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Abstract. Most construction agencies have a quality management system in order to control and manage the quality of their final product. Once the project is over, the testing results are kept in archives in which they are rarely re-visited or utilized. Quality testing results carry much information about the contractor performance that could be useful during the contractor evaluation/selection process. Previous attempts to implement the Best Value (BV) used the average perfor-mance records as the expected performance, which was utilized to evaluate contractors. The objective of this research is to develop, based on random data obtained from the contractor's performance records, a methodology that provides decision makers with the level of confidence or risk associated with the contractor selection using the BV model. Simulation tech-nique is used to develop the BV model and analysis. Field performance data have been used to obtain the Percentage De-fective, which indicates the contractor's performance in the BV model. The analysis of data indicates that performance fol-lows a normal distribution. Sensitivity analysis of the BV model illustrates the significance of the weights in the BV model, which demands special attention when selecting the parameters’ weights. The developed methodology provides the decision makers with the confidence and risk associated with their selection decision. 
Keywords: simulation, quality, sensitivity analysis, performance characteristics, procurement, asphalt pavements, con-tractors selection.  

 

1. Introduction 
Owners of construction projects become more interested 
in adopting a system that ensures qualified contractors for 
their competitive bids. In low bid contracting, the offer of 
the most qualified contractor might be rejected if it is 
higher than the lowest bid by a small percentage. Best 
Value (BV) is the method that overcomes the problems of 
low bid selection procedure by including factors other 
than bid price in the selection process. The BV is defined 
as “a procurement process where price and other key 
factors are considered in the evaluation and selection 
process to enhance the long-term performance and value 
of construction” (Scott et al. 2006). The low bid system 
encourages contractors to implement cost-cutting 
measures instead of quality enhancing measures. There-
fore, it is less likely that the contracts will be awarded to 
the best-performing contractors who will deliver the 
highest quality projects with minimum cost (NAVFAC 
1996). Federal highway agencies use the BV in a variety 
of ways. Sometimes, they develop comprehensive evalua-
tion criteria based on diverse project goals. Too often, 
evaluation criteria are generic and evaluation processes 
focus on identifying the technically acceptable proposal 
with the lowest cost (Sustainable Northwest 2008).  

In a broad sense, the risk involved in selecting the 
contractor based on the past record is not well quantified 
in the selection process. Using the past performance re-
cord to obtain the BV carries the risk of either underesti-
mating or overestimating the contractor and might lead to 
an inconvenient contractor selection. Underestimating 
occurs when the contractor has a large amount of records 
with a high standard deviation. Although the contractor 
might have a high mean value for a specific parameter, 
one single record of poor performance could increase the 
standard deviation dramatically. On the other hand, ove-
restimating occurs when the contractor does not have past 
performance records. In this case the contractor is assig-
ned the average performance of the population records. 
Consider the case when the decision maker compares two 
contractors. The first contractor has no past performance 
records and is viewed as the risky choice. However, this 
contractor will be assigned a BV score equal to the ave-
rage of the population. The other contractor has past per-
formance records that could be used to calculate the BV 
score. The risk associated with selecting this contractor is 
quantified. Regardless of the calculated BV score, loo-
king at the risk associated with this score could support 
the decision of selecting one of them. This situation stres-
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ses the need to consider the risk associated with the cont-
ractor BV scores rather than just comparing them. In 
addition, previous studies used the mean of the perfor-
mance records as the expected value of the contractor 
future performance (Abdelrahman et al. 2008a). These 
studies did not address the effect of variability around the 
mean and uncertainty on the BV model results. Moreo-
ver, the confidence limit of the BV model results was not 
considered as well. 

 
2. Study objectives 
The objectives of the presented research in this paper are: 

− To analyze the data obtained from contractor’s 
performance quality records;  

− To develop a methodology that considers the lev-
el of confidence and/or risk associated with the 
contractor's selection using the BV model.  

 

3. Literature review 
Operation research and multi-criteria decision making 
provides useful tools for many complicated decisions as 
they are based on criteria values and weights (Zavadskas 
et al. 2008). Singh and Tiong (2005) presented a system-
atic procedure based on fuzzy set theory to evaluate the 
capability of a contractor to deliver the project as per 
owner’s requirements in linguistic terms. Singh and 
Tiong (2006) developed a computer-interactive multi-
criteria decision system for contractor selection. The 
system identified contractor selection criteria, investigate 
contractor selection criteria preferences of construction 
practitioners, and establish weights for those contractor 
selection criteria through a questionnaire survey. Waara 
and Bröchner (2006) studied how public owners use mul-
tiple criteria for the award of construction contracts. The 
findings showed a typical pattern of 70% price weight 
combined with three non price criteria. The reference 
point for price criterion was the lowest bid, bid spread, or 
average bid. Non price criteria were evaluated on either 
relative or absolute merits. Elazouni (2006) developed a 
neural network model to classify contractors into groups 
based on financial ratios. The model identified contrac-
tors with similar performance patterns and considered 
them as a cluster. Brauers et al. (2008) used multi-
objective optimization on basis of ratio analysis as a 
mean to analyze multiple criteria decision based on multi-
criteria utility theory. Plebankiewicz (2009) proposed 
contractor prequalification model using fuzzy sets theory. 
The model considered different selection criteria consid-
ered by decision makers, such as technical ability and 
financial standing of candidates. Zavadskas et al. (2010) 
studied the applicability of grey theory techniques for 
defining the utility of an alternative when dealing with 
multiple criteria decision using uncertain data. 

Being a multiple criteria selection method, BV focu-
ses on selecting a contractor with the offer “most advan-
tageous to the government where price and other factors 
are considered”. The considered factors other than bid 
price can vary, but they typically include technical and 
managerial merits, financial health, and past performance 

(Gransberg, Ellicott 1997; Gransberg, Senadheera 1999; 
Gransberg et al. 2006). The BV procurement, that is sim-
ple to implement and flexible in parameter selection, is 
the most effective approach in the context of a traditional 
bidding system. In a broad sense, the BV strategy aims at 
using bid price and other key factors in the evaluation and 
selection process of bidders to enhance the long term 
performance of projects. The inclusion of key factors that 
match specific needs of a project guarantees that the se-
lected contractor is the best to construct this project (Ab-
delrahman et al. 2008b). Most BV models include an 
evaluation process that is conducted based on subjective 
criteria. It is necessary for an agency implementing the 
BV to adopt a rational ranking system for contractor 
qualifications that is based on the agency’s expected level 
of performance (Abdelrahman et al. 2008a). 

Agencies should base BV selection criteria only on 
project elements that add measurable value to the project. 
Agencies must think carefully of what is “valuable” in the 
product and not just “important” or “required” in the 
selection process. One of the algorithms used to combine 
parameters’ scores for the contractor is represented by 
Eq. (1) as follows (Abdelrahman et al. 2008a, b): 

 
1

n
j i i
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BV NS W

=

= ×∑ ,  (1) 

where: BVj – Best Value for contractor j; n – number of 
parameters included in the BV model; NSi – normalized 
score of parameter i; Wi – weight of parameter i.  

The parameters of each project are identified and 
their scores are calculated and normalized on a scale of 
50 to 100 depending on which parameters are most im-
portant for the new project.  Eq. (2) is used to normalize 
the contractor parameter relative to the parameter score of 
the other contractors (Abdelrahman et al. 2008a, b):  
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−
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where: NSi – the normalized score of parameter i; Si – the 
score of parameter i; URL (Upper Reference Limit) – the 
best parameter score; LRL (Lower Reference Limit) – the 
worst parameter score; NSURL – the normalized score of 
the URL; NSLRL – the normalized score of the LRL.  

The contractor who has the best and the worst pa-
rameter scores get NSi equal to 100 and 50, respectively. 
The normalized scores of the parameters scores that fall 
in between the best and the worst scores would range 
between 50 and 100. Contractor selection is typically 
based on multiple factors, such as cost, schedule, quality 
management, safety, and technical ability, which are 
considered as the model parameters (Dorsey 1995). The 
relative weight (Wi) of the parameters included in the BV 
model are determined based on the opinions of the agen-
cy’s experts using a questionnaire. A high bid price 
weight is recommended to maintain the clarity of the 
selection and to match the preferences of most owners 
(Scott et al. 2006). A rational and flexible BV model, 
based on expected performance, was proposed by litera-
ture (Abdelrahman et al. 2008a). The model rationality 
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was achieved through relating all awarded scores to the 
agency’s expected performance. This research incorpora-
tes prequalification as the first level screening technique 
in selecting top contractor bids in the BV procurement, 
then, applies a rational scoring system in the final selec-
tion. Contractor’s BV was the base in selecting the most 
appropriate contractor that has the best qualifications in a 
given project (Abdelrahman et al. 2008a). This model 
used the past contractor records to assign a score for the 
contractor. However, the model does not address the 
variability and uncertainty involved in the calculated BV 
score. There is also a need to consider the confidence 
interval of the random data in the calculation of the BV 
score and to quantify the risk of selecting a contractor 
using the BV model. 

 
4. Study methodology 
The presented methodology considers the Percent Defec-
tive (PD) of quality testing as a probability distribution 
instead of only using deterministic values. Using Monte 
Carlo simulation, the Total Percent Defective (PDT) is 
estimated based on the PD distributions of different quali-
ty characteristics. PDT, which will be represented by a 
probability distribution, is used to calculate the BV score. 
The contractor BV score will become a range of values, 
which creates the different selection scenarios, instead of 
a single score. The simulation is used in the methodology 
to run all possible combinations of the expected contrac-
tors’ performance and provide the results at a different 
level of confidence. Only bid price and quality of past 
performance are included in the current BV model in 
order to show the effect of quality on the contractor selec-
tion decision. The methodology involves the following 
main steps, which are discussed in detail in the following 
sections:  

1 – Collect and Analyze the Percent Defective (PD) 
of various pavement quality characteristics. 

2 – Estimate the Total Percent Defective (PDT) for 
pavement quality performance score. 

3 – Develop the Contractor Selection Algorithm 
(CSA). 

4 – Rank contractors based upon the CSA. 
 

4.1. Percent Defective (PD) of various pavement 
quality characteristics 
Quality Characteristics 

The quality of Superpave mixes is dependent on se-
veral materials and construction factors. Several quality 
tests are performed on site and/or in the laboratory as part 
of the quality control/assurance processes. Three main 
pavement quality characteristics are considered in the 
development of PDT: the testing results of Asphalt Con-
tent (AC), Air Voids (AV), and Gradation (GR).  
Quality Measure 

The results of quality testing are transformed to Per-
cent Defective (PD) as a quality measure that indicates 
how far the contractor from the specification limits. Per-
cent Defective has been preferred in recent years because 

it simultaneously measures both the average and the va-
riability level in a statistically efficient way. PD can be 
calculated using another quality measure, i.e., the Percent 
within Limits (PWL). It is related to PWL by the simple 
relationship, PD = 100 – PWL. The use of PD as a quality 
measure has some advantages, particularly with two–
sided specifications, because PD below the lower specifi-
cation limit can simply be added to the PD above the 
upper specification limit to obtain the total PD value 
(Breakah et al. 2007). PWL and PD are capable of com-
bining more than one stochastic measure into one single 
number. Conceptually, the PWL procedure is based on 
the normal distribution features. The area under the nor-
mal curve can be calculated to determine the percentage 
of population that is within certain limits. Similarly, the 
percentage of the lot that is within the specification limits 
can be estimated. The interested readers may refer to 
Burati et al. (2003) for the detailed procedures used to 
calculate PWL and PD. 

 
4.2. Estimating PD  
PD data are collected from a number of projects (N) to 
form the population of the quality characteristics and 
tested to assure whether it follows normal distribution. 
Data are tested using both the Anderson-Darling (A-D) 
and Kolmogorov-Smirnov (K-S) tests for normality. It is 
assumed that failing to reject H0 (null hypothesis: it is 
normal distribution) for one of the normality tests is 
enough to consider the data follow normal distribution. 
Based upon this statistical probability fitting, the PD dis-
tributions for various characteristics are developed.  

 
4.3. Total Percent Defective (PDT) 
The objective of this step is to obtain PDT using PD of 
multiple quality characteristics. The ultimate way to es-
timate PDT refers to the basics of the acceptance and 
rejection of quality tests procedures. This study uses the 
basic statistical concepts to combine different quality 
characteristics distributions. The first assumption is that 
PDT is equivalent to the probability of accepting the con-
tractor work with partial pay. The quality characteristics 
are the inputs of the model and represented by the per-
centage defected of the contractor work as measured 
during the quality control process.  

The actual practice in the pavement industry does 
not reject the sample if the test result falls outside the 
specification limit. Shifting the focus from accep-
ting/rejecting the sample to PD allows the agencies to 
accept the contractor defected work. Two scenarios for 
accepting the contractor work based on the estimated PD 
could occur: first to accept the work with full or bonus 
pay, second to accept the work with reduced pay. Agen-
cies have developed their own equations to reword or 
penalize the contractor using the pay factor, which assu-
mes that giving the contractor a fraction of the full pay 
would motivate improved performance. 

The proposed model assumes each pavement sample 
is tested for three quality characteristics; AC, AV, and GR. 
Using the methodology discussed earlier, each sample 
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will have three estimated PD values for AC, AV, and GR. 
For each quality characteristic, PD is considered the pro-
bability of test result falling outside the specified limits. 
Based on the results of the three tests, samples could be 
classified into three groups; acceptance with full pay, 
acceptance with reduced pay, or rejection. The area ou-
tside the three circles, in Fig. 1, indicates the acceptance 
with full pay. The area of the three circles, including the 
intersection area, represents the acceptance with reduced 
pay. Both regions together form 100% of the space. The 
area of the intersection between the three circles repre-
sents the percentage of tests rejected in the three quality 
characteristics. Ideally, eliminating the contractor who 
fails in all the quality characteristics tests guarantees a 
better quality. However, the current practice penalizes the 
contractor for the poor performance without elimination. 
Eq. (3) estimates the Total Percent Defective (PDT): 

( ) ( ) ( )[ ]
10000

100100100100 GRAVAC
T

PDPDPDPD −×−×−
−= , (3) 

where: PDAC, PDAV, and PDGR are Percent Defectives for 
AC, AV, and GR, respectively. This equation assumes 
there is an interaction between the quality characteristics 
as represented by the area shared between the three cir-
cles in Fig. 1. 
 
 

 
Fig. 1. Samples acceptance and rejection 

 
 

 

  
Fig. 2. PDT simulation procedure 
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PDT using Simulation 
Monte Carlo simulation technique is designated for 

the use of random sampling procedures to analyze deter-
ministic mathematical situations (USDOE 2008). The 
simulation is used here as a tool to verify using Eq. (3) in 
calculating PDT and the belief that the distribution of the 
contractor PD values may not necessarily follow the 
normal distribution. If the distribution of the contractor 
PD values is normal there would not be a need to use the 
simulation. The distribution of contractor PD values 
should be checked to determine the type of distribution it 
follows. The simulation procedure estimates the percen-
tage of rejected samples as an equivalent to the probabili-
ty of acceptance with reduced pay. Fig. 2 summarizes the 
steps used to calculate the percentage rejection for each 
project. The simulation combines PD of different quality 
characteristics with different means ( x ) and standard 
deviations(s) into a single distribution (PDT) with mean 
( Tx ) and standard deviation (ST). Crystal Ball software 
has been useful in running the simulation and providing 
the outputs (Oracle 2008). 

 
4.4. Selection algorithm and ranking of contractors 
The BV model shown in Eq. (1) is flexible enough to 
consider any parameter during the contractor selection 
process. Only two parameters, bid price and quality of 
past performance, are included in the current study in 

order to clearly prove the research concept. The bid price 
is a discrete variable equal to the bid price value offered 
by the contractor at the time of bidding. On the other 
hand, quality of the past contractor performance, repre-
sented by PDT, is a random variable which follows a 
normal distribution of µT and σT. The bid price amount 
and PDT are considered the initial scores of the contractor 
for bid price and quality, respectively. Both are normal-
ized using Eq. (2), assuming that low PDT and bid price 
amount correspond to higher values of the normalized 
score (NSi).  

Fig. 3 shows the methodology employed to obtain 
the BV score and rank contractors using two methods or 
approaches: Three Points (TP) and Combination (C). 
Both approaches consider the risk associated with the 
selection decision; however, they are different in how to 
determine this risk. The TP approach assumes three po-
ssible scenarios of achieving the expected performance. 
Either the optimistic, average, or pessimistic scenario 
occurs, to all contractors, at the same time with no cros-
sing among them. On the other hand, the C approach 
assumes that each contractor has an independent chance 
to achieve one of the three performance levels defined in 
terms of µT and CT (confidence limit). One of the contrac-
tors may achieve the best expected performance in a pro-
ject. Another may achieve the worst or average expected 
performance. The chances of achieving the expected per-
formance are not equal for all contractors. The C approach 

 

 
Fig. 3. Contractor Selection Algorithm (CSA) 
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uses simulation to determine all possible combinations of 
performance levels and classify the results into three 
scenarios depending on the level of risk associated with 
each one. 
The TP Approach 

The TP approach has two assumptions to fairly as-
ses the contractors’ performance: (1) the contractor 
achieves one of three performance levels and (2) all the 
contractors will achieve the same performance level in 
the project. The optimistic, average, and pessimistic sce-
narios occur when the contractor achieves PDT equal to 
µT – CT, µT, and µT + CT, respectively. The risk associated 
with selecting the contractor based on the optimistic, 
average, and pessimistic scenarios is 97.5%, 50%, and 
2.5%, respectively. The 97.5% and 2.5% risk refer to the 
two limits of the 95% confidence interval, while the 50% 
risk refers to the average value of the calculated BV. In 
the TP approach, the model is implemented three times 
with the same Normalized Bid Price Score (NSB) and 
different Normalized Quality Score (NSQ). The BV score 
of the contractor will be different based on the attitude of 
the agencies toward risk. The contractor selection will 
follow the optimistic, average, or pessimistic scenarios 
for agencies with a risk-seeking, risk-neutral, or risk-
averse attitude, respectively. For example, if the pessi-
mistic scenario is the agency choice, all contractors are 
assumed to achieve PDT equal to µT + CT. These values 
are scaled to NSQ using Eq. (2) and added to NSB to ob-
tain the BV score using Eq. (1). Fig. 4a introduces a gra-
phical representation of the TP approach. For example, 
contractor X has µT lower than contractor Y while cont-
ractor Y has σT larger than contractor X. If the TP method 
is used to rank the contractors based on only NSQ, cont-
ractor X would come first with low PDT and high NSQ. 
On the other hand, the TP approach provides the decision 
maker with three scenarios to choose from depending on 
how CT (confidence limit) is considered with PDT when 
calculating the NSQ.  

The C Approach 
The TP approach assumes that the contractor per-

formance has only three levels. However, there are, in 
reality, endless levels of performance to be achieved in 
the project. This advocates the need to run all the combi-
nations of possible levels of contractors’ performances 
considering PDT as a distribution rather than just three 
levels. The Monte Carlo simulation is used to run diffe-
rent scenarios of combinations and optimize the solution. 
The simulation is used with the BV model in Eq. (1), to 
simulate the PDT with µT and σT for each contractor and 
calculate the corresponding BV. The inputs of the simula-
tion are PDT distributions, while the output is the corres-
ponding BV distribution. Fig. 4b graphically illustrates 
the C approach implementation.  

 
5. Data collection and case study 
To study the implementation of the proposed BV meth-
odology, data are collected from Nebraska Department of 
Roads (NDOR). A group of Superpave projects is used to 
demonstrate the implementation of the proposed method-
ology. In project number NH-83-3(107), the decision 
makers received five bid offers from contractors CONA, 
CONB, CONC, COND, and CONE. This project includes 
the construction of a road section that is part of US-83, 
District 6, state of Nebraska. The specification recom-
mends using the Superpave mix type SP4 for medium 
volume roads. Only two parameters are included in the 
selection criteria; bid price and quality of past contractor's 
performance. The past performance data used in the case 
study collected from NDOR for 500 projects constructed 
between 2003 and 2005. The past performance data are 
collected in the form of quality testing results for Asphalt 
Content (AC), Air Voids (AV), and Gradation (GR). The 
testing results are used to estimate PDT and NSQ.  

 

 

 
Fig. 4. Best value score approaches 
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Bid prices offered by the contractors are collected 
from NDOR. Previous studies shows that a ratio of 70% 
is used by most federal and state agencies, who prefer to 
assign the bid price a weight equal to or greater than all 
other parameters (Scott et al. 2006; Abdelrahman et al. 
2008a). A study indicates that the weight of bid price 
should be less than 82% (Abdelrahman et al. 2008b; 
Gransberg et al. 2006). The decision to assign 70% for 
the weight of bid price and 30% for that of quality of past 
performance would maximize the effect of the perfor-
mance parameter on the results of the BV model and 
provide the required balance between both parameters. 

 
6. Implementation of the developed methodology  
to case study 
The developed methodology is implemented to case study 
data to prove the methodology concepts. The above-
mentioned four main steps are applied to the case study 
as discussed in the following sections.  

 
6.1. Percent Defective (PD) of various pavement 
quality characteristics 
Three main pavement quality characteristics are consid-
ered in the development of PDT: the testing results of 
Asphalt Content (AC), Air Voids (AV), and Gradation 
(GR). The results of quality testing are transformed to PD 
in order to consider variability and uncertainty. The quali-
ty data used in this study was obtained from the NDOR 
for 500 projects of six Superpave mix types constructed 
between 2003 and 2005. Higher-level mixes correspond 
to higher Average Daily Truck Traffic (ADTT) (NDOR 
2005) as follows: (i) SPS, SP1, SP2 for ADTT < 160 
Trucks/day; (ii) SP3, SP4 for ADTT > 160 and ADTT 
< 500 Trucks/day; and (iii) SP5, SP6 for ADTT > 500 
Trucks/day. 

The testing data were available for five contractors: 
CONA, CONB, CONC, COND, and CONE. PD data for 
all contractors are collected to form the population of the 
quality characteristic and tested for normality to assure it 
follows the normal distribution. Data were tested using 
both the Anderson-Darling (A-D) and Kolmogorov-
Smirnov (K-S) tests for normality. Table 1 shows the 
results of the normality test for contractor CONA using 

AV data. For example, using the data for SP4, there are 99 
data points in which the fitted normal distribution has a 
mean (µ) of 48.89 and standard deviations (σ) of 20.02. 
The test statistics for K-S and A-D in addition to the cri-
tical values at significance level (α) = 0.15 are shown in 
Table 1 as well. Based on K-S and A-D test statistics, it is 
concluded that normal probability distribution cannot be 
rejected as the best fit for PD values using 15% signifi-
cant level (α). Similarly, the normal distribution cannot 
be rejected at 1%, 5%, 10% and 15% significant levels. 
For example, the critical value for PD at 15% significant 
level (α) is 0.08 using K-S and 0.56 for A-D; however, 
the test statistics is 0.05 and 0.39 for K-S and A-D, res-
pectively. Because the critical values are higher than test 
statistics for both methods; then, null hypothesis (H0) 
cannot be rejected in which the best probability fit is 
normal distribution. Similarly, the rest of SP types are 
analyzed where they show for most of them that normal 
distribution is the best fit. Current research considers the 
expected values and 95% confidence interval for most of 
the stochastic variables in order to analyze results of the 
developed methodology. Table 1 also shows the 95% 
confidence interval for each SP type. For example, the 
value of PD factor for SP4 has a 95% confidence interval 
limits as 44.90 (lower limit) and 52.88 (upper limit). 
However, its average value is 48.89 and normal distribu-
tion fit test was successful using both K-S and A-D. 
Similarly, the other SP types are analyzed where all of 
them follow the normal distribution using K-S test. There 
are two types fail to follow normal distribution using the 
A-D test: SPS and SP1; however, the test is successful 
using K-S algorithm. Similarly, the normality test is per-
formed for all contractors’ characteristics using the six 
Superpave (SP) types, which shows successful results. It 
is concluded that PD data for the Asphalt Content (AC), 
Air Voids (AV), and Gradation (GR) could be represented 
by a normal distribution when it is used as an input in the 
simulation process.  

 
6.2. Estimating PD 
Stochastic analysis is used to analyze the past performan-
ce records and provide the confidence interval of the 
calculated PDT. The 95% confidence interval of PDT (CT) 

 
Table 1. Normality Test of AV for contractor CONA 

 Mix Type 
SPS SP1 SP2 SP3 SP4 SP5 

N 5 16 21 6 99 8 
µ 65.20 70.24 57.33 54.63 48.89 70.29 
σ 8.52 27.04 17.61 8.21 20.02 20.48 

95% confidence interval (C) 7.42 14.41 8.01 8.61 3.99 17.12 
µ + C 72.62 84.65 65.34 63.25 52.88 87.41 
µ – C 57.78 55.83 49.31 46.02 44.90 53.17 

A-D Statistic 0.66 0.56 0.45 0.24 0.39 0.35 
Critical Value @ α = 0.15 0.54 0.53 0.54 0.47 0.56 0.50 

Reject H0? Yes Yes No No No No 
K-S Statistic 0.26 0.16 0.15 0.21 0.05 0.18 

Critical Value @ α = 0.15 0.28 0.18 0.16 0.28 0.08 0.25 
Reject H0? No No No No No No 
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means that we are 95% confident that the contractor will 
achieve PDT within the range of µT ± CT. The simulation 
uses µ and σ of PD for AC, AV, and GR to estimate µT, 
σT, and CT for PDT. For example, Table 2 shows that 
CONB and COND has the lowest µT and σT among the 
contractors for SP3, respectively. Considering the confi-
dence limits, an agency may consider CONB is the best 
with 95% confidence that he/she will achieve PDT be-
tween 42.12 and 40.2, while another agency may consider 
COND the best with 95% confidence that he/she achieves 
PDT between 42.34 and 41.34.  
 
6.3. Total Percent Defective (PDT) 
The simulation is performed assuming that the variables 
are independent and the results are compared to the re-
sults from Eq. (3). Crystal Ball software (Oracle 2008) 
has been useful in running the simulation and providing 
the outputs shown in Table 2. The paired t-test is used to 
check the null hypothesis that the mean PDT values for 
 
Table 2. Simulation output data 
Mix Contractor µT σT CT 

SP1 

CONA 67.9 19.43 0.38 
CONB 52.49 35.13 0.69 
CONC 89.42 17.06 0.34 
COND 21.75 41.27 0.81 
CONE 71.5 34.19 0.67 

SP2 

CONA 61.18 9.98 0.19 
CONB 60.84 23.92 0.47 
CONC 67.35 12.24 0.24 
COND 90.23 12.51 0.25 
CONE 29.11 45.43 0.89 

SP3 

CONA 58.22 26.51 0.52 
CONB 41.16 49.21 0.96 
CONC 72.97 44.41 0.87 
COND 41.84 25.63 0.5 
CONE 62.74 35.6 0.7 

SP4 

CONA 80.52 3.62 0.07 
CONB 53.97 6.9 0.13 
CONC 77.81 10.45 0.2 
COND 79.98 6.18 0.12 
CONE 32.59 18.58 0.37 

SP5 
CONA 85.76 14.83 0.29 
CONB 61.01 10.47 0.2 
CONC 89.79 18.85 0.37 
CONE 39.24 30.79 0.6 

SPS 

CONA 59.23 6.19 0.12 
CONB 70.87 6.94 0.14 
CONC 74.33 6.75 0.13 
COND 51.37 11.53 0.23 
CONE 79.72 16.09 0.31 

the two methods are equal. The p-value of the t-test is 
0.637 which is greater than 0.05. In this case we will not 
reject the H0 and conclude that the mean PDT calculated 
using statistics is equal to that calculated using simula-
tion. The output of simulation is the distribution of PDT 
with mean (µT), standard deviation (σT), and 95% confi-
dence interval (CT).  

 
6.4. Contractor selection algorithm 
The Quality Score in the BV model is represented by PDT, 
which has a probability distribution. The contractor selec-
tion decision will be hard to take as the BV will no longer 
become a single score but rather a range of BV scores. 
Using one of the selection approaches as shown in Figs 4a 
and b, i.e. TP and C, solves this problem considering more 
than one scenario of achieving the expected contractor 
performance. Stochastic measures, such as the confidence 
interval, are integrated with the BV model to develop mul-
tiple selection scenarios. The decision makers are allowed 
to select the scenario that matches their attitude towards 
risk. As mentioned earlier, one out of three levels of risk 
defines the behavior of the decision makers; risk-averse, 
risk-neutral, and risk-seeking. Each of them matches one of 
the above-mentioned selection scenarios.  
(i) Risk-Averse Agency 

The pessimistic scenario is the best for the agencies 
with risk-averse attitude and occurs when the contractor 
achieves the worst expected level of performance. Table 3 
shows the bid price, NSB, PDT, and NSQ for project NH-83-
3-(107) with SP4 mix. Eq. (3) is used to determine the BV 
and rank the contractors. It is clear that CONB has the 
highest BV score in the pessimistic scenario using both the 
TP and C approaches. While CONA offers the lowest bid, 
CONB offers the third lowest bid with an increase of 3.8% 
over CONA. In the pessimistic scenario, the selection of 
the lowest bidder is supported by the proposed methodolo-
gy with high confidence that CONB will achieve the ac-
ceptable level of performance for SP4 mix. 
(ii) Risk-Neutral Agency  

The average scenario is the best for agencies with a 
risk- neutral attitude. Table 3 shows the agreement of 
both approaches that CONB has the highest ranking 
among contractors and should be awarded the project. 
The lowest bidder, CONA, comes in the second place 
after CONB using both approaches. 
(iii) Risk-Seeking Agency  

The optimistic scenario is applicable for agencies 
with risk-seeking attitude. This scenario assumes the cont-
ractor will achieve the lowest PDT corresponds to 5% con-
fidence level which means a higher risk of not occurring. 
Table 3 shows that CONB and CONA have the highest 
ranking among contractors using the TP and C approaches, 
respectively. As mentioned earlier, the C approach uses 
simulation to calculate all the possible scenarios and obtain 
the pessimistic, average, and optimistic scenarios using the 
confidence interval of the simulation results. This provides 
more confidence regarding the C approach results and 
suggests selecting CONA for the job.  
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Table 3.  Contractor BV and Ranking for Project NH-83-3(107) with SP4 

Scenario Contractor PDT NSQ Bid Price ($) NSB 
TP Approach C Approach 
BV Rank BV Rank 

Pessimistic 

CONA 80.59 50.00 4627371.00 100.00 85.00 2 89.51 2 
CONB 54.11 77.80 4804336.00 90.42 86.63 1 93.29 1 
CONC 78.02 52.70 5550902.00 50.00 50.81 5 57.98 5 
COND 80.10 50.52 4701134.00 96.01 82.36 3 87.60 3 
CONE 32.95 100.00 5259604.00 65.77 76.04 4 76.04 4 

Average 

CONA 80.52 50.00 4627371.00 100.00 85.00 2 86.35 2 
CONB 53.97 77.69 4804336.00 90.42 86.60 1 87.73 1 
CONC 77.81 52.82 5550902.00 50.00 50.85 5 52.36 5 
COND 79.98 50.56 4701134.00 96.01 82.37 3 83.79 3 
CONE 32.59 100.00 5259604.00 65.77 76.04 4 75.42 4 

Optimistic 

CONA 80.45 50.00 4627371.00 100.00 85.00 2 85.00 1 
CONB 53.84 77.59 4804336.00 90.42 86.57 1 82.80 2 
CONC 77.61 52.94 5550902.00 50.00 50.88 5 50.00 5 
COND 79.86 50.61 4701134.00 96.01 82.39 3 82.20 3 
CONE 32.22 100.00 5259604.00 65.77 76.04 4 71.22 4 

 
Table 4. Summary of contractor’s BV and ranking for different SP mixes 

Mix Project Contractor 
Pessimistic Scenario Average Scenario Optimistic Scenario 

TP Approach C  Approach TP Approach C  Approach TP Approach C Approach 
BV Rank BV Rank BV Rank BV Rank BV Rank BV Rank 

SPS STPD-70-3(107) CONA 92.53 2 96.63 2 92.47 2 91.33 2 92.40 2 81.63 2 
COND 100 1 100 1 100 1 98.09 1 100 1 85.00 1 
CONE 50.00 3 64.44 3 50.00 3 51.29 3 50.00 3 50.00 3 

SP1 IM-80-1(170)  CONA 51.17 4 65.00 4 54.77 4 54.53 4 54.75 4 50.00 4 
CONB 90.74 1 100 1 93.19 1 92.42 1 93.21 1 85.00 1 
COND 80.53 3 80.53 3 80.53 3 77.63 3 80.53 3 65.53 3 
CONE 81.36 2 96.36 2 85.33 2 85.66 2 85.38 2 81.36 2 

SP2 IM-80-1(170)  CONA 58.59 3 66.37 3 58.50 3 59.00 3 58.41 3 52.86 3 
CONB 57.23 4 65.00 4 57.21 4 57.49 4 57.19 4 50.00 4 
COND 85.00 2 91.73 2 85.00 2 85.95 2 85.00 2 85.00 1 
CONE 96.29 1 96.29 1 96.29 1 93.46 1 96.29 1 81.29 2 

SP3 IM-80-1(170)  CONA 57.14 4 65.00 4 56.96 4 56.15 4 56.77 4 50.00 4 
CONB 87.50 3 87.50 3 87.50 3 81.41 3 87.50 3 72.50 3 
COND 92.36 1 92.46 2 92.14 1 86.78 2 91.93 1 77.46 2 
CONE 89.92 2 100 1 89.83 2 90.50 1 89.73 2 85.00 1 

SP5 IM-80-1(170)  CONA 85.00 1 92.58 1 85.00 1 85.92 1 85.00 1 85.00 1 
CONB 58.06 3 65.00 3 57.98 3 58.39 3 57.90 3 50.00 3 
CONE 78.68 2 78.68 2 78.68 2 76.41 2 78.68 2 63.68 2 

 
The conclusion is to award the project to CONB, if 

the agency has the risk-averse or risk-neutral attitude. 
Alternatively, the agency should award the project to 
CONA if it has the risk-seeking attitude. Table 4 shows 
the results of model implementation on five other projects 

with different SP mixes. The results include the BV score 
and contractor ranking using both approaches. It is conc-
luded that both approaches have similar results in most 
mixes using the average and pessimistic scenarios. They 
are in difference when using the optimistic scenario. 
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6.5. Sensitivity analysis of BV 
The sensitivity analysis is conducted as part of the simu-
lation process. The simulation inputs are PDT for CONA, 
CONB, CONC, COND, and CONE and the bid weight. 
The sensitivity analysis does not consider the bid price as 
a variable in the sensitivity analysis since the bid prices 
are actual numbers offered by the contractors. Each input 
variable is increased by one unit and the output, BV 
score, is measured accordingly. The bid weight is 
changed within a range of 0 to 100. Fig. 5 shows the re-
sults of the sensitivity analysis. The R-square of the re-
gression models, developed by the sensitivity analysis, 
ranges between 0.49 and 0.71 which is fairly low. The 
regression coefficient of PDT for the same contractor has 
a negative sign which agree with the first assumption that 
a high PDT is assigned a low BV score. All other varia-
bles in the BV model, including the weight of the bid 
price, have a positive effect on the calculated BV. Figs 5a 
and 5e indicate that bid weight has the largest effect on 
the BV score of CONA and CONE, respectively. Figs 5b, 
5c and 5d indicate that PDT of CONB has the large effect 
on the BV scores for CONB, CONC, and COND, respec-
tively. Figs 5a, 5b, 5c and 5d show that changing the PDT 
for CONE has a minimum effect on the BV score for all 
the contractors including CONE.  
 
7. Conclusions 
The BV procurement aims at using bid price and other 
key factors in the evaluation and selection process to 
enhance the long term performance of contractors in 
highway projects. The previous attempts to select the 
performing contractor, based on the BV score, are not 
efficient when past performance records are used. Two 
improvements are added in the current model compared 
to the previous models. The first is using Monte Carlo 
simulation technique to calculate the stochastic value of 
PDT from PD of multiple quality characteristics. The 
previous approach defines PDT as the average, or 
weighted average, of PD values for available quality 
characteristics. The second improvement is considering 
the variability and uncertainty of calculated BV score. 
This variability resulted from using historical records as 
probability distribution(s). The variability of the calculat-
ed BV score creates a risky situation for decision makers 
once the model selects a higher priced bid. One of the 
main contributions of the new approach is providing de-
cision makers with confidence interval and risk associat-
ed with their decision in ranking contractors. 
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ATSITIKTINE TVARKA PARINKTŲ VEIKLOS EFEKTYVUMO DUOMENŲ NAUDOJIMAS GERIAUSIOS 
VERTĖS MODELYJE  
A. H. Elyamany, M. Abdelrahman, T. Zayed 
Santrauka  
Dauguma statybos įmonių galutinio produkto kokybę kontroliuoja ir valdo naudodamos kokybės vadybos sistemą. Pro-jektui pasibaigus, patikrinimo rezultatai laikomi archyvuose ir retai peržiūrimi arba naudojami. Kokybės patikrinimo re-zultatuose daug informacijos apie rangovo veiklos efektyvumą, kuri praverstų vertinant (renkantis) rangovą. Anksčiau mėginant diegti geriausios vertės (GV) modelį, veiklos efektyvumas buvo numatomas pagal vidutinius veiklos efek-tyvumo duomenis ir pagal tai būdavo vertinami rangovai. Šio tyrimo tikslas – pasitelkus atsitiktine tvarka atrinktus duomenis iš įrašų apie rangovo veiklos efektyvumą, sukurti metodiką, kuri sprendimus priimantiems asmenims suteikia pasitikėjimo arba mažina riziką, susijusią su rangovų atranka pagal GV modelį. Kuriant GV modelį ir atliekant analizę taikomas imitacijos metodas. Naudojant faktinius veiklos duomenis apie efektyvumą buvo nustatyta procentinė defektų dalis (angl. Percentage Defective), kuri GV modelyje rodo rangovo veiklos efektyvumą. Duomenų analizė rodo, kad veiklos efektyvumas nenukrypsta nuo normaliojo skirstinio. GV modelio jautrumo analizė rodo, kad jame svarbūs reikšmingumai, taigi parametrų reikšmingumus reikia rinktis itin atidžiai. Sukurta metodika sprendimus priimantiems as-menims suteikia pasitikėjimo ir mažina riziką, susijusią su pasirinkimo sprendimais. 
Reikšminiai žodžiai: imitacija, kokybė, jautrumo analizė, veiklos efektyvumo savybės, pirkimas, asfaltuota danga, rangovų atranka.  
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