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Abstract. It is well known that small periodic vibrations of a cable support through its axial direction produce large spec-
tacular oscillations of the cable. This may occur when the frequency of the anchorage motion is close to the first natural 
frequency or twice the fundamental frequency of the cable. In this paper, a nonlinear dynamic study of a cable under first 
and second order parametric excitations is presented. The cable model takes into account sag as well as quadratic and cu-
bic nonlinear couplings between in-plane and out-of-plane motions. As a numerical example, a single-d.o.f. planar model 
of a horizontal cable is used to study the effect of frequency and amplitude of excitation as well as the natural damping of 
the cable on its transient and steady state responses with a particular focus on the time needed to trigger first and second 
order parametric resonance.  
Keywords: small sagged cables, nonlinear vibration, parametric excitation, general support movement. 

 

1. Introduction 
Cables have been widely used in many engineering appli-
cations such as guyed towers, suspended bridges, cable 
stayed bridges, stadium roofs, etc. These structures are 
very flexible and sensitive to traffic, wind and seismic 
excitations. Thus, stay cables are prone to vibrate locally 
both in-plane and out-of-plane. Furthermore, cable vibra-
tions can be accompanied by support motion. The cou-
pling between the local (cable) and the global modes 
(structure) may give rise to parametric excitations (Sun 
et al. 2003). In fact, when a tuning process converges to 
certain conditions, even small periodic vibrations of the 
cable support through its axial direction produce large 
spectacular oscillations of the cable. This may occur 
when the frequency of the anchorage motion is close to 
the first natural frequency or twice the fundamental fre-
quency of the cable (Lilien, Pinto da Costa 1994).  

Cable dynamics bibliography is very rich. Classical 
linear modelling was addressed by Irvine (1992) in a 
book, Triantafyllou (1984, 1987, 1991) and Starossek 
(1994) in some review articles. As for nonlinear dynam-
ics, modeling and analysis were highlighted in some re-
view articles by Rega (2004a, b) and Ibrahim (2004). A 
small part of the extremely rich literature is cited here. 
Linear free and forced oscillations of elastic cables with a 
small sag-to-chord-length ratio based on the parabolic 
equilibrium approximation were first developed by Irvine 
(1992) and Irvine and Caughey (1974). Based on a sin-
gle-degree-of-freedom model for the in-plane vibrations 

of the cable, Hagedorn and Schäfer (1980) extended the 
linear theory by considering the effect of quadratic and 
cubic non-linearities on eigen frequencies. These non-
linear terms come up due to the stretching of the cable 
associated with the large-amplitude vibration (Takahashi, 
Konishi 1987). The existence of the quadratic and cubic 
non-linear terms makes the in-plane cable motion couples 
with the out-of-plane cable motion and induces modal 
interaction (Perkins 1992). To determine the nonlinear 
dynamic response of a sag cable, the Galerkin method is 
often used to convert non-linear partial differential equa-
tions of motion to non-linear ordinary differential equa-
tions with respect to time functions only. Then, either the 
perturbation method (Benedettini et al. 1995; Chen, Xu 
2009), or the harmonic balance method (Takahashi 1991) 
is applied to find the solution for the time functions. 
Nayfeh et al. (1995) investigated the nonlinear differen-
tial equations that govern the in-plane motion of a taut 
string under parametric excitation. They predicted the 
steady state response using the method of multiple scales. 
Ben Kahla (1995) presented a numerical model, of a sin-
gle cable with large oscillations, based on a step by step 
integration method coupled with an iterative procedure. 
Juozapaitis and Norkus (2004) derived the expressions of 
maximum vertical and horizontal displacements of a 
asymmetrically loaded cable. Wu et al. (2005) did a mo-
dification in the expressions for the in-plane natural fre-
quencies of an inclined cable as derived before by Irvine 
(1992). Ren et al. (2005) proposed empirical formulas to 
estimate cable tension based on the cable fundamental 
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frequency only and validated them by comparing the 

results with those reported in the literature and with the 

experimental results carried out on a stay cable mock-up. 

Wu et al. (2003) examined local parametric vibrations in 

the stay cables of an existing cable-stayed bridge under 

sinusoidal excitations, traffic loadings and earthquake. 

Srinil and Rega (2007) studied the effects of kinematic 

condensation on internally resonant forced vibrations of 

shallow horizontal cables. Rega et al. (2008) carried ex-

perimental studies on free and parametrically-forced vi-

brations of sagged inclined cables and discussed them 

against theoretical and numerical analyses. Hu and Frank 

Pai (2010) conducted an experimental study of the non-

linear dynamic characteristics of taut cables using an 

extraordinary 3D motion analysis system. The planar and 

nonplanar/whirling vibration, hardening effect, and modal 

coupling vibration were successfully recorded and the 

hysteretic phenomenon of response was also observed.  

Wang and Zhao (2009a, b) applied the shooting method 

and the continuation technique to investigate the large 

amplitude motion and non-planar motion characteristic of 

an inclined cable subjected to support motion. Recently, 

Nielsen and Sichani (2011) analyzed the stochastic re-

sponse and chaotic behaviour of a shallow cable by two 

comparable stochastic models of the chord elongation for 

the sub- and the superharmonic resonances.  

Wang and Rega (2010) developed 3D nonlinear 

equations of motion of a suspended cable with moving 

mass and studied the effects of the inertia force, mass, sag 

and velocity of the moving mass on the transient dynamics 

of the cable. Takahashi and Chen (2006) studied the effect 

of cable loosening on the nonlinear parametric vibrations 

of inclined cables with small sag using a new technique 

that takes into account flexural rigidity and damping. An 

investigation on accurate finite element modelling of large-

diameter sagged cables taking into account flexural rigidity 

and sag extensibility is carried out by Ni et al. (2002). 

Lacarbonara and Pacitti (2008) presented a geometrically 

exact formulation of cables suffering axis stretching and 

flexural curvature based on nonlinearly visco-elastic con-

stitutive laws for the tension and bending moment with an 

additional constitutive nonlinearity accounting for the no-

compression condition. Treyssède (2010) studied the effect 

of thermal change on the frequencies of a cable taking into 

account flexural rigidity and sag. Sousa et al. (2011) ana-

lyzed the influence of bending and shear stiffness and rota-

tional inertia in the natural frequencies of overhead trans-

mission line conductors and compared the results with a 

vibrating string where only geometrical stiffness is consid-

ered. As the flexural rigidity has an effect on the natural 

frequencies in the case of suspended cables with large 

diameters, it can be neglected in the case of stay cables 

with smaller diameter. In this paper, we present a cable 

model which takes into account sag as well as quadratic 

and cubic nonlinear couplings between in-plane and out-

of-plane motions and movable support. The motivation of 

the use of a model accounting for general support move-

ment is that it can simply be coupled with a finite element 

model of a cable stayed bridge which will be used to study 

the instabilities of stay cables under parametric excitation 

and active control of vibrations. The objective of the present 

study is to analyze the nonlinear dynamic behaviour of a 

cable under first and second order (i.e., principal and funda-

mental) parametric excitations with a comparative construc-

tion of frequency, force and damping-response diagrams for 

the two cases of parametric excitation with a particular focus 

on the time needed to trigger the two resonances.  

The paper is organized as follow: in section 2, a non-

linear model of a cable with small sag and movable support 

is presented. In section 3, a numerical example of a single-

d.o.f. planar model of a horizontal cable is used to study 

the effect of frequency and amplitude of excitation as well 

as the natural damping of the cable on its transient and 

steady state responses with a particular focus on the time 

needed to trigger first and second order parametric reso-

nance. The paper ends with some conclusions. 

 

2. Nonlinear modelling of an inclined cable with  

small sag 

The non-linear model of the inclined cable takes into 

account the sag effect, coupling between the in-plane and 

out-of-plane motions and also the displacements of the 

anchorage points. The model of the cable is written in a 

local coordinate system as indicated in Fig. 1; the local x 

axis is taken along the string line and y axis in the hori-

zontal plane, while the z axis is in the gravity plane and 

perpendicular to the chord line. The cable displacements 

can be separated into three parts: the static, the quasi-

static and the dynamic contributions. A brief description 

of the nonlinear model of the cable is presented hereafter 

(for more details see Bossens 2001). 
 

 

Fig. 1. 3D-model of an inclined cable with support motions 

 

2.1. Static configuration  

The static configuration of a cable is a function of its 

weight and pre-stress when the anchorage points are fixed 

in the initial position. Assuming small sag and a constant 

stress along the cable span, the static profile of an in-

clined cable can be approximated by a parabola. The 

static sag of a given point of coordinate x along the cable 

chord is given by the following relation: 

 
2

2( ) ( )
2

s

s

l x x
w x

l l

γ  = −  σ
, (1) 
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where: sσ is the static stress; l  the length of the cable’s 

chord; γ  is the component of weight density along z  

axis which is equal to cosgρ θ . With ρ  the cable mass 

density, g  the gravity and θ  the angle of the chord line 

with respect to the horizontal. 

 

2.2. Quasi static motion 

The quasi-static motion due to the support movements of 

anchorage points a and b can be written as:  

 ( , ) ( ) ( )q sb a
a b a

w w x
u x t u w x u u

l l

−
= − + − ;  (2) 

 ( , ) ( )q
a b a

x
v x t v v v

l
= + − ; (3) 

 ( , ) ( ) ( )
qq sb a

a b a s

E u ux
w x t w w w w x

l l

−
= + − −

σ
, (4) 

where: 
qE  is the effective modulus of elasticity (see 

Appendix); , , , ,a b a b au u v v w and bw  are the movements 

imposed to anchorage points. 

 

2.3. Dynamic motion 

The dynamic motion of the cable subjected to the excita-

tion of its supports formulated in a discrete manner is 

obtained by employing the Ritz method. This method is 

based on approaching the solution of variational problem 

by a finite sum of shape functions. The “separation of 

variables” method is used to write the shape functions 

with two well separated factors (geometric and temporal). 

For small sag, the axial dynamic component can be 

neglected and: 

 ( , ) 0du x t ≈ ; (5) 

 ( , ) ( ) ( ) ( ) sin
d

n n n

n n

n x
v x t y t x y t

l

π
= ϕ =∑ ∑ ; (6) 

 ( , ) ( ) ( ) ( ) sin
d

n n n

n n

n x
w x t z t x z t

l

π
= ψ =∑ ∑ . (7) 

The global displacement of the cable is obtained 

from the superposition of the static displacement, quasi-

static and dynamic motion as: 

 ( , ) ( , )qu x t u x t= ; (8) 

 ( , ) ( , ) ( , )q dv x t v x t v x t= + ;  (9) 

 ( , ) ( ) ( , ) ( , )s q dw x t w x w x t w x t= + + . (10) 

The total displacement of the cable will be comple-

tely defined by the following coordinates:  

 , , , ,a b a b au u v v w , bw , … iy …, … iz . 

The kinetic energy of the cable is given by:   

 
2 2 2

0

1
[ ]

2

l

cK A u v w dx= ρ + +∫ � � � . (11) 

The potential energy of the cable contains the cont-

ribution of the elastic elongation of the cable and the 

gravitational potential: 

 
2

0

1
( , )

2

l

cU EA x t dx= ε −∫  

 
0
[( ) cos sin ]

l s q d qgA w w w u dxρ + + θ − θ∫ , (12) 

where E is the modulus of elasticity and ε  is the axial 

strain in the cable which is supposed to be the only con-

tribution to the strain energy.  

The axial strain is evaluated using Green’s tensor of 

strain: 

 
1

( )
2

ji k k
ij

j i i j

uu u u

x x x x

∂∂ ∂ ∂
ε = + +

∂ ∂ ∂ ∂
. (13) 

The expressions of the Kinetic and potential ener-

gies are given in the Appendix. 

 

2.4. Equation of horizontal modes of the cable 

Substituting the expressions of the kinetic and potential 

energies in the Lagrange equations, we obtain the differ-

ential equations governing the generalized coordinates yn 

of the n
th

 cable mode: 

 
( )

( )
n

c
y

n n

Kd
EAl F

dt y y

∂ ∂ ε
+ ε =

∂ ∂�
,  (14) 

where 
nyF  is the modal  component, associated to yn, of 

the external forces applied to the cable. 

Thus, by adding a damping term, the equations of 

motion become: 

 
2 2

02

1
2 ( )

2
n yn n n q d n

n
ml y y T T T y

m l

 π 
+ ξ ω + + + = 

  
�� �  

 1( ( 1) )
n

n
y a b

m l
F v v

n

+− + −
π
�� �� ,  (15) 

where 
nyξ , 

nyω  and 
nyF  are respectively the modal 

damping, the frequency and the modal component of the 

external forces applied to the cable, associated to the 

generalized coordinates yn of the n
th

 cable mode. The 

cable mass per unit length is m, av��  and bv��  are respec-

tively the transverse acceleration of the anchorage points 

a and b with respect to the y axis, 0T is the static tension 

in the cable at its equilibrium and 
(1) (2)

q q qT T T= +  is the 

tension increment induced by the support movement 

with: 

 (1) b a
q q

u u
T E A

l

−
= ; (16) 
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(2)

2 2

( )
(1 )

12 2

q b a
q s

E u u
T EA

l

−λ
= +

σ + λ
;  

 
2 22

2 2

( ) ( )
(1 )

122 2

s
b a b av v w w

EA EA
El l

− −λ σ
+ + + , (17) 

where: A is the cable cross section area and 2λ  is the 

Irvine’s parameter (Irvine 1992) (see Appendix), 
(1) (2)

d d d
T T T= +  is the tension increment induced by the 

dynamic motion of the cable, which is responsible for the 

quadratic and cubic nonlinear couplings between in-plane 

and out-of-plane motion: 

 
2

(1) 1

0

[ (1 ( 1) )]nn
d

n

zEA
T

T n

+γ
= + −

π∑ ; (18) 

 
2 2 2 2

(2) 2 2

2 2
( ) ( )

2 22 2
n nd

n n

EA n EA n
T y z

l l

π π
= + −∑ ∑  

 1

2
[ (1 ( 1) )]

( )

q nb a n

s
n

E EA u u z

l n

+γ −
+ −

πσ
∑ . (19) 

 

2.5. Equation of transverse modes of the cable 

The equations of motion describing the transverse modes 

of vibration can be developed using the same strategy as 

for determining the equation governing the horizontal 

modes of vibration of an inclined cable with small sag: 

 
,( )( )

( )
n

c gc
z

n n n

UKd
EAl F

dt z z z

∂∂ ∂ ε
+ ε + =

∂ ∂ ∂�
.  (20) 

By assuming that 

2

2
0

1
qT

T
<<  and  

0

1dT

T
<<  and limiting Tq 

to the first order, one can write: 

 
2 2

02

1
2 ( )

2 n nn z n n q d n z

n
ml z z T T T z F

m l

 π 
+ ξ ω + + + = 
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�� �  

2 1
1

2 3

(1 ( 1) )
( ( 1) ) ( )

( ) ( )

n
qn

a b b as

ml Eml
w w u u

n n

+
+ γ + −

− + − + − −
π σ π
�� �� �� ��  

 
1

0

(1 ( 1) )n

d

A l
T

T n

+γ + −
π

,  (21) 

where:
nzξ , 

nzω  and 
nzF  are respectively the modal 

damping, the frequency and the modal component of the 

external forces applied to the cable, associated with the 

generalized coordinates zn of the n
th

  cable mode. The in-

plane acceleration of the anchorage points a and b with 

respect to the z axis are respectively aw��  and bw�� , the lon-

gitudinal acceleration of the anchorage points a and b 

with respect to the x axis are respectively au��  and bu�� . 

This model had been implemented into a MATLAB/ 

SIMULINK program. 

3. Numerical example 

In this section, the dynamic response of a single-d.o.f. 

planar model of a horizontal cable (ab) with small sag 

(nearly taut cable), fixed at its right end and attached to a 

roller support at its left end so that only horizontal motion 

is allowed at this node, had been studied under a first and a 

second order (i.e., principal and fundamental) parametric 

excitation. The k
th
 order parametric excitation is obtained 

for a frequency of excitation 02 /k kω = ω  ( 1, 2,3,...k = ). 

The geometrical and physical properties of the stainless 

steel cable are given in Table 1. The cable is located before 

the first crossover of natural frequencies. In fact, the cable 

had been excited through its axial direction ( au ) at its left 

end with a frequency close to its fundamental frequency 

then close twice that of its first natural frequency (see 

Fig. 2). The effect of frequency and amplitude of excitation 

as well as the natural damping of the cable on the steady 

state response had been investigated. 

 
Table 1. Cable parameters 

Parameters Values 

Length l  

Diameter ϕ  

Modulus of elasticity E 

Density 

Lumped mass every 10 cm along the cable 

Initial static tension T0 

Sag d/l 

Irvine’s parameter  

Modal damping ξ0 

1.745 m 

1×10–3 m 

105×109 Pa 

6251 kg/m3 

10 g 

100 N 

0.195% 

0.2 

0.3% 

 

 

Fig. 2. Parametric excitation of a cable 
 

 

3.1. First order parametric excitation 

3.1.1. Effect of the frequency of excitation 

The tension of the cable is tuned to 100 N which corre-

sponds to a first natural frequency of the cable ω0 = 

60.2 rad/s and excited harmonically ( sin( )a u excitu a t= ω ) 

through its axial direction by a frequency 02excitω = ω  

and with an amplitude of excitation au = 0.1 mm. The time 

evolution of the mid span vertical displacement (Z1) is 

plotted in Fig. 3a. This figure shows large spectacular ver-

tical oscillations of the cable at mid span under first order 

parametric excitation. First the response of the cable is 

dominated by small oscillations with a period correspond-

ing to a frequency of 2ω0 which characterises the anti-

symmetric mode of vibration of the cable. Next, a progres-

sive change of the cable vibration frequency is established 

and converges to ω0 (Fig. 3b) the first natural frequency of 

the cable. Large oscillations of the cable characterising the 

symmetric mode of vibration are obtained. 
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a) 

 
b) 

Fig. 3. In-plane cable vibration at mid span under first order 

parametric excitation as a function of time (a); zoom between 3 

s and 5.5 s (b) 
 

Now, let’s change the frequency of excitation near 

the initial frequency of excitation (2ω0). The maximum 

amplitude of both transient ( 1'Za ) and steady state ( 1Za ) 

in-plane response of the cable at mid span is plotted as a 

function of the frequency of excitation. Fig. 4a shows that 

the maximum in-plane displacement Z1 depends on a mi-

nimum ( minω ) and maximum ( maxω ) threshold frequency 

of excitation (equal to 119.1 and 121.7 rad/s in this case) to 

be triggered. The in-plane displacement Z1 increases as the 

frequency of excitation travels from 
min

ω  to maxω  then 

jumps down. Otherwise, out of this interval the first order 

parametric resonance does not occur. The transient response 

disappears when the frequency is close to minω  and the 

difference between the maximum amplitude of both tran-

sient 1'Za  and steady state 1Za  responses decreases when 

the frequency of excitation increases from minω  to maxω . 

The shape of the frequency-response curve in Fig. 4a is 

qualitatively similar with the analogous curve obtained by 

Rega and Benedettini (1989) for the single d.o.f model of 

suspended cable using multiple scale method. 

The necessary time to trigger parametric resonance 

is also plotted as a function of the frequency of excitation 

(Fig. 4b). Parametric resonance triggers faster when the 

frequency of excitation is close to 2ω0 but triggers slower 

when frequency is near minω  and maxω . 

 

 
a) 

 
b) 

Fig. 4. Maximum mid span cable displacement (a);  necessary 

time to trigger first order parametric resonance as a function of 

the frequency of excitation (b) 

 

3.1.2. Effect of the amplitude of excitation 

Let’s fix the frequency of the excitation at 
0

2
excit

ω ω=  and 

progressively change the amplitude of excitation. The 

transient and steady state response of the cable are plotted 

as a function of the amplitude of excitation (au). Fig. 5a 

shows that the parametric resonance needs threshold am-

plitude of excitation to be triggered, as proved by Rega 

and Benedettini (1989), and that the maximum in-plane 

displacement 
1Za  of the cable increases by increasing the 

amplitude of excitation. This means that in cable stayed 

bridges, first order parametric excitation could be pre-

vented by damping the deck or the pylon and keeping 

their amplitudes of vibration under the threshold value 

needed to trigger parametric resonance. The difference 

between the maximum amplitude of both transient and 

steady state responses increases by increasing the ampli-

tude of excitation. 

Fig. 5b shows that the time needed to trigger a pa-

rametric resonance decreases by increasing the amplitude 

of excitation and goes to infinity when the amplitude of 

excitation is under the threshold value.  
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a)  

b)  

Fig. 5. Maximum mid span cable displacement (a); necessary 

time to trigger first order parametric resonance; as a function of 

the amplitude of excitation (b) 

3.1.3. Effect of the natural damping of the cable 

Next, the amplitude and the frequency of excitation are 

fixed respectively to au = 0.1 mm and 02excitω = ω . The 

natural damping ( 0 0.3%ξ = ) of the cable is changed 

from small to high values. For small values of natural 

damping, a beating phenomenon is obtained as could be 

seen in Fig. 6a and Fig. 6d. A progressive change of the 

frequency of the cable from 02ω  to 0ω , then from 0ω  to 

02ω  is observed after the first beating as shown in 

Fig. 6c. The beating disappears as the damping increases 

(see Fig. 7). The maximum amplitude of both transient 

and steady state in-plane response of the cable at mid 

span are plotted as a function of the damping. Fig. 8a 

shows that the amplitude of both transient and steady 

state responses, and also the difference between them, 

decreases by increasing the damping in the cable. For 

high damping, the transient response disappears and the 

response goes directly to a steady state. The parametric 

resonance also disappears when the damping achieve a 

critical value of damping (ξ = 1.19% in this case). Note 

that this critical value depends also on the amplitude of 

excitation. The time needed to trigger parametric reso-

nance is also plotted as a function of the damping 

(Fig. 8b). Here we can see that parametric resonance 

triggers faster when the damping is small. And for high 

values of damping it needs a very long time to occur 

which means its disappearance. 

 

 

 

 

 

Fig. 6. Evolution in time of the cable mid span  displacement under first order parametric excitation: (a), (b) and (c) – when 

00.001ξ = ξ ; (d), (e) and (f) – when 00.01ξ = ξ ; (b) and (e) zoom between 2 s and 4 s; (c) zoom between 13.5 s and  

17 s; (f) zoom between 12.5 s and 15 s 
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Fig. 7. Evolution in time of the in-plane cable mid span displacement under first order parametric excitation for different 

values of natural damping 
 

a)  

b)  

Fig. 8. Maximum mid span cable displacement (a); necessary 

time to trigger first order parametric resonance, as a function of 

the natural damping (b) 

3.2. Second order parametric excitation 

The same numerical experiences described in section 3.1 

are reproduced for k = 2, which corresponds to a frequen-

cy of excitation equal to the fundamental frequency of the 

cable. Investigating the dynamic response of the cable 

under this particular frequency of excitation, allows stud-

ying the second order parametric excitation. The time 

evolution of the mid span vertical displacement (Z1) is 

plotted for this case in Fig. 9a. Large vertical oscillations 

of the cable at mid span are also observed but without any 

change of the cable vibration frequency (Fig. 9b).  

By changing the frequency of excitation near the 

initial frequency of excitation (ω0) and plotting in 

Fig. 10a the maximum amplitude of both transient (
1'

Z
a ) 

and steady state (
1Za ) in-plane response of the cable at 

mid span as a function of the frequency of excitation, one 

can see that the shape of the frequency-response curve is 

similar to that of a single-d.o.f. model under primary 

external resonance (Berlioz, Lamarque 2005). The para-

metric resonance occurs in a frequency band larger than 

for the case of first order parametric excitation. This 

means that the risk of producing a second order paramet-

ric resonance is higher than for a first order parametric 

excitation.  

The transient in-plane response appears for all fre-

quencies near the first cable frequency whereas for the 

case of first order parametric excitation the transient re-

sponse disappears for frequencies close to minω . 
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a)  

b)  

Fig. 9. In-plane cable vibration at mid span under second order 

parametric excitation as a function of time (a); zoom between 

1 s and 3 s (b) 

 

The necessary time to trigger parametric resonance 

is also plotted as a function of the frequency of excitation 

(Fig. 10b). Second order parametric resonance triggers 

slower when the frequency of excitation is very close to 

ω0 but triggers faster when frequency changes around ω0. 

The second order parametric resonance triggers faster 

than the first parametric excitation. 

Next, the effect of the amplitude of excitation on the 

second order parametric resonance is studied.  The 

maximum mid span cable displacements are plotted as a 

function of the amplitudes of excitation and compared to 

those obtained from first order parametric excitation 

(Fig. 11a). This figure reveals that the second order para-

metric excitation doesn’t need threshold amplitude to 

trigger and that the maximum response increases by inc-

reasing the amplitude of excitation. The second order 

parametric excitation produces a maximum in-plane dis-

placement Z1 larger than the one under first order excita-

tion up to an amplitude of excitation equal to 0.08 mm. 

Beyond this value, the first order parametric excitation 

produces the largest oscillations of the cable at mid span. 

Fig. 11b shows that the time needed to trigger a second 

order parametric resonance is faster than the first order 

parametric resonance. 

a)  

b)  

Fig. 10. Maximum mid span cable displacement (a);  necessary 

time to trigger second order parametric resonance as a function 

of the frequency of excitation (b) 

 

Finally, the effect of natural damping on the second 

order parametric resonance is investigated. The amplitude 

and the frequency of excitation are fixed respectively to 

au = 0.1 mm and 0excitω = ω . The natural damping 

( 0 0.3%ξ = ) of the cable is changed from small to high 

values. The maximum amplitude of both transient and 

steady state in-plane response of the cable at mid span are 

plotted as a function of the damping. Fig. 12a shows that 

the cable vibration induced by second order parametric 

excitation needs higher values of damping ratio to be 

reduced, unlike the first order parametric excitation. The 

damping has no significant effect on the time needed to 

trigger a second order parametric resonance as shown in 

Fig. 12b. 

 

4. Conclusions 

A nonlinear model of a cable with small sag and support 

movement is used to investigate the nonlinear oscillations 

of a single-d.o.f. planar cable under first and second order 

parametric excitations. Maximum amplitudes of the in-

plane transient and steady state cable responses at its mid 

span are examined as a function of amplitude and fre-

quency of excitation as well as natural damping of the 

cable.  It had been shown that the existence of  parametric 
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a)  

b)  

Fig. 11.  Maximum mid span cable displacements (a); necessary 

time to trigger parametric resonance; as a function of the ampli-

tude of excitation (b) 

 

a)  

b)  

Fig. 12. Maximum mid span cable displacements (a);  necessary 

time to trigger parametric resonance, as a function of the natural 

damping (b) 

excitation depends on these three parameters. The first 

order parametric resonance triggers faster as the amplitu-

de of excitation increases, the natural damping decreases 

and the frequency of excitation is exactly twice that of the 

fundamental frequency of the cable. The second order 

parametric resonance is more difficult to damp and trig-

gers faster than the first order one for any amplitude of 

excitation. 
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Appendix 

The Irvine’s parameter (Irvine 1992) involving cable 

elasticity and geometry is defined by: 
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, (A.1) 

where E is the cable modulus of elasticity. 

The effective modulus of elasticity is defined as:   
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The kinetic energy of the cable is:  
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In our case, the strain energy can be written as: 
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Since we assume that the strain (tension) is constant 
along the cable span, the dynamical strain is a function of 
time only; averaging ( , )x t  over the cable span, we get: 
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So the strain energy due to elastic elongation of the 
cable is: 

 2 2
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The gravitational potential energy is: 
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The Total potential energy is:   
 

, ,c g c dU U U= + . (A.9) 
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