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Abstract. There are many factors that affect the success of the implementation process of a project. The importance of
each of these factors varies according to the different phases of the project lifecycle, which makes it very difficult to pre-
dict the final result of a project. In practice, foreseeing the result of a project is based on the judgment of those in man-
agement, which is grounded in their experience. This study aimed to build an Evolutionary Gaussian Process Inference
Model (EGPIM), using a Gaussian process, along with Bayesian inference and particle swarm optimization, which helps
to optimize the hyper-parameters required for making Gaussian process predictions. With this model at its core, this study
can efficiently extract expert knowledge and experience from case studies and historical data to determine relationships
between factors which significantly influence the outcome of a project so that its success may be predicted. Historical cas-
es were ordered as a time series based on the Continuous Assessment of Project Performance (CAPP) research results.
The model was trained using the EGPIM and these cases to predict the success of a project. This model proved quite accu-
rate at predicting the success of a project and had outstanding performance in time-series applications.
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Introduction

The primary task of performance control is to ensure that
project goals are achieved and to provide feedback on the
status of each phase of construction. However, post-
implementation performance evaluation is resource-
intensive, time consuming and is impotent in its influence
on the success of the project’s implementation. It also
does not provide the benefits of real-time monitoring of
the current construction status.

Traditional methods of project control are common-
ly based on the experience and habits of those in mana-
gement. The subjectivity of the choice of these methods
often leads to error. This is especially prominent in the
management of larger construction projects as predicting
a number of possible issues from a huge set of data be-
come more difficult. In recent years, there have been
many studies dedicated to improving project success.
Khosravi and Afshari (2011) proposed a success measu-
rement model for construction projects to determine how
successful projects were after their closing phase. There
have also been many academic assessments of Critical
Success Factors within construction projects (Chan et al.
2004; Griffith et al. 1999; Sanvido et al. 1992).

The time series method is widely used in construc-
tion to make predictions based on historical data. In order

to preserve past experience and to resolve the issue of
huge datasets in project control, the “Continuous Asses-
sment of Project Performance” (CAPP) system was deve-
loped by the Construction Industry Institute (CII) and was
used to collect and compile project information and ana-
lyse the differences between successful and unsuccessful
project progress s-curves (Russell ef al. 1997). Statistical
analyses using this system were undertaken by various
studies to confirm the significance levels of known fac-
tors that influence project performance and to investigate
whether there are other key factors that may influence the
success of a project. Even though CAPP is useful in ana-
lysing these factors, it is not able to accurately predict the
end result of a project. Ko and Cheng (2007) proposed to
build prediction models using an Evolutionary Fuzzy
Neural Inference Model (EFNIM), but in practice the
required calculations are time and system resource con-
suming, making it difficult to update prediction models.
For this reason, this study adopted the Evolutionary
Gaussian Process Inference Model (EGPIM) to solve this
issue.

The EGPIM features a short training time and preci-
se predictions, making it suitable for application as a
dynamic prediction model to provide construction mana-
gers with information about the project in real time to aid
their decision making. The dynamic prediction model that
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this study used to calculate the success of a project is
based on information that was collected from CII’s data-
base of historical information. The CAPP was first used
to perform a statistical analysis of the influential factors,
thus confirming the key factors that influence project
success. A time series was then applied to organize the
cases from the database. With that done, the EGPIM was
applied to these cases for training before going on to
predict the success of new projects. The resultant predic-
tion is able to assist those in project management to effi-
ciently control project performance, expedite the discove-
ry of potential problems in the field as well as remedy
these problems during construction.

With these benefits in mind, a database was created
using the CAPP research results. A time series was then
applied to this data for sorting and the EGPIM was applied
to build a dynamic prediction model for the success of a
project. It was verified that the time series predictions of
the EGPIM were very precise and the current project per-
formance was monitored in real time so that management
personnel can handle the project more efficiently.

1. Review of approaches
1.1. Gaussian process regression

Gaussian process (GP), an artificial technique actively
developed in recent years, has been applied in the fields
of chemistry, construction, and medicine, among others
(Brahim-Belhouari, Bermak 2004). In the field of con-
struction, GP has primarily been applied in regression and
classification prediction. Yan et al. (2011) proposed a GP
machine learning-based model to classifying surrounding
rocks. Su and Xiao (2011) combined the Gaussian pro-
cess (GP) and importance sampling method (ISM) in a
new method to analyse slope reliability that obtained
highly accurate results.

Along with other Al techniques, GP gives a statisti-
cal advantage and is easy to learn (Chu, Ghahramani
2005; Kocijan ef al. 2004); thus, based on probability
theorem, Gaussian Process can not only make predictions
on unknown input data, but can also provide prediction
accuracy based on the predictions (estimation variances),
which highly elevates the statistical significance in pre-
diction (Bonilla ef al. 2009). GP can be regarded as a
combination of random variances, of which capricious
and limited numbers of random variances all obey Gaus-
sian distribution:

F(X)={/(X1)./ (X2)seees SO} = N@K), (1)

where: p is the mean of variances; and K is covariance
matrix. X is the collection of data input factors of N di-
mensions X;, X5, ..., Xy, GP can be described via mean
function m(X) in AX;) and covariance function A(X,.X") in
a random process.

(X))~ GP(m(x).k(x, X)), ®)

In real situations, however, data prediction is often
accompanied by noise, and therefore, when the value Y is
calculated by the estimation of the function, an error para-
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meter ¢ should be considered. Likewise, ¢ also coincides
with the Gaussian distribution. Y is calculated as follows:

Y=F(X)+e. 3)

Denoting the training set as {X, ¥}, new input data is

X+, and desire output is Y+,
Joint distribution calculated under Gaussian distribu-
tion; © represents the parameters in the joint distribution:

Y K +02] k
{YJ|X,6~N[O,{ e szD, )

where: k = [k(X*,Xl)...k(X*,XN)JT is the n x 1 vector
formed from the covariance between X. and the training

input X. The scalar k = k(X«, X+), o2 is variance.

Hence, the conditional of probability distribution can
also be calculated with expected value together with noise:

)A

Y,X,0,6% ~ N(m(X+),v(X+)) . (3)

In the end, based on conditional probability distribu-
tion, the mean m(X+) and variance v(X+) of expected value
Y: can be calculated.

m(X:)=kT(K+o2I)'Y; (6)

v(Xi)=x+0?—kT(K+02D) k. (7)

1.2. Bayesian inference

Apart from model information and data information,
Bayesian inference also utilizes the distribution infor-
mation of unknown parameters (Markvardsen 2004). This
kind of information existed prior to the experiment, and is
expressed with the probability distribution of unknown
parameters, so it is generally called “prior”.

The general model is: prior + sample information
=> posterior

Bayesian theorem aims to use known information to
construct the posterior probability density of system sta-
tus variances, which means utilizing the model to predict
the prior estimated density of the status, and then using
the latest observation information to rectify and thus get
probability density. Using observation information to
calculate status variances, we can trust in the accuracy of
different values, and receive the best estimation of the
model (Chamberlain, Imbens 2003; Seng 2008). The
Bayesian inference commonly used in probability reaso-
ning (Mahdavi Adeli ef al. 2011) and engineering is also
often used in reliability analysis (Der Kiureghian 2008;
Maes 2007) and Bayesian networks (Perelman, Ostfeld
2012).

1.3. Particle Swarm Optimization algorithm (PSO)

The Particle Swarm Optimization (PSO) algorithm is a
relatively new algorithm derived by Kennedy and
Eberhart (1995) from a simplified social model simula-
tion. PSO algorithms mimic mechanisms used by birds to
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share information in flight. The particle concept requires
members in groups without mass and volume and with
designated speed and acceleration. The first version of
PSO added neighboring speed values and considered
multi-dimensional search and distance-based accelera-
tion. Inertia weight, introduced later, enhanced the algo-
rithm’s exploitation and exploration and paved the way to
form a standard version of the algorithm (Clerc, Kennedy
2002). PSO is often applied in engineering to solve multi-
objective decision-making (Azadnia, Zahraie 2010) and
optimization (Li ef al. 2010) tasks. In recent years, PSO
has been increasingly associated with other Al tools to
develop numerous new optimization methods (Yan,
Zhang 2011; Zhao et al. 2006).

2. Evolutionary Gaussian process inference model

This model is founded on historical data and formed with
Gaussian process, in combination with Particle Swarm
Optimization (PSO) and Bayesian inference. In this mo-
del, GP is used to reveal the intricate relationship be-
tween variance input and output. Bayesian inference
structure gives the posterior probability of the entire func-
tion, and serves as the reference for parameter optimiza-
tion. PSO is used to search the best hyper-parameter GP
and required Bayesian analysis; the structure is shown in
Fig. 1. The model includes three parts.

A. Data input

Collecting and arranging input data X and data ¥, X is
the collection of data input factor of N dimensions Xj, X5,
..., Xy; and Y is the collection of m pieces of desire Yy, 1>,
..., Y. Thus, any Y; is the reflection of the desire value of
case input value {X;;, Xo;, ..., Xyi} (Money ef al. 2012).

The corresponding function value of any input fac-
tor X; is f{X)): F(X) = {iX1), AX2), ..., AXN)}; F(X) is the
function congregation to demonstrate the relationship
between X and ¥, and here the Gaussian process is used
to describe function distribution. Assuming function F(X)
coincides with Gaussian distribution, and to make the
work easier, the expected value m(X) is 0, the probability
is shown as:

M.-Y. Cheng et al. Predicting project success in construction using an evolutionary Gaussian process inference model

P(F):N;lexp{—%FTK_lF} ~ N(O,K) > (8)

@2m)2 |K|2

where: K is the matrix constructed from the covariance
function & = (X, X’); and the equation above the probabil-
ity of the set function F is regarded to be controlled by
the covariance matrix K.

B. Gaussian process and Bayesian inference

(1) Covariance matrix and parameter.

After determining the stationary pattern, covariance
function is chosen to construct the covariance matrix. The
parameter model and quantity vary according to the diffe-
rences of functions, and this study adopts the most com-
mon Squared Exponential covariance function.

I

2
1 X. - X
kg (Xi, Xj) = G7exp —5[#J +625;,(9)

where: o, (signal variance) — controls the volatility of the
entire function; ¢, (noise) — indicates the errors of the
entire function; »; (length-scale) — shows the relationship
between variances X; and X; in function space; 65 G, 74, 72,
..., Fp represent the hyper-parameters in the matrix.

In this paper, we use 0 to represent the aggregation
of hyper-parameters (Fig. 1).

(2) Bayesian inference and posterior probability.

According to chosen covariance function, and utili-
zing Bayesian theorem, the posterior probability of the

entire function P(F|X,Y) is inferred.

P(Y|F,X)P(F)
P(F|X.v) =1|D(Y_|X).

To maximize the posterior probability P(F|X,Y)

minimizing the Negative Log-Marginal Likelihood
(NLML) and combining PSO are approaches employed
with the goal of having the most likely hyper-parameter
during the minimization process.

(10)

Gaussian process

Bayesian Inference

| prior ,—>| posterior‘

Output

iC Hyper-parameter (6)

Optimization|, gpet:jrlncetzl
(PSO) model
Data Control Functional
Flow ~~" Fow (__(Paebase [ ] Object

Fig. 1. EGPIM structure
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C The optimization of hyper-parameter

PSO is applied to EGPIM to optimize the hyper-
parameter in function space, and comprises the best func-
tion in the model

(1) Initial stage.

PSO parameter was set up, and the particle groups,
particle speed and positions were then randomly started
to initiate and proceed with iteration:

— group scale m;

— maximum speed Vi

— acceleration constant ¢; and c;;

— maximum inertia weight W,

— minimum inertia weight W ;,;

— maximum iteration times Jzer,y;

— terminate accuracy requirement NLML (Negative
Log Marginal Likelihood),

where: group scale m represents number of particles; Vi«
is the maximum particle velocity; ¢; and ¢, are accelera-
tion constants that are also called learning factors. Usual-
ly, 1= ¢ = 2; Whax is the final inertia weight and W, is
initial inertia weight, used to calculate inertia weight;
Itery, sets the maximum number of particle swarm opti-
mization times; NLML is the fitness value of the PSO. In
general, iterative termination is defined as when either the
maximum number of iterative times and/or some mini-
mum fitness value is reached.

(2) Optimization stage.

We used a fitness calculation of particles to discri-
minate between good and bad particles. The adaptation
value depended on NLML. In practice, prior knowledge
is insufficient to fix appropriate values for the hyper-
parameters that define the covariance. We therefore gave
prior distributions to the hyper-parameters and based
predictions on a sample of values from their posterior
distribution. Sampling from the posterior distribution
requires computation of log likelihood based on the data-
sets, which is:

~logP(¥|X)= %YT (K(x.x)+ 021)_1 )+
%log|K(X,X)+021| +%1og2n. (11)

The calculation of particle search speed and direction is
conducted as follows:

Particle speed calculation:

VI = Wit <yt 4 ¢ xrand()x(pbestl-d —Sl.’d)+

+0y xrand()x(gbest,»d —Sl.’d) . (12)
Particle weight:
W= Wyay — Wm?x —Ymin . jrep . (13)
iter.x

New search direction calculation:
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SHl =8t 4yt (14)

I

where: V/, is the velocity of particle i at iteration ¢ in di-
mension d, Vifjl is the new updated particle velocity; posi-

tion of S?,i is the current location; S1 is the new up-

dated particle location; pbest,; is the optimization found by
the particle itself, which are the extrema of body; gbest,, is
the optimization of the whole swarm, which is the global
extrema; Rand ( ) are the random numbers within (0, 1);
and ¢; and ¢, are called learning factors.

w is the weighting efficient, with a value between
0.1 to 0.9. Through constant learning and renewing of
location and speed, particles gradually fly into the opti-
mum location of space until the searching process ends.
The final output, gbest, is the best optimization.

(3) Termination stage.

After a continuous search in function space, the best
global solution is gbest. If the fitness value > global solu-
tion, then the search will continue. The conditions for
search ending are:

— Coincides with the requirement accuracy

(NLML);
— Reaches search [fer .
Otherwise, the search is continued.

3. Prediction of project success using EGPIM

The EGPIM proposed herein adopts a proactive approach
that utilizes time series data to predict a single ongoing
project outcome at different stages of completion, given
by percentages. The implementation process follows
Roy’s (2009) methods, as shown in Figure 2.

3.1. The implementation process

This seven-step process is divided into two parts, the first
being steps 1 through to 6 and the second being step seven,
which applies the EGPIM to make predictions on project
success. The following details the method of each step:

(1) Assign project type as the project parameter.

Fifty four historical projects from the CAPP system
database with diverse data characteristics were used for
this study. The process project type was chosen as the
project parameter for this study in order to gain a more
complete understanding of the factors that influence pro-
jects. This type of project typically covers about 64% of
project data in the CAPP database, with the best factors
identified by CAPP for predictive ability.

(2) Identify influencing factors.

This study adopted the CAPP software’s recom-
mendation that the variable level of significance should
be set below 0.10. This significance level represents the
statistical difference between project outcomes and fac-
tors considered to have a predictive ability for project
success. CAPP software analysed 76 factors from the
project data set with 11 factors being identified as signifi-
cant (as shown in Table 1).
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© Assign project type as the Assign project
project parameter parameter
o l
Identify influencing factors | CAPP
software
5 l
Data normalization L CAPP
software
l
© Choose the project Choose
. [ — .
with the most complete data a project
l

© Generate the average s-curves based on
the factor providing optimal predictive ability

Average the
s-curve data

l
@ Collect traini d test patt € CAPP
ollect training and test patterns database
O .
7 ioti i
Search for predictive solution | EGPIM

and comparison

Fig. 2. Using EGPIM implementation steps to predict project
success

(3) Data normalization.

Based on data analysis, CAPP normalized the pro-
ject data from 0—100 percent completion into 30 reporting
periods. It also identified that actual owner expenditure
factors have the greatest impact on predicting project
outcome. As per our study objectives, owner expenditure
factors were chosen as the factor to be normalized for all
process projects. Corresponding with 30 reporting peri-
ods, the normalized data for owner expenditures provided
the basic data to generate s-curve graphs.

(4) Choose the project with the most complete data.

A proactive approach was used by this study to pre-
dict the outcome of a single ongoing project. To distin-
guish the project from other process projects in the databa-
se, only one project was chosen as the ‘assessment

M.-Y. Cheng et al. Predicting project success in construction using an evolutionary Gaussian process inference model

project’. The study required the chosen project to have
complete data for all 11 of the time-dependent factors for
success identified by CAPP. Of the 34 process projects,
Project 233 fulfilled these requirements.

(5) Generate the average s-curves based on the fac-
tors to gain optimal predictive ability.

There are four project outcome categories in the
CAPP system, namely “successful”, “on time or on bud-
get”, “less than successful”, and “disastrous”. All project
outcomes were recorded within the CAPP database upon
project completion. The outcomes of the projects that
were examined in this study are listed in Table 2. Avera-
ge s-curves were then generated based on these four pro-
ject outcomes using generated normalized data. Since the
three projects in the ‘disastrous’ category did not have
data on actual owner expenditure factors, we were unable
to plot an average s-curve for this category. Four different
zones representing each of the project outcome ranges
were then created proportionally within those three ave-
rage s-curve lines (Fig. 3). As an example, zone 0.667
(for on time or on budget) was formed by two limit lines
(upper and lower). For the lower limit, the line can be
drawn based on average values for the actual owner
expenditure percentage between the average of all su-
ccessful projects and the average of all on-time or on-
budget projects. The same approach also applies to the
upper-limit line, as well as to the rest of the limit lines.
This zone apportionment may later be used to determine
the project outcome degree as it relates to the assessment
of ongoing projects at every completion interval up until
total project completion.

(6) Collect training and testing patterns.

Each of the 11 factors identified by CAPP software
as significant was employed as input patterns. Output
data was derived from the project outcome at every
completion interval that tracks along the zone path of the
average s-curve graphs for Project 233. To replicate a
proactive approach, three different sets of training pat-
terns were collected at 50%, 67%, and 90% completions,
with the two adjacent completion percentage data incre-
ments for every training pattern data set used as testing
data. In Table 3, testing data extracted for the 50% comp-
letion training pattern were at 53% and 57% completion.

Table 1. Description of 11 time-dependent factors with levels of significance

No Factors Column L.D. in CAPP Significance level
1 Actual design % complete C5 16 0.01
2 Actual owner expenditure C3 10 0.01
3 Invoiced construction costs C2 14 0.02
4 Designer planned effort hours C2 13 0.01
5 Actual invoices for material and equipment C3 28 0.01
6 Paid construction costs C3 14 0.01
7 Cost of owner project commitments C2 24 0.01
8 Recordable incident rate (by period) C2 38 0.01
9 Cost of change orders C2 17 0.02
10 Quantity of change orders C3 17 0.01
11 Actual overtime work C3 41 0.02

(Cheng et al. 2010)
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The Average S-Curve Graphs

Zone A: Disastrous degree
Zone B: Less-than-successful degree

Zone C: On-Time or On-Budget degree
Zone D: Successful degree

Actual Owner Expenditure Percentage

0 0.2 0.4

Time Percentage

0.6 0.8 1

I =+ = Success = ===== Less-than-successfull

= On-time or on-budget |

(Roy 2009)

Fig. 3. The average s-curve graphs for actual owner expenditures and zone apportionment of degree of project outcome

Table 2. The four quantitative values associated with project

outcomes

Degree of project outcome Value
Successful 1
On time or on budget 0.6667
Less-than-successful 0.3333
Disastrous 0

Similar arrangements were applied to the 67% and 90%
completions.

(7) Search for predictive solution and comparison.

The proposed Al system, EGPIM, was applied to
predict project outcome based on factors identified in the
three different learning sets (i.e. 50%, 67%, and 90%
completion). The performance of the proposed system was
evaluated using RMSE and an average error percentage.

3.2. Results

In order to highlight the potential and effectiveness of the
proposed system, EGPIM was compared against Evolu-
tionary Fuzzy Support Vector Machine Inference Model
(ESFIM), support vector machines (SVM) and against the
original Gaussian process (GP). In this study, as suggest-
ed parameter settings for SVMs by (Hsu, Lin 2002) and
the GP were established by conjugate gradients to find
good hyper-parameter settings. Table 4 shows the aver-
age RMSEs achieved by EGPIM, SVMs, and GP. The
accuracy obtained by EGPIM was significantly better
than that obtained by either SVM or GP; Although
EFSIM obtained slightly better results at the 50% and
67% completion stages, EGPIM earned significantly
better results than EFSIM at the 90% completion stage.
Table 5 shows a detailed error percentage for the three
percentage completions.

Conclusion

This paper presented an implementation of an EGPIM to
predict a project outcome path and to determine the likely

project outcome based on identified time-dependent fac-
tors. CII’s proprietary CAPP software and database were
employed to extract time-dependent factors identified to
be significantly associated with predicting a project’s
outcome.

This study used historical case studies to examine
EGPIM’s ability to predict a project’s outcome. The results
showed that EGPIM has an excellent predictive capability.
EGPIM’s performance was also demonstrated to be better
than both SVMs and the GP in practical applications.

These results highlight its suitability for construc-
tion projects, as well as displaying its potential benefits to
project managers. Since decisions must be made for many
events throughout a construction project, project mana-
gers can use our model to compile the data and use its
predictions as a reference to help them make such impor-
tant and complex decisions.

This model holds great potential as a predictive tool
when used proactively to assess project outcome, giving
project managers a better chance to take actions necessa-
ry to ensure projects are accomplished successfully.
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