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Abstract. Time and cost are the two most important factors to be considered in every construction project. In order to 
maximize the profit, both the client and contractor would strive to minimize the project duration and cost concurrently. In 
the past, most of the research studies related to construction time and cost assumed time to be constant, leaving the anal-
yses based purely on a single objective of cost. Acknowledging this limitation, an evolutionary-based optimization algo-
rithm known as an ant colony system is applied in this study to solve the multi-objective time-cost optimization problems. 
In this paper, a model is developed using Visual Basic for Application which is integrated with Microsoft Project. 
Through a test study, the performance of the proposed model is compared against other analytical methods previously 
used for time-cost modeling. The results show that the model based on the ant colony system techniques can generate bet-
ter solutions without utilizing excessive computational resources. The model, therefore, provides an efficient means to 
support planners and managers in making better time-cost decisions efficiently.  
Keywords: time-cost optimization, ant colony system, Pareto solution, construction project. 

 
1. Introduction 
In the construction field, time saving can be transformed 
into some kinds of opportunities viz. early occupancy, 
saving in overhead cost or bonus (Li, Love 1997; Ng 
et al. 2000). Despite that, to reduce the time would neces-
sitate the mobilization of extra resources (Kapliński, Ja-
nusz 2006) and this could lead to an escalation in direct 
cost (Zheng et al. 2004). The relationship between con-
struction time and cost has aroused the interest of re-
searchers to identify the most effective approach to min-
imize the time or cost, and examples of these include the 
harmony search (Geem 2010), particle swarm optimiza-
tion (Zhang, Li 2010; Zhang, Xing 2010), genetic algo-
rithm (Ke et al. 2009) and memetic algorithm (Li, Wang 
2009) based time-cost trade-off models. Yet, by minimiz-
ing the project time does not necessarily lead to the most 
satisfactory results (Zavadskas et al. 2010). Instead, cli-
ents and contractors should strive for optimizing both the 
time and cost are optimized concurrently if they were to 
maximize their profit under today’s competitive envi-
ronment. This has led to the development of time-cost 
optimization (TCO) concepts (Zheng, Ng 2005).  

The tradeoff relationship of construction time and 
cost infers that these two parameters are conflicting in 
nature (Zhang et al. 2007), and hence the desired purpose 
of TCO is to arrive at an optimal compromise between 
these two opposing objectives so as to bring the overall 
duration and total cost of a project to a minimum. Over 
the last decade, various TCO models for the construction 

domain have been developed, and these include a genetic 
algorithms (GAs) model (Feng et al. 1997) which aimed 
at improving the hybrid linear/integer model put 
forwarded by Liu et al. (1995) earlier; a TCO model utili-
zing an adaptive weight approach (Gen, Cheng 2000); 
and a multi-objective time-cost optimization model based 
on the amalgamation of both the GAs concepts and a 
modified adaptive weight approach (MAWA) (Zheng 
et al. 2004). 

While the above GA-based multi-objective TCO 
models serve to establish an optimal overall time and 
total cost concurrently, the problem of premature conver-
gence exists when it comes to searching for the globally 
non-dominated solutions (Zheng et al. 2005). Besides, the 
time taken to processing a set of globally non-dominated 
solutions for a large scale project could be very long. 
These would affect the effectiveness and efficiency of the 
decisions being made. Hence, a novel approach for TCO 
modeling which can overcome the limitations of the GAs 
would be beneficial. In this paper, an ant colony system 
(ACS) approach is proposed for solving the TCO pro-
blems (Afshar et al. 2009). 

ACS is a kind of ant colony optimization (ACO) al-
gorithms which were originally proposed by Colorni 
et al. (1991) as a meta-heuristic scheme to locate near-
optimal solutions. As reported by Dorigo and Stützle 
(2004), an ant system (Dorigo et al. 1992) being the most 
primitive ACO algorithms was applied in solving the 
travel salesmen problem. Then, several extensions of the 
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ant system including the ACS, elitist ant system, max-
min ant system, and so on were inspired to improve its 
performance (Zhang et al. 2007). A comparison of va-
rious ACO algorithms have been conducted by Dorigo 
and Stützle (2004), which concludes that the performance 
of ACS is superior to the other ACO algorithms in terms 
of it convergence speed and processing time. By avoiding 
premature stagnation and improving the search speed, 
both the quality of solutions and the time required could 
be improved by using ACS.  

In this paper, an automated ACS-based TCO model 
is introduced and its performance is compared with other 
modeling techniques. The paper first highlights the deve-
lopment environments being used for building the model. 
The components of the ACS-based TCO model along 
with their functions and operation are then introduced. 
Finally, the model is validated through a case study and 
the results of comparison are summarized. 

 
2. Modelling environment 
Before the ACS-based TCO model was developed, it is 
necessary to determine which programming language is 
the most suitable for building up the optimization model 
and user interface. The prime consideration was readiness 
of the programming language to interact with a dedicated 
scheduling tool and database package in a simple and 
direct manner. This is especially important if the model is 
to appeal to the planners and project managers who are 
not too familiarized with programming. In this research, 
Microsoft Project was chosen as the scheduling tool 
due to its widespread usage in the construction field. As 
for the package for data storage, Microsoft Excel was 
used because data can be exported to or imported from 
Microsoft Project for analysis easily.  

Various development platforms such as 
FORTRAN, Visual Basic, Java, Visual C, and 
Visual Basic for Application (VBA) were compared. 
While all these programming languages are equally 
powerful and applicable, VBA offers the best integration 
and interaction with Microsoft Project and the databa-
se. Therefore, data in Microsoft Excel can be used by 
VBA for analysis while the results generated by VBA can 
be plugged to Microsoft Project so as to identify the 
critical path and compute the overall project duration 
without the needs for complicated coding. Consequently, 
VBA was selected as the language for developing the 
optimization model and the user interface.  

 
3. The prototype model 
The codes in VBA were compiled as a macro program 
and integrated with Microsoft Project, and a new tab 
known as “T/C Analysis” has been added to the menu bar 
in Microsoft Project. User can simply invoke the newly 
developed functions, i.e. “Data Input”, “Optimization”, 
and “Data Output” through the pull down menu in Mi-
crosoft Project. To start the analysis, user is required to 
enter the project data and those data as required for ACS 
modeling through the “Data Input” module. Acknowledg-
ing that it is possible that the time or cost may be fixed, 

user may choose amongst different optimization strate-
gies to suit the actual need. Should the “Time-Cost Opti-
mization” option be chosen, a multi-objective time-cost 
optimization will be conducted. Alternatively, the “Total 
Cost Minimization” or “Time Minimization” would result 
in the minimization of either the total cost (i.e. the sum of 
direct cost and indirect cost) or the shortest overall dura-
tion respectively. Finally, the results are made available 
to the user through “Data Output” for checking and con-
firmation.   

 
3.1. Data input module 
The input variables for the ACO-based TCO model in-
clude the following:  

1. The logical sequence of the activities in the pro-
ject, or in other words the network of the project. 

2. An estimation of the values for the time and cost 
of each activity including the best-guess, mini-
mum, and maximum time and cost.  For the units 
for the time and cost, “days” and “$” are used.  
Other units can also be considered, but attention 
should be paid to the unit of indirect cost being 
based on the time and direct cost.  For example, 
if “day” and “$” are the units for the time and di-
rect cost, the indirect cost should be determined 
by “$/day”. 

3. An estimation of the indirect cost which should 
be a fix value per day. 

To illustrate how data is inputted into the proposed 
model, a simple discrete TCO problem as derived from 
Liu et al. (1995) is adopted. The project data consisting 
of seven activities (Table 1) is entered into Microsoft 
Project by the user. Along with the project data is up to 
five alternative time-cost options for each activity, and 
this information is inputted into Microsoft Excel for 
subsequent analysis. Apart from that, user is required to 
enter other data into model through the user interface 
(Fig. 1), and this information includes the indirect cost 
for the project, the number of iterations and the reward 
factor for the ACS algorithm. In this case example, the 
indirect cost is set as $1,500/day while the number of 
iterations and reward factor are given as 40 and 20 res-
pectively. 

 
Table 1. Details for the case example (Liu et al. 1995) 
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Site  
preparation 

1  1 14 23,000 

   2 20 18,000 
   3 24 12,000 
Forms and 
rebar 

2 1 1 15 3,000 

   2 18 2,400 
   3 20 1,800 

   4 23 1,500 
   5 25 1,000 
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End of Table 1 
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Excavation 3 1 1 15 4,500 
   2 22 4,000 
   3 33 3,200 
Precise 
concrete 
girder 

4 1 1 12 45,000 
  2 16 35,000 

   3 20 30,000 
Pour  
foundation 
and piers 

5 2,3 1 22 20,000 
  2 24 17,500 

   3 28 15,000 
   4 30 10,000 
Deliver PC 
girders 

6 4 1 14 40,000 

   2 18 32,000 
   3 24 18,000 
Erect  
girders 

7 5,6 1 9 30,000 

   2 15 24,000 
   3 18 22,000 
 

3.2. Optimization module 
The ACS-based consists of four main phases, which 
could be described briefly as following. 
Phase 1 – parameters initializing 

During this phase, the parameters for ACS including 
the number of ants and the pheromone (τ0), evaporation 
rate, and other parameters shall be initialized. 
Phase 2 – solution construction 

The probability for ant k to select option j is estab-
lished according to the selection rule as shown in Eq. 1:  
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where: pij(k,t) is the probability that option (i,j) is chosen 
by ant k for activity i at iteration t; τij(t) is the pheromone 
value of the option (i,j) being left by the ants in iteration 
t, indicating the attractiveness of the option (i,j) for ant k; 
ηij represents a heuristic function which evaluates the 
utility of choosing option (i,j); and α and β are the 
weights of τij and ηij, which were determined in Phase 1. 
Phase 3 – pheromone updating 

After one solution is generated, local updating is 
conducted on the options being visited as follows: 
 0( ) (1 ) ( 1)ij ijt t= − ⋅ − + ⋅τ ρ τ ρ τ , (2) 
where τ0 is the initial pheromone value for each option 
and ρ is the evaporation rate.  

When an entire iteration is finished, global updating 
would be performed to the iteration-best options (i.e. the 
options visited by the best ant with the least fitness value 
in the current iteration) following the following global 
updating rules: 
 ( ) (1 ) ( 1)ij ijt z t z= − ⋅ − + ⋅∆τ τ τ ; (3) 
 best-iterR f∆ = ⋅τ , (4) 
where: z is the evaporation rate in the global-updating 
process; R is a constant representing the pheromone re-
ward factor; and fbest-iter is the fitness value of the best ant 
in this iteration. 
Phase 4 – algorithm stopping 

Certain number of iterations would be adopted as 
the stopping criteria for the proposed model which can be 
determined by the user. 

Readers are referred to Ng and Zhang (2008) for 
further details of the four phases mentioned above in 
particular the pheromone updating process.  

Furthermore, as demonstrated by Ng and Zhang 
(2008), MAWA is an effective way to solve the multi-
objective problems, such approach would be applied in 
the current model. Hence, the fitness function for the kth 
solution (in an ACS model, the fitness for the kth ant in 
the current iteration) can be represented as follows: 

 
max max
t t c c

t cmax min max min
t t c c

( ) ( )( ) z z k z z kf k w w
z z z z

− + − +
= +

− + − +

γ γ
γ γ

, (5) 

where zt(k) and zc(k) are the time and cost value of ant k 
respectively; and γ is a positive random number between 
0 and 1. 

 
3.3. Output module 
After the evaluation, the following information will be 
provided to the user through the data output module: 

1. The optimum solution(s) of the optimization, 
which is/are indeed the most optimum value(s) 
for the total time and cost of a project. For the 
time-cost optimization, they would prefer to ha-
ve a series of globally non-dominated solutions. 
However, when it comes to time and cost opti-
mization, the shortest time and the minimal total 
construction cost respectively are the most im-
portant findings they would like to know. 

2. The time and cost options being used for all the 
activities to generate each of the globally non-
dominated solution would be extremely useful, 
as planners can make use of the solutions to de-
rive programs in the Microsoft Project plat-
form.   

A summary of all the parameters being entered will 
be shown to the users for checking when the “Parameter 
Summary” option in menu is selected. Should the user 
satisfy with the input data, they can view the results of 
optimization which include the Pareto solutions for the 
optimization as well as the evolution process of the time 
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and cost according to the iteration when they select the 
“Result Box” option. Taking the results shown in Fig. 1 
as an example, there are three globally non-dominated 
solutions as listed in the left-hand side of the text box 
(Fig. 1a). Besides, the iter-best solutions (i.e. the best 
solution in each iteration) are also listed (Fig. 1b) to ref-
lect the convergence of solutions.  

 

 
a) Solutions at Pareto front 
 

 
b) The evolution process 
Fig. 1. The results of optimization generated by the ACS-based 
TCO model  

3.4. Revised program in project 
Should the user wish to schedule the project according to 
any one of the globally non-dominated solutions as identi-
fied, he/she can simply select the number of the solutions 
in the right box and click the “Schedule It” button. For 
instance, when Pareto solution number 2 is selected (see 
Fig. 2), the duration and cost for the activities of this pro-
ject will be changed accordingly (with total cost and dura-
tion being $225,500 and 63 days respectively) as shown in 
Table 2. The options as highlighted by the rectangle box 
are the optimum options for solution number 2. 
 
3.5. Data storage in Excel 
More details about the results such as the exact options 
selected can be seen in Microsoft Excel format once the 
user click the “Details in Excel” button in the results form 
(Fig. 3). Figs 3a and 3b show the value of the Pareto solu-
tions and the iter-best solutions in Microsoft Excel 
respectively. Fig. 3a shows at which iteration the Pareto 
front solutions are found and the option for all the seven 
activities. In the case project, the first optimum solution 
(i.e. 61 days and $234,000) is obtained at the 6th iteration 
and the last one is found in the 17th iteration. After the 
17th iteration, ACS can no longer derive a better solution.  
 

 
Fig. 2. Selection of Pareto solution 
 

 
Table 2. Project scheduling according to Pareto front solution number 2 
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a) For Pareto front solutions 
 

 

b) For iter-best solutions 
Fig. 3. Data exported to Excel file 

 
Fig. 3b shows part of the Microsoft Excel file with the 
first 10 iterations shown. In the first iteration, the iter-best 
duration in the critical path is 79 days, and the total cost is 
$253,300 with an indirect cost of $1,500/day. Then, the 
time and cost are both reduced to 69 days and $232,000 in 
the 5th iteration representing a very quick improvement. In 
the 6th iteration, the shortest duration of 61 days with a 
total cost of $234,000 – a Pareto front solution is derived. 

 
4. Model validation 
In this section, a test project consisting of 18 activities is 
applied to test the performance of the developed ACS-
based model. Since this construction project (Elbeltagi 
et al. 2005) was adopted in several other comparable 
research studies (e.g. Feng et al. 1997; Zheng et al. 
2005), direct comparisons can be conducted between the 
current model and the previous ones. The data of the test 
project including the project activities, their predecessors, 
estimation values for cost and duration being is highlight-
ed in Table 3. Again, associated with each activity is up 
to five different possible combinations of time and cost. 
To evaluate the performance of the ACS-based model, 
the tests were not restricted to the TCO analysis but also 
to time and cost optimization analyses respectively.  
 
4.1. Time-Cost optimization 
In solving this 18-activity project, the maximum number 
of iterations and reward factors are set as 200 and 20 
respectively.  The results confirm that these parameters 
are proper for this project. Based on the selected criteria, 

the best solution in each iteration (i.e. the iter-best solu-
tion) is first listed, and the best (i.e. Pareto front) solution 
is then selected from the iter-best solutions of all the iter-
ations (Fig. 4). The evolution trend of the ACS algorithm 
is shown in Fig. 4 with the speed of evolution being very 
high at the beginning (i.e. time and cost reduce quickly) 
but the speed gradually decreases until the algorithm 
converges at the Pareto front solutions. During the first 
iteration when the options were randomly selected by the 
model, the time and cost are 121 days and $317,605 re-
spectively. However, after 200 iterations, the time and 
cost have significantly reduced to 104 days and $276,320 
respectively indicating that this is one of the Pareto front 
solutions for this test project. 

From Fig. 4, it is easy to notice that the convergence 
of the ACS algorithm is extremely quick, and the evolution 
is very greedy which is extremely desirable for the best 
solutions. It follows that it may not be very effective in 
satisfying the need for diversity of solutions. To obtain 
more solutions, an ACS-SGPU algorithm was developed 
whereby a two-step global updating strategy is adopted. 
The first step is to derive the best solutions, while the 
subsequent step is to generate the second-best solutions. 
Since the ants may be attracted to those solutions other 
than the “best” ones, the diversity of solutions can be gua-
ranteed. Hence, after the global pheromone updating with 
respect to the best ant, a similar update is conducted with 
respect to the second best ant according to the following 
equations: 
 ij ij( ) (1 ) ( 1)t z t z= − ⋅ − + ⋅∆τ τ τ ; (6) 
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Table 3. Details of the test project (Elbeltagi et al. 2005) 
Task Pred Duration 

(day) 
Cost 
($) 

Alternatives 
  D1 C1 D2 C2 D3 C3 D4 C4 D5 C5 
1  14 2,400 14 2,400 15 2,150 16 1,900 21 1,500 24 1,200 
2  20 1,800 15 3,000 18 2,400 20 1,800 23 1,500 25 1,000 
3  33 3.200 15 4,500 22 4,000 33 3,200     
4  20 30,000 12 45,000 16 35,000 20 30,000     
5 1 30 10,000 22 20,000 24 17,500 28 15,000 30 10,000   
6 1 18 32,000 14 40,000 18 32,000 24 18,000     
7 5 18 22,000 9 30,000 15 24,000 18 22,000     
8 6 16 200 14 220 15 215 16 200 21 208 24 120 
9 6 15 300 15 300 18 240 20 180 23 150 25 100 
10 2,6 15 450 15 450 22 400 33 320     
11 7,8 20 300 12 450 16 450 20 300     
12 5,9,10 22 2,000 22 2,000 24 1,750 28 1,500 30 1,000   
13 3 24 1,800 14 4,000 18 3,200 24 1,800     
14 4,10 15 2,400 9 3,000 15 2,400 18 2,200     
15 12 12 4,500 12 4,500 16 3,500       
16 13,14 22 2,000 20 3,000 22 2,000 24 1,750 28 1,500 30 1,000 
17 11,14,15 14 4,000 14 4,000 18 3,200 24 1,800     
18 16,17 9 3,000 9 3,000 15 2,400 18 2,200     

 

 
Fig. 4. Solutions after 200 iterations using the ACS 

 
 best iter / 2f R

−
∆ = ⋅τ , (7) 

where ƒbest-iter is the fitness value of the best ant in this 
iteration; and τij(t) represents the pheromone value of the 
options (i,j) belonging to the second-best tour but not 
belonging to the best tour, so that the same option being 
updated two times could be avoided. 

With the parameters remain unchanged, the beha-
vior of the ACS-SGPU algorithm can be identified from 
Fig. 5.  From this figure, one can witness that the solution 
points are more dispersed even with same number of 
iterations involved. More specifically, the Pareto front 
solutions obtained by ACS and ACS-SGPU after 200 
iterations are listed in Table 4. The results confirm that 
even though the solutions obtained by ACS-SGPU after 
200 iterations are not significantly better than that genera-
ted by ACS, the diversity can be guaranteed.  In some 
situation, this would offer managers with more options to 
choose from when planning the project. 

 
Fig. 5. Solutions after 200 iterations using the ACS-SGPU 
algorithm 
 

Table 4. Pareto front solutions of the ACS and ACS-SGPU 
algorithms 

Description ACS algorithm ACS-SGPU algorithm 
Best results 
got from the 
models 
(with indirect 
cost=$1500) 

Time (day) Cost ($) Time (day) Cost ($) 
100 283,320 100 285,400 
101 279,820 101 282,508 
104 276,320 102 281,850 
110 271,320 104 277,200 

   110 273,165 
 
Figs 6 and 7 show the convergence of time and cost 

for ACS and ACS-SGPU algorithms respectively. From 
these figures, one could notice that the time and cost are 
reduced to a range which actually including the time and 
cost values of the Pareto front solution as found in Fig. 6. 
In the situation of ACS, the time ranges from 100 to 110 
days just after around 20 iterations and the cost ranges 
from $27,500 to $28,500 after 55 iterations. However, as 
in the case of the ACS-SGPU, the time and cost fluctuate 
in a slightly broader range mainly because of its diversity.  
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a)   

b)  
Fig. 6. Convergences of time and cost using the ACS algorithm 
 

a)  

b)  
Fig. 7. Convergences of time and cost using the ACS-SGPU 
algorithm 

Figs 6 and 7 can be combined into a 3-D diagram to 
illustrate the evolutionary trend of the ACS algorithm 
(Fig. 8) and ACS-SGPU algorithm (Fig. 9). The dots 
shown in these two figures represent the solutions and 
they converge to an area quickly with slight fluctuations. 
The projections of the data points (solutions) can be seen 
on the relevant 3-D plane. Therefore, these two diagrams 
can show the relationship between the time and cost; as 
well as the time-iteration and cost-iteration on the y-z, x-y 
and x-z projection planes respectively. 

 

 
Fig. 8. Evolution of the ACS algorithm 

 

 
Fig. 9. Evolution of the ACS-SGPU algorithm 

 
4.2. Time optimization  
When performing TCO analysis using the ACS tech-
niques, the weight values control the balance of the two 
objectives – i.e. time and cost. These values can be modi-
fied so that the model only optimizes the total cost or 
total duration. When the manager is concerning the cost 
only, the weight value could be set as (wt = 0, wc = 1). On 
the other hand, when the duration is the prime objective 
the weight value could be changed to (wt = 1, wc = 0).  

The performance of ACS in time optimization is 
shown in Fig. 10. The results show that the “best-so-far” 
total time of the project as derived by ACS reduces sharp-
ly with the iteration, and from the 10th iteration to the end 
of algorithm, there is no change in terms of the time. The 
original total time (in the 1st iteration) of the project is 
124 days, while the optimum duration is 100 days (after 
10th iteration) with 24 days which is equivalent to around 
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20% reduction. This indicates that this model can mini-
mize the project time very quickly. 

 

 
Fig. 10. Convergence of time optimization 

 
4.3. Cost optimization  
When the cost is the prime concern (i.e. wt=0, wc=1), the 
model results could vary. To compare the results of 
Elbeltagi et al. (2005), the indirect cost is set as $500 per 
day while keeping other parameters unaltered, and the 
convergence of the cost is shown in Fig. 11. This figure 
only shows the relationship between the “best-so-far” 
solutions (the lowest cost found from the very beginning 
of the algorithm) with the iteration instead of the iter-best 
solutions. From Fig. 11, an optimal cost of $161,270 at 
the duration of 110 days can be reached after 28 itera-
tions, and the result of any subsequent iteration remains 
unchanged beyond that point. 

 

 
Fig. 11. Convergence of cost optimization 

 
The efficiency of the ACS-based model can also be 

confirmed by the iter-best solutions for cost optimization 
as depicted in Fig. 12. From this figure, it is evident that 
the cost points are almost reducing along with the itera-
tion with the exception of two or three points which have 
a slight upward deviation. This means the algorithm can 
almost reach the best solution in every cycle of iteration 
after the 28th iteration. The ACS is an evolutionary-based 
algorithm and has the nature to explore new solutions, if 
the ants always travel in the same way, there will be no 

evolution of the solution. According to the ACS algo-
rithm, the ants can remember the best solution established 
in previous iteration. That is to say, the options belonging 
to this solution will have a greater probability of being 
selected, but this does not mean that these options can 
definitely be chosen. In such cases, other options could be 
selected by the ants and the solution of that iteration may 
or may not be as good as the previous one, and this can 
explain the deviation of two or three points in Fig. 12. 

 

 
Fig. 12. Cost values based on the cost optimization algorithm 

 
4.4. Comparisons 
A comparison amongst the ACS algorithm, ACS-SGPU 
algorithm and GA-based TCO model (Zheng et al., 2005) 
using the same project is shown in Table 5. From Ta-
ble 5, it is apparent that both the populations and number 
of iterations of the ACS-based model are less than those 
of the GA-based model. As for the time and cost results 
for the case project, the ACS-based model can obtain a 
more optimal cost value under the same duration. For 
example, when the duration is fixed at 100 days, the GA-
based model can only come up with a solution which 
costs $287,720 while the solution derived by the ACS 
algorithm would cost $283,320 – a saving of $4,400 
which is equivalent to 1.53% of the total cost. In the situ-
ation of ACS-SGPU, the total cost is $285,400, which is 
in between the GA and ACS models. However, the itera-
tions of ACS-SGPU and ACS are less than that of GA.  
Even though the quality of solutions generated by ACS-
SGPU is not as good as ACS, it is superior to the GA 
model and can generate more Pareto front solutions (i.e. 
five solutions from ACS-SGPU as opposed to four in the 
case of ACS and GA). 

To provide a much clearer comparison, the Pareto 
front solutions of the three models are illustrated in 
Fig. 13. The comparisons among these three algorithms 
indicate that ACS has the best ability to search for global-
ly non-dominated solutions; ACS-SGPU has an excellent 
power in searching for more solutions. The behavior of 
GA-based model, however, is not as good as other algo-
rithms under investigation. 

The discussions above focus on the TCO analysis.  
Besides, comparison between the ACS-based model and 
Elbeltagi’s ACO-based time-cost tradeoff (TCT) model 
was also conducted.  Since the  TCT  analysis involves an 
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Table 5. Comparison between different algorithms 
Description GA model ACS algorithm ACS-SGPU algorithm 

Populations in an iteration 50 10 10 
Number of iterations to get  
the solutions 

500 200 200 
Best results got from the models 
(with indirect cost=$1500) 

Time (day) Cost ($) Time (day) Cost ($) Time (day) Cost ($) 
100 287,720 100 283,320 100 285,400 
101 284,020 101 279,820 101 282,508 
104 280,020 104 276,320 102 281,850 
110 273,720 110 271,320 104 277,200 

     110 273,165 
 

 
Fig. 13. Comparison of Pareto front between different algo-
rithms 

 
optimization of the total cost, the result would only be the 
best solution. Hence, the ACS-SGPU algorithm which 
strives to guarantee the diversity of the solutions is irrele-
vant to this analysis. Using the ACS algorithm, the best 
solution of 110 days and $161,270 is reached with lesser 
number of iterations (Table 6). These results illustrate 
that the ACS-based model can reduce the computation 
time especially when the network gets more sophisticated 
as compared with the previous ACO model, and this is an 
important advantage of the ACS algorithm. 
 
Table 6. Comparison between the ACO-based and the ACS-

based model 
Description ACO based 

model 
ACS-based 
model 

Number of ants 30 10 
Number of iterations to 
get the best solution 

100 28 
Minimum time 110 days 110 days 
Minimum cost $161,270 $161,270 

 
5. Conclusions 
Although many research studies have been conducted 
using the ant colony optimization algorithms, there has 
been little attention to the application of such algorithms 
the ant colony system (ACS) for time-cost optimization 
(TCO) problems. In this study, a TCO model based on 
the ACS techniques is developed to optimize the time and 
cost simultaneously for construction projects. To deal 
with this multi-objective problem, a modified adaptive 
weight approach (MAWA) is applied to combine the time 

and cost into a single objective function through the rele-
vant weight values on the time and cost objectives. In the 
ACS algorithm for TCO, the weight values can be calcu-
lated after the maximal and minimal time and cost of the 
current iteration. On the other hand, the model can be 
used to optimize the time or total cost when the relevant 
weight value is adjusted. 

The ACO-based TCO model has been developed 
using VBA on the platform of Microsoft Project, and 
three modules have been built in the proposed model 
which includes the data input, optimization, and data 
output. The data input interface allows the user to select 
the exact algorithm (ACS or ACS-SGPU) and the optimi-
zation type (TCO, time optimization or cost optimiza-
tion). In the optimization module, the ACS algorithm has 
been coded in accordance with the four development 
phases. Finally, the results are generated through the data 
output module. The solutions can be plugged to Micro-
soft Project so as to facilitate interaction with the user. 
The model, therefore, provides a user-friendly and effi-
cient platform to support time-cost optimization deci-
sions. 

The model has been compared with other systems 
developed using by other approaches, and the results of 
the validation show that the ACS technique can generate 
a group of near-global solutions within a shorter proces-
sing time indicating that ACS is superior for multi-
objective TCO modeling. The results of the validation 
confirm that MAWA can efficiently work with ACS. 
Therefore, apart from broadening our understanding on 
the application domain of ACO algorithms, the model 
also provides a new direction for modeling construction 
time-cost analysis. Using the ACS-SGPU, planners or 
project managers are offered a series of possible solutions 
for TCO analysis so that the chance of identifying a sui-
table solution is increased.  
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