximately 75 1.000 
C33 Approximately 66 0.600 Approximately 70 0.333 Approximately 77 0.867 
C44 Approximately 45 1.000 Approximately 71 0.733 Approximately 73 0.867 
C14 Approximately 55 0.667 Approximately 60 1.000 Approximately 65 0.667 
C57 Approximately 74 0.067 Approximately 70 0.333 Approximately 70 0.333 
C56 Approximately 73 0.133 Approximately 70 0.333 Approximately 74 0.933 
C26  Approximately 80 0.667 Approximately 75 1.000 Approximately 82 0.533 
C12 Approximately 75 1.000 Approximately 80 0.667 Approximately 78 0.800 
C25 Approximately 83 0.467 Approximately 80 0.667 Approximately 80 0.667 
C41 Approximately 63 0.800 Approximately 60 1.000 Approximately 72 0.800 
C22 Approximately 50 0.333 Approximately 50 0.333 Approximately 50 0.333 
C21 Approximately 67 0.533 Approximately 65 0.667 Approximately 63 0.800 
C16 Approximately 87 0.200 Approximately 85 0.333 Approximately 88 0.133 
C32 Approximately 45 1.000 Approximately 45 1.000 Approximately 50 0.333 
C31 Approximately 45 1.000 Approximately 43 0.867 Approximately 47 0.867 
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Table 5. Fuzzy utility values for building alternatives 
 ( )ii xU ~  

IB–A (0.588, 1.122, 3.028) 
IB–B (0.674, 1.288, 3.408) 
IB–C (0.394, 0.736, 2.364) 

 
 

 
Fig. 5. The membership functions of intelligent building  
alternatives 

 
To determine the most appropriate building alterna-

tive, it is necessary to compare membership functions for 
utility presented in Table 5. For this aim, a comparison 
method which was proposed by Tran and Duckstein 
(2002) is used. The method is based on the comparison of 
distances from fuzzy numbers (FNs) to some predeter-
mined targets: the crisp maximum (Max) and the crisp 
minimum (Min). The idea is that an FN is ranked first if 
its distance to the crisp maximum (Dmax) is the smallest, 
but its distance to the crisp minimum (Dmin) is the great-est. If only one of these conditions is satisfied, a FNs 
might be outranked the others depending upon context of 
the problem (for example, the attitude of the decision-
maker in a decision situation). The Max and Min are 
chosen as follows (Tran, Duckstein 2002): 

 
( ) ( )

( ) ( )

1

1

sup ;

inf ,

I
i

i

I
i

i

Max I s A

Min I s A

=

=

 ≥    

 ≤    

�

�

∪

∪

 (7) 

where s(Ai) is the support of FNs Ãi for i = 1,…,I. Then 
Dmax and Dmin of fuzzy number ( )1 2 3, ,A a a a�  can be com-
puted as follows: 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

2

2
2 2 3 1

2 2
3 2 2 1 2 1 3 2

,
1 22

1 1 ,9 9

D A M

a M a M a a M

a a a a a a a a

=
  − + − + − +     − + − − − −    

�

(8) 

where M is either Max or Min.  

Hence:  
( )2

max ,D D A Max= �  and ( )2
min ,D D A Min= � . (9) 

The results of these comparisons are shown in Ta-
ble 6. According to Table 6, IB–B is determined as the 
most appropriate alternative as an intelligent building.  

 
Table 6. The comparison results for intelligent building  

alternatives 
 a1 a2 a3 Dmax Dmin Rank 

IB–A 0.5885 1.1223 3.0279 3.034 1.372 2 
IB–B 0.6738 1.2876 3.4081 2.792 1.633 1 
IB–C 0.3939 0.7364 2.3641 3.578 0.837 3 

 
5. Conclusions 
An intelligent building is responsible to provide embrac-
ing sustainability, energy efficiency, smart technologies 
and techniques allowing more and better to be delivered 
for less. It provides a sustainable, responsive, effective 
and supportive environment within which individuals and 
organizations can achieve their objectives. 

Multiple attribute utility analysis is targeted in solv-
ing problems of trading off the achievement of some 
objectives against other objectives to obtain the maxi-
mum overall utility. Multiple attribute utility analysis is 
used to assess the decision-maker’s preference structure 
and model it mathematically with a multiple attribute 
utility function. This multiple attribute utility function is 
then applied to help the decision maker reach an optimal 
decision.  

Since the fuzzy set theory provides a mathematical 
formalism for vagueness and imprecision that is ever 
present in decision support systems in many areas, the 
fuzzy set theory is integrated with MAUT to increase its 
flexibility and sensitiveness in this paper. In the evalua-
tion process, the fuzzy set theory brings many advantages 
on MAUT such as a possibility to evaluate immeasurable 
criteria and to take into consideration evaluation of hu-
man judgments. The fuzzy set theory also gives an ad-
vantage that is an ease definition of score for alternative 
and is a flexible scale for expert judgments. 

A fuzzy multiple attribute utility model for intelli-
gent building assessment has been proposed and it has 
been successfully applied for the assessment of building 
alternatives for a business center in İstanbul. The fuzzy 
results do not only include a point value for utility of 
building alternatives but also show all possible value with 
relevant degree of membership. It brings an advantage on 
sensitivities of results and they can be interpreted more 
deeply. As a result of evaluation process, the alternative 
IB-B is selected as the most suitable building with respect 
to intelligent level. The ranking of alternative is also de-
termined as follows: {IB–B; IB–A; IB–C}. 

For the further research the other multiattribute de-
cision making tools such as AHP, VIKOR, and TOPSIS 
can be used for intelligent building assessment and the 
obtained results can be compared with the results of our 
fuzzy multiple attribute utility model. 
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