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Abstract. As a matter of fact, the failure criteria only predict failure’s initiation in materials. And, in order to predict post-
yield behaviour of materials, a much complicated formulation for stress-strain relationship is required, which we know as 
plasticity theory. For instance, these formulations are developed based on Mohr-Coulomb criterion for soils and Drucker-
Prager criterion for concrete. According to a majority of rock mechanics researchers, the empirical and experimental 
Hoek-Brown failure criterion is one of the well-progressed and suitable criteria, which can efficiently predict the rock 
failure initiation under different stress states for various types of intact rocks and rock masses. In this article, according to 
the suggestion by Heok explained in his paper of 1997, this rugged mentioned criterion is considered as a yield criterion 
and the elastic-perfect plastic behaviour of rock masses is determined using calculating material constitutive matrix’s ar-
rays in terms of Hoek-Brown’s material constants and mechanical characteristics of rock materials in the general stress 
space, considering associated flow rule. 
Keywords: Hoek-Brown failure criterion, elastic-plastic materials, associated flow rule, limited strain. 

 

1. Introduction 
According to material type, application and conditions, 
which are supposed to be forced to materials, failure cri-
teria can be categorized into 3 major groups: theoretical 
criteria, empirical criteria and a mixed form of two men-
tioned groups, theoretical-empirical criteria (Lakirouhani, 
Hasanzadehshooiili 2011).  

Also, to truly choose a criterion which efficiently 
describes material’s behaviour, some important aspects 
should be considered; such as its accuracy and applicabil-
ity. Also, this criterion should include a wide range of 
desired material types and its parameters should be acces-
sible for different material’s types (Lakirouhani, Ha-
sanzadehshooiili 2011).  

As we know, in case of majority of materials, vari-
ous criteria are introduced and widely used to predict 
failure’s initiation and to evaluate elastic, plastic and 
post-yielding behaviour of materials (Kargaudas, Ada-
mukaitis 2010; Petkevičius, Valivonis 2010; Dhadwal, 
Kudtarkar 2010). For instance, Plane Griffith crack theo-
ry is one of theoretical criterion, which considers tension 
as the main important reason of crack initiation; and a 
variety of empirically developed criteria are available for 
predicting failure initiation (Lakirouhani, Hasanza-
dehshooiili 2011). Also, plastic behaviour of concrete is 
determined using Drucker-Prager criterion based on plas-
ticity theory (Nayak, Zienkiewicz 1972; Ortiz 1985; 
Siriwardane, Desai 1983; Hjiaj et al. 2002; Jeremić, Yang 

2002; Desai 1980). In case of soils, some of available 
formulations are developed based on Mohr-Coulomb 
criterion (Nayak, Zienkiewicz 1972; Runesson 1987; 
Desai 1980). 

According to the opinion of rock mechanics special-
ists, Hoek-Brown failure criterion, which is developed 
experimentally and empirically (Hoek, Brown 1980), is 
the most applied and useful criterion that can be used 
efficiently and economically to predict rock’s failure 
initiation. This failure criterion includes all of the de-
scribed requirements for a good failure criterion, such as: 
accuracy, including a wide range of rock materials from 
intact rock to rock masses, availability of its parameters 
for different rock types, and etc. 

There is a broad range of studies on rock materials 
(Bizjak 2003; Petje et al. 2006; Macuh, Žlender 2007; 
Petkovšek et al. 2010). To accurately model the real be-
haviour of rock materials, lots of efforts are based on this 
rugged-mentioned criterion, Hoek-Brown criterion (Wan 
1992; Serrano et al. 2005; Merifield et al. 2006). Some 
studies are based on the 1997 version (Hoek, Brown 
1997) of Hoek-Brown criterion (Wan 1992). Meanwhile, 
some of other studies include analytical or approximate 
solutions for Hoek-Brown media and are model-based 
studies, which have been carried out on some special 
geometry, like circular openings (Sharan 2005; Park, Kim 
2006). In this paper, according to Hoek and Brown’s 
suggestion (Hoek, Brown 1997), assuming it as a yield 
criterion, in order to evaluate post-yielding behaviour of 
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rock materials using generalized Hoek-Brown criterion 
(Hoek et al. 2002), the components of elastic-plastic con-
stitutive matrix of material are assessed using this criteri-
on, based on plasticity theory and associated flow rule. 

To do this, defining the probable failure plane, cal-
culations of failure criterion in terms of local stresses in 
failure plane and its derivatives are presented. 

 
2. Hoek-Brown failure criterion 
Hoek-Brown failure criterion is properly developed under 
the aegis of Hoek and Brown’s experimental works from 
1980 to 2002. And its last version was presented in 2002, 
considering rock disturbance factor, D, and considerably 
much more developed specifications and constants 
(Hoek, Brown 1980): 
 3

1 3 ( )aci b
ci

m s
σ

σ = σ + +σ
σ

, (1) 

where: 1σ  and 3σ , are maximum and minimum princi-
ple stresses in general stress space; bm  is the Hoek-
Brown constant for rock masses and s and a, are con-
stants which are determined considering rock mass speci-
fications. And ciσ  is uniaxial compressive strength of 
intact rock material (Hoek et al. 2002; Lakirouhani, Ha-
sanzadehshooiili 2011). 
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3. Plastic behaviour 
As a matter of fact, Hooke’s law is applied to predict 
mechanical behaviour of materials in the elastic state 
(Sadrnejad 2004). Nevertheless, after yielding and plastic 
strain initiation, this formulation will be led to an over 
estimated prediction. Thus, in order to achieve correct 
plastic behaviour of materials, the correct relationship 
between stress and strain should be calculated using plas-
ticity theory after yielding. 

In general, strain tensor is composed of elastic and 
plastic strain tensors (Jeremić, Yang 2002; Nayak, Zien-
kiewicz 1972; Zergua, Naimi 2006): 
 e p

≈ ≈ ≈
ε ε ε= + ; (5) 

 eeD
≈ ≈
σ = ε . (6) 

But, after yielding, considering Eq. (7), which is de-
veloped for associated flow rule (Siriwardane, Desai 
1983; Jeremić, Yang 2002; Desai 1980; Nayak, Zienkie-
wicz 1972; de Souza Neto et al. 2008): 

 p F
≈

≈

∂ε = λ
∂σ

. (7) 

The associated flow-rule, Eq. (7), is related to the 
plastic strain increment vector normal to the yield surface 
called normality rule. The normality rule has been con-
firmed for metals. And, for many soils and rocks, it over-
estimates the plastic deformations. For these materials, 
non-associative flow-rule is more suitable. The concept 
of stable and unstable material defines the type of materi-
als for which the associated flow-rule can be applied. The 
stress-strain curve in Fig. 2 is typical for a strain harden-
ing material and is stable for this approach. For this mate-
rial, associated flow-rule can be used. A strain softening 
material illustrated in Fig. 3 is unstable for associated 
flow-rule. Since many soils and rocks correspond to this 
behaviour, in order to use the associated flow rule for 
soils and rocks, strains must be bounded until the strain 
hardening process goes. Thus, the associated flow-rule 
can be used by limiting the strain to the u

≈

ε  shown in 
Fig. 3. The limiting value, u

≈

ε , is presented in Eq. (8): 

 e p
u

≈ ≈ ≈ ≈

εε ε ε= + ≤ . (8) 
Stress tensor can be calculated using the following 

equation: 
 pe e e FD D D

≈ ≈ ≈ ≈
≈

∂ σ = ε− ε = ε− λ   ∂σ , (9) 

where λ , 
≈
σ  and 

≈
ε  are plastic multiplier, stress tensor 

and strain tensor, also, eD , e

≈
ε  and p

≈
ε , represent elastic-

ity matrix of material, elastic strain tensor and plastic 
strain tensor, respectively. “ ≈ ” and “_” declare the in-
dexes regarding tensor and matrix state, respectively. 

Regarding perfect plastic theory and associated flow 
rule, the formula for λ  is presented in Eq. (10) (Own, 
Hinton 1980; de Souza Neto et al. 2008): 

 
( )
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T e

F D d
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≈
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∂ ∂
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. (10) 

Stress–strain relationship is assessed using epD , the 
formula of which is presented in Eq. (11) (de Souza Neto 
et al. 2008): 
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 (11) 
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Fig. 1. Procedure for calculating the elastic-plastic matrix  

In Fig. 1, the procedure for calculating elastic-
plastic matrix is presented. 

 
4. Using Hoek-Brown failure criterion for evaluating 
plastic behaviour of rock material 
In this section, material’s elastic-plastic constitutive ma-
trix is calculated, based on Hoek-Brown failure criterion, 
which is assumed as a yield criterion, considering perfect 
plastic materials and associated flow-rule. 
 
4.1. Comparing Mohr’s Circle radiuses in different 
planes and assigning probable failure plane, in order 
to assign principle stress amounts in terms of local 
stresses 
Because of Hoek-Brown failure criterion’s development 
in principle space, in order to gain a simplified efficient 
specification of this criterion in general stress space, the 
criterion is projected to the xy, yz and xz planes, sepa-
rately. Then, in order to assign probable failure plane and 
principle stress amounts in terms of local stresses, Rmax1, Rmax2 and Rmax3, which are Mohr’s circle radiuses in xy, 
xz and yz planes, respectively, should be calculated and 
compared. 

The largest Mohr’s circle radius in amount in projec-
tion planes declares yield plane. And all of the calcula-
tions must be done in this plane: 

2
2
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x y

xyR
− σ σ= +σ  

; (12) 

2
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2
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2
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2
2
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2
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2
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2

2
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yz
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2
2

3 2 2
y z y z

yz
+ −   σ σ σ σ= − +σ σ      

. (20) 

  

 
Fig. 2. Stable stress-strain curve  

According to these 3 mentioned states, regarding 
loading conditions and planes, principle stresses can be 
located in each one of these states. 

Because of similarities in calculation procedure in 2 
other states, formulation is developed only in xy plane. 
And the procedure in xz and yz planes is completely 
similar to the following methodology. 

At first, Hoek-Brown failure criterion should be de-
clared in terms of general local stresses. 
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Fig. 3. Unstable stress-strain curve  

According to Eq. (1), 3
1 3 ( )aci b

ci
sm

σ= + +σ σ σ
σ

, 
thus, the yield surface will be: 
 3

1 3 ( ) 0a
ci b

ci
F sm σ= − − + =σ σ σ

σ
. (21) 

Assuming that compressive stresses are negative 
and tensile stresses are positive, regarding the algebraic 
signs, 1σ  and 3σ  will be minimum and maximum prin-
ciple stresses, respectively. Thus the yield surface will 
change into Eq. (22): 
 1

1 3 ( ) 0a
ci b

ci
F sm σ= − − − + =σ σ σ

σ
. (22) 

 
4.2. Determining failure criterion and its derivatives 
in terms of local stresses in failure plane 
With substitution of mentioned values for principle 
stresses in Eqs (15) and (16), into yield surface, in 
Eq. (22), the yield criterion will be changed into Eq. (23): 

2
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  (23) 
thus: 
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in which: 
1
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 0
z yz xz

F F F∂ ∂ ∂= = =
∂ ∂ ∂σ σ σ

. (28) 

In Eqs (25)–(28), dFdx11 and dFdx12 are local pa-rameters that are assumed to simplify calculation proce-
dure and are attained from the following equations: 
 11
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x ydFdx
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= ; (29) 
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(30) 

 
4.3. Calculation of material’s elastic-plastic 
constitutive matrix 
At first, elastic behaviour of materials is achieved from 
material elasticity matrix mentioned in Eq. (31): 

( )( )·1 1 2
1 0 0 0

1 0 0 0
1 0 0 0

1 20 0 0 0 0 .2
1 20 0 0 0 0
2

1 20 0 0 0 0
2

e E
D = + υ − υ

−υ υ υ  υ − υ υ  υ υ − υ − υ   − υ   − υ  

 
(31) 

And then, material elastic–plastic constitutive ma-
trix, based on Hoek-Brown criterion, considering yield 
surface derivatives and material elasticity matrix is pre-
sented in Eq. (32): 
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11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

·(1 )(1 2 )

.

ep E
D

D D D D D D
D D D D D D
D D D D D D
D D D D D D
D D D D D D
D D D D D D

= + υ − υ
          

; 
(32) 

11
2 2 2 22 2

2 22 2 2 2
1/ 2 2 3 / 2 ;1/ 2 2

D
C C CB B

ABC CA B A B

=

+ − υ − υ + υ

+ − υ −υ −υ + + υ
 (33) 

υυυυ

υυυ

ABCCBABA
ABABCC

DD

22/1
22/1

222222

222
2112

++−−−+

−++−

==

; (34) 

13 31
2 2 2 2 22

2 22 2 2 2

22 1/ 2 2 ;1/ 2 2

D D
AB ABC CB B

ABC CA B A B

= =

− − +υ + υ + −υυ υ υ
+ −υ −υ −υ + + υ

 (35) 

υυυυ

υυυυ

ABCCBABA
BCACACBCAC

DD

22/1
2/12/12/3

222222

22
4114

++−−−+

+−−−

==

; (36) 

υυυυ

υυυ

ABCCBABA
CCACA

D

22/1
2/322/1

222222

222222
22

++−−−+

+−−+

=

; (37) 

υυυυ

υυυυυυ

ABCCBABA
ABABCACA

DD

22/1
22/12

222222

2222222
3223

++−−−+

−+++−−

==

; (38) 

υυυυ

υυυυ

ABCCBABA
BCACBCACBC

DD

22/1
2/12/12/3

222222

22
4224

++−−−+

−+−−

==

; (39) 

33
2 2 2 22 2 2 2

2 22 2 2 2

2

2 22 2 2 2

1/ 2 2 2 3/ 2
1/ 2 2

2 4 ;1/ 2 2

D
C C CA B A B

ABC CA B A B
AB AB

ABC CA B A B

=

+ + − υ − υ − υ +υ +
+ −υ −υ −υ + + υ

υ − υ
+ −υ −υ −υ + + υ

 
(40) 

34 43
2 2

2 2 22 2 2
1/ 2 1/ 2 ;1/ 2 2

D D
AC BC AC BC

ABC CA B B

= =

+ − υ − υυ υ

+ −υ − υ −υ + + υυ

 (41) 

44
2 22 2 2 2 2 2

2 22 2 2 2

2

2 22 2 2 2

3/ 2 3/ 2 1/ 2 1/ 2
1/ 2 2

2 ;1/ 2 2

D
A B A B A B

ABC CA B A B
AB AB

ABC CA B A B

=

+ − υ − υ + +υ υ +
+ −υ −υ −υ + + υ

+υ − υ
+ −υ −υ −υ + + υ

 (42) 

55 66
1 2
2D D
− υ

= = ; (43) 

15 16 25 26 35 36

45 46 51 52 53 54

56 61 62 63 64 65 0.

D D D D D D
D D D D D D
D D D D D D

= = = = = =

= = = = = =

= = = = = =  
(44) 

In which, A, B and C, in Eqs (33)–(42), are yield 
surface’s partial derivatives regarding x, y and xy varia-
bles, respectively: 

dFdxdFdxmadFdx
FA a

b
x

12
1

1111 4
1

2
1

2
1 −


 ++=∂
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σ
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xy
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1max
2 −+=

∂
∂= σ

σ
. (47) 

 
5. Conclusion  
Generally, material’s constitutive behaviour is evaluated 
using elastic-plastic formulation and based on various cri-
teria. The yield criteria are opted for regarding the materi-
al’s type and behaviour. In case of rock materials, both 
theoretical and experimental criteria are widely applied. 
But, according to the majority of rock mechanics special-
ists, the experimentally and empirically developed criteria 
are much more efficient means used for prediction of the 
triggering of failure. Furthermore, among all of the well-
developed criteria, due to the applicability of this rugged 
mentioned criterion to a broad range of rock materials from 
intact rock to highly fractured rock mass and its accuracy, 
Hoek-Brown failure criterion is believed to be one of the 
best criteria. Moreover, according to Hoek’s suggestion, 
this criterion can be considered as a yield criterion. Then, 
to assess rock materials’ constitutive behaviour, firstly, the 
elastic behaviour of material has been presented based on 
Hooke’s elastic theory. Thus, determining the most proba-
ble failure plane, its corresponding yield criterion and its 
derivatives, also, relying on elastic-perfect plastic formula-
tion, plastic behaviour of rock materials is evaluated in 
general stress space using material’s constitutive matrix. 
To develop these relationships and predict materials’ be-
haviour, the associated flow-rule has been applied and 
then, the components of material constitutive matrix have 
been presented. 
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