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Abstract. The compaction of a hot mix asphalt depends on a number of important factors whose control, during the exe-
cution of the pavement, is complex; however it is essential to achieve the results envisaged in the design with the least 
possible cost. Therefore, the evaluation of the effect of these variables on the material density is important as well as their 
quantification in real time. This research, starting from a survey of some environmental variables, together with the hot 
mix asphalt density using an electrical impedance device, through the application of a neuro-fuzzy technique, proposes a 
procedure to classify the most important features. These results can be rapidly deduced during the paving operations; cali-
brations required to correct the compaction can be applied on site without waiting further time necessary for the extraction 
of the cores and the subsequent laboratory analysis. In this way it is possible to identify with a better precision the aspects 
of the environmental context requiring more attention. In addition, the model permits the inclusion of new input variables 
and additional data that can be recorded in following phases. 
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Introduction 
Compaction is the process by which the density of a hot 
mix asphalt is increased by using rollers to orient the 
aggregate particles in a better way (Scherocman, Marten-
son 1984; Scherocman 1984; Geller 1984; Brown 1984; 
Bell et al. 1984; Roberts et al. 1996). In the construction 
of a road there are frequent cases where, due to inade-
quate compaction of the material, the pavement does not 
reach the constructional and functional standards required 
by the design. As a matter of fact, a good density of the 
material implies a better quality of the road in terms of 
strength to plastic deformation, fatigue and capability to 
withstand traffic loads, water, aging and cracking due to 
low temperatures (Hughes 1989). In the last years a 
greater awareness of the true complexity of the subject 
has been reached thanks to  technological advances, a 
more detailed knowledge of materials, new laboratory 
tests faithful to the real performance on the road and ana-
lytical modelling increasingly precise and sophisticated 
(Kavussi, Hashemian 2011). 
 
Problems 
As it is well known, the success of compaction depends 
critically on the design phase, where appropriate labora-
tory tests help to address the executive phase. Over the 

last few years some procedures have been improved so 
that the results of the laboratory can be achieved on site 
with a good approximation (Khan et al. 1998; Dubois 
et al. 2010). There are a lot of variables that influence the 
phenomenon and they are generally related to the envi-
ronment, to the hot mix asphalt and to the construction 
operations. For this reason, researchers considered with 
great interest automated procedures that would allow the 
management of operations on site in an optimal way and 
in accordance with the economic constraints (Krishna-
murthy et al. 1998). 

Some priority issues were studied in depth as com-
paction temperature, technological progress of the rollers, 
care of vulnerable construction elements (joints, proximity 
to bridges and walls) and contractual obligations to guaran-
tee the quality of work (TRB 2006). In this regard, the 
temperature of the material is one of the most analysed 
feature. In fact, when it is low, the asphalt binder becomes 
more viscous and there is some difficulty to decrease air 
voids for a given compactive effort. With temperature 
decreasing below a certain threshold (cessation tempera-
ture) and depending on other mix properties, it is almost 
impossible to reduce air voids regardless of the applied 
compactive effort (Hughes 1989). After this point, rollers 
can only make better the surface smoothness without fur-
ther compaction. At this purpose, knowledge of the initial 
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temperature and cool-down rate allow to estimate the tem-
perature of the material at any time since this activity must 
be finished before cessation temperature is reached. 
Knowledge of this parameter involves the geometry of the 
paving, the roller choice and other characteristics already 
reported in Table 1 (Roberts et al. 1996).  

 
Table 1. Some factors affecting compaction 

Environmental 
factors 

Mix properties  
factors 

Construction  
factors 

Ground  
temperature 

Aggregate shape Rollers type 

Air temperature Aggregate gradation Rollers speed 
Wind speed Aggregate fractured 

faces 
Number of passes 

Solar flux Volume Lift thickness 
 Asphalt chemical 

properties 
HMA production 
temperature 

 Asphalt physical  
properties 

Haul distance 

 Asphalt amount Haul time 
  Foundation  

support 
 
Jordan and Thomas (1976) point out some factors 

affecting this cool-down rate as material density, pave-
ment layer thermal conductivity, specific heat, convection 
coefficient, incident solar radiation and coefficients of 
emission and absorption of solar radiation for the pave-
ment surface.  

Some characteristics of the aggregates influence al-
so the capability of the asphalt mixture to be rearranged 
under roller action, as surface texture, particle shape and 
the number of fractured faces. Of course, compaction 
energy should also be commensurate with the content of 
bitumen as if a low energy level cannot effectively thick-
en the material, an excess in the opposite direction may 
cause the shoving under roller loads (Airey et al. 2008). 

For this reason several factors, associated with the 
field operations, complicate the question further and must 
be calibrated from a work to another one. The most im-
portant are: 

− Static and dynamic characteristics of the roller 
(Hildebrand et al. 2008); 

− Geometrical characteristics of the roller; 
− Roller speed. During the passage of the roller 

there is a compression under the contact area and 
a shear stress between the compressed area and 
adjacent uncompressed areas. At lower speeds the 
roller remains in contact with hot mix asphalt for 
a long time. The consequence is a bigger com-
pression per roller pass and a higher shear stress, 
due to the difference between compressed and 
uncompressed zone; 

− Number of roller passes over a given area. A roll-
er pass is one complete trip over the area in ques-
tion by the entire roller. This means that if the 
roller has two steel drums, both drums must travel 
over the area in question to make “one pass”. 

Procedures 
The theme of compaction has always been treated 
through two parallel paths: a theoretical approach, based 
on models (Koneru et al. 2008) and an experimental 
feedback, necessary to validate the correctness of the first 
(Commuri, Zaman 2008). There is a need, therefore, to 
know the density value with good reliability in a brief 
time in order to be able to make adjustments during the 
execution. Traditional laboratory tests performed on core 
samples taken during rolling are certainly reliable, but 
they are not characterized by the rapidity needed to main-
tain the ratio performance-costs optimal (Praticò, Moro 
2011). New general-purpose equipment have been con-
structed, with the aim to survey large amounts of data and 
to permit a more accurate control on site (Leng et al. 
2011). This is extremely delicate, because if done im-
properly, it could adversely impact the following analy-
sis. 

Tools to resolve these issues can reasonably be 
based on soft computing techniques such as fuzzy logic, 
neural networks and genetic algorithms (Pellegrino 2011, 
2012). Indeed, the use of probabilistic analysis is too 
complex to define and resolve because of the many varia-
bles that barely lead to a resolution of the initial problem 
(Altunok et al. 2006; Sadeghi et al. 2010). The soft com-
puting approach is certainly not always preferable to 
other methods. It produces more realistic results when the 
number of variables involved is considerable (Chiu 1996) 
and, especially, when their non linear dependence would 
make other techniques not applicable (Dubois, Prade 
1998; Chao 2007; Dagdeviren et al. 2008; Grassi et al. 
2009; Reuter, Moller 2010; Bosurgi et al. 2011). As a 
matter of fact, the treatment of uncertainties in probabilis-
tic terms is correct when the system consists of compo-
nents whose reliability in a given period of time is meas-
ured and verified and whose variability is sufficiently 
small (Papoulis, Pillai 2002). Unfortunately, when the 
phenomenon is so complex, the sample is strongly inho-
mogeneous and presents high variability such as to pro-
duce very inaccurate final results (Dorsey, Coovert 2003).  

In recent years some techniques regarding pattern 
recognition have been developed for the treatment of large 
quantities of data recorded by digital instruments (Bosurgi 
et al. 2010). These techniques have been applied to sort, 
classify or extract data useful for understanding the phe-
nomenon investigated. The main advantages regard the 
comprehension of the phenomenon, beside of concerning 
the elimination of irrelevant dimensions or the reduction of 
data acquisition cost. At the beginning, these techniques 
were developed because the time calculating of the early 
computers was very restrictive and it was necessary to 
minimize the dimensionality of pattern representation. 
Later, it became clear that reducing the dimensionality of 
the data base there was a better performance of the model 
(Duda et al. 2001; McLachlan 2004; Ripley 2005;  
Theodoridis, Koutroumbas 2006; Webb 2002).  
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The aim of the present research 
In the present work, the authors want to propose a method 
that, starting from the acquisition of an opportune survey 
regarding some important factors, allow the recognition 
of the critical aspects in the compaction phenomenon. In 
this way their control at different stages of execution is 
possible. The first step involves the predisposition of a 
database containing variables related essentially to the 
roller type and environmental conditions. The complex 
links that are generated between them have directed the 
study towards the application of a neuro-fuzzy technique 
that has allowed identification of the factors that influ-
ence material density more. This knowledge should per-
mit to adjust some details in order to have the best per-
formance of compaction with the minor cost of time and 
money. The procedure is particularly economical and 
versatile so that it could constitute a new tool for modify-
ing, if necessary, only a few aspects during the compac-
tion operations (Jang 1993; Guler, Ubeyli 2005; Mon 
2007; Gu, Oyadiji 2008; Tahmasebi, Hezarkhani 2010). 

 
1. Method 
1.1. Generality 
In the construction phase the executor attempts to achieve 
the degree of compaction required by the designer. How-
ever, there are no direct relationships or analytical proce-
dures that allow to precisely determine the weight of the 
roller, the number of passes, the speed or the dynamic 
characteristics (frequency and amplitude) of the roller, the 
layer thickness, etc. As a matter of fact, it is not easy to 
define an in situ activity that brings to the material the 
same energy as in the laboratory (for example by gyratory 
compactor), because in reality there are many variables 
that make this a very complex phenomenon. The problem 
is usually solved by unloading some laying test, in which 
some variables, such as roller speed, number of passes, the 
vibration amplitude and frequency, length of paving, etc. 
will vary within appropriate limits. In the so compacted 
layer, a few cores have to be extracted and carried in labor-
atory for measuring the density. The best result will now 
give the general guidelines for a proper execution. 

This approach, although very simple, involves some 
diseconomies. First of all, the laying test is unlikely to be 
definitive, since some areas have densities below the 
prescribed limit and, therefore, must be demolished. The 
second drawback concerns the time and cost required to 
execute the paving, to extract and test a number of cores 
within a certain time. The last negative aspect of this 
procedure is that the executor, on the basis of laboratory 
results, will set out certain factors in order to achieve the 
desired result, without understanding which of these is 
actually more important. 

In order to overcome these problems the present pa-
per proposes a procedure based on a reasonable survey of 
relevant data concerning the main variables and a subse-
quent analysis to identify those most influential at this 
regard. 

Both the survey and the analysis are carried out al-
most in real time and provide rapid information to the 

operator, thus eliminating all the disadvantages of the 
traditional methodology before outlined. The proposed 
procedure, however, is very flexible: there are no con-
straints on the type of compacting equipment or work 
organization, nor on the size of the data set. At this stage 
of research, in order to verify the correctness of the meth-
odology, the number of variables is quite small (9 input 
variables and 1 output) but the proposed technique is 
suitable to use a very large number of features and subse-
quently it increases the size of database. Among the pa-
rameters measured, the density will be measured by 
means of a non-nuclear instrument. In particular, an elec-
trical density gauge, like TransTech’s Pavement Quality 
Indicator (PQI), measures pavement compaction by 
means of its dielectric constant. The instrument introduc-
es a weak current through the material, which creates an 
electrical sensing field. The output depends on the re-
sponse of this electrical sensing field to changes in the 
pavement’s complex impedance (consisting of the pave-
ment’s composite resistivity and dielectric constant). This 
response is then calibrated to pavement density. 

The variables that were detected in situ during the 
execution of lying and feeding the database are as fol-
lows: 

− Sp: Roller Speed in km/h; 
− Th: Layer Thickness in cm. Although the thick-

ness is designed equal to 3 cm, small deviations 
from this value have been measured;  

− Ti: Time in seconds. It is relative to the elapsed 
time during the single pass and it is, therefore, a 
partial measure; 

− Pr: Progressive in seconds. It takes into account 
the cumulative time during all the passes up to the 
time of the record and it is, therefore, a progres-
sive measure;  

− Pa: Passes number;  
− Te_A: Air temperature in °C;  
− Wa: Water in %. It is the water needed to avoid 

the pick up on the drum of the hot material;  
− Te_M: Material temperature in °C;  
− De: Density of the compacted material in kN/m3.  
Other parameters, although detected, have been as-

sumed constants because of their modest variability (for 
example roller weight) and will not be processed numeri-
cally in the later stages of the analysis. 

As mentioned above, a soft computing technique for 
reducing the N-dimensional data set initially collected 
will be applied. Generally, soft computing can be used to 
deal with a very wide range of problems, as classification, 
optimization, data mining, prediction, decision support, 
especially when: 

− The system is non-linear, time-variant or ill de-
fined; 

− The variables are continuous; 
− A mathematical model is either too difficult or 

expansive to organize; 
− There are too many or noisy inputs; 
− An expert is available to interpret the rules that 

should determine the system behaviour. 
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The choice of the most correct technique depends on 
the type of problem and the available data. Neural Net-
works are good at classification, data-mining and predic-
tion systems, where there are lots of potentially noisy 
input data available but they suffer from a lack of intelli-
gibility, because of the computation is hidden in the 
weights and thresholds of multiply connected networks. 
Fuzzy Logic systems are best suited to decision making 
and control systems when the rules of the model cannot 
be translated to hard mathematical formulae. These rules 
are used to perform a logical, non-linear mapping be-
tween inputs and outputs, in the same way of human de-
cision-making processes. In the recent past, some re-
searchers (Jang 1993) have shown the convenience to 
pair the methods previously seen in order to maximize the 
benefits. For example, one of the most effective proce-
dures, that is the neuro-fuzzy approach, consists of a 
structure that uses both fuzzy logic and neural networks. 
In detail, neural networks recognize patterns and help 
adaptation to the environment while fuzzy models incor-
porate a database, which defines the membership func-
tions used in the rules by means of a preventive proce-
dure of clustering, and a reasoning mechanism, which 
performs the inference procedure upon the rules. In a few 
words, this procedure takes a fuzzy model and adjusts it 
with a back propagation algorithm based on the collection 
of input-output data. 

 
1.2. Brief notes about neuro-fuzzy 
Neuro-fuzzy techniques exploit Artificial Neural Net-
works (ANNs) procedures to determine the properties of 
fuzzy sets and fuzzy rules by processing data sets. The 
most famous approach in this field is the adaptive neuro-
fuzzy inference system (ANFIS), in which the member-
ship function parameters and the rules are extracted from 
a data set opportunely surveyed (Jang 1993). 

The model is trained with the back-propagation gra-
dient descent method and because of slowness, it is com-
bined with the least squares method.  

To illustrate the methodology behind the procedure, 
we can introduce a simple example with two fuzzy if-then 
rules based on a first order Sugeno model (Fig. 1): 
Rule 1:  
 If (x is A1) and (y is B1) then (f1 = p1x + q1y + r1); 
Rule 2:  
 If (x is A2) and (y is B2) then (f2 = p2x + q2y + r2), 
where x and y are the inputs; Ai and Bi are the fuzzy sets; 
fi are the outputs; pi, qi and ri are the design parameters 
that are determined during the training progression. In the 
Figure 2 a circle indicates a fixed node and a square is an 
adaptive node. 

With reference to the Figure 2, the first layer is 
composed by adaptive nodes and the outputs are the 
fuzzy membership grade of the inputs, given by: 
 1 ( )i AiO x= µ  with i = 1, 2; (1) 
 1

2 ( )i BiO y
−

= µ  with i = 3, 4. (2) 

 
Fig. 1. ANFIS architecture 

 
In the second layer, there are only fixed nodes and 

they are simple multiplier (M). The outputs can be ex-
pressed as: 
 2 ( ) ( )i i Ai BiO w x y= = µ ⋅µ  with i = 1, 2, (3) 
called the firing strengths of the rules.  

Also in the third layer, the nodes, labelled with N, 
are all fixed. They normalize the firing strengths from the 
previous layer. 

The outputs can be reported as: 

 3

1 2

i
ii

wO w
w w

= =
+

   with 1 = 1, 2. (4) 

In the fourth layer, there are only adaptive nodes. 
The output is the product of the normalized firing 
strength and a first order polynomial: 
 4 ( )i i i i i i iO w f w p x q y r= ⋅ = ⋅ + +    with 1 = 1, 2. (5) 

In the fifth layer, there is a single fixed node (S) that 
sums all incoming signals: 

 

2

2
15

1 21

i i
i

i ii
i

w f
O w f w w

=

=

⋅

= ⋅ =
+

∑
∑ . (6) 

 

 
Fig. 2. Relationship between Rolling Passes and Density de-
duced by individual tests of compaction. The trend shows a sub-
horizontal line, due to the resistance of the material already 
partially compacted to the rolling action which will be won only 
after several passes (after four passes) 
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In the first adaptive layer there could be three modi-
fiable parameters called ai, bi, ci, (premise parameters) 
related to the input membership functions. In the fourth 
adaptive layer, there are different modifiable parameters 
(called consequent parameters) pi, qi, ri, pertaining to the 
first order polynomial. The learning algorithm is designed 
to calibrate all the modifiable parameters as { ai, bi, ci } 
and { pi, qi, ri }, to make the output compatible with the 
training data. 

When the membership functions are fixed, the out-
put can be written as: 

 1 2
1 2

1 2 1 2

w wf f fw w w w= +
+ +

. (7) 

And, finally: 
 1 1 2 2f w f w f= + . (8) 
And substituting the fuzzy if-then rules into the last equa-
tion: 
 1 1 1 1 2 2 2 2( ) ( )f w p x q y r w p x q y r= + + + + + . (9) 

In this way and after some rearrangement, the out-
put can be expressed as: 

 1 1 1 1 1 1 2 2

2 2 2 2

( ) ( ) ( ) ) ( )
( ) ( ) ).

f w x p w y q w r w x p
w y q w r
= + + + +

+
 (10) 

As mentioned, a hybrid algorithm combining the 
least squares method and the gradient descent method can 
be used to identify in a faster way the optimal values of 
these parameters, especially when the premise parameters 
are not fixed. 

In particular, when the premise parameters are 
fixed, the least squares method (forward pass) is used to 
optimize the consequent parameters. Once the optimal 
consequent parameters are found, the gradient descent 
method (backward pass) is used to adjust in an optimal 
mode the premise parameters corresponding to the fuzzy 
sets in the input domain. The output of the ANFIS is 
calculated by using the consequent parameters already 
found in the forward pass, while the output error permits 
to adapt the premise parameters with the back-
propagation algorithm (Jang 1993). 

 
2. Results 
2.1. Application 
The methodology described above has been applied to the 
lay down of a hot mix asphalt surface layer in a rural road 
located near the town of Messina (Italy). The cross sec-
tion of the road has two lanes from 4 m each, of which 
the first one has been used by the workers and operative 
vehicles and in the other paving has taken place. The 
asphalt plant is near the construction site and this has 
allowed to the material to have temperatures high enough 
to ensure a reasonable useful period for compaction. 

Paving occurred with a floating screed, for a width of 
4.00 m, a nominal thickness of the layer of 3 cm and a 
speed of 0.45 km/h. The floating screed has been immedi-

ately followed by a roller with double metallic drum, 
weight of 11.300 kN, drum width of 1.950 m, which has 
compacted the material in static mode with a speed of 
2 km/h. 

The measures have been recorded in 40 sections and 
the final number of passes has depended on the level of 
compaction achieved. When this result has been satisfac-
tory or material temperature has been too low, the num-
ber of passes increased. In this way, a database consisting 
of 10 columns (9 input variables and one output), with 72 
rows (observations), has been acquired. It is partially 
shown in Table 2.   

In the following figures some results obtained in 
section no. 1 are presented. They are easily understanda-
ble and show the impossibility to derive from these rela-
tionships useful indications to perform the compaction in 
the best way. 

As previously mentioned, the nine input variables are 
not all of equal significance in influencing compaction. 
Therefore, the purpose of the procedure was to identify the 
most important variables both individually and in groups.  

 

 
Fig. 3. Relationship between Material Temperature and Density 
deduced by individual tests of compaction. The high tempera-
ture of the hot mix allows further compaction of the material 
even after numerous passes 

 

 
Fig. 4. Relationship between Material Temperature and Rolling 
Time deduced by individual tests of compaction. It can be as-
sumed that 700 seconds (about 11 minutes) is the maximum 
time beyond which there is no more an effective compaction of 
the material. Beyond this time, in fact, only the aesthetic ap-
pearance of the pavement surface can improve 
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Table 2. Data set of the survey 
 Sp Le Th Ti Pr Pa Te_A Wa Te_M γ 
1 0.6 60 3.1 360 360 0 28 4.88 152 1975 
2 2.0 60 3.0 108 468 2 28 5.32 141 1998 
3 2.0 60 3.2 108 576 4 28 4.96 133 1997 
4 2.0 60 3.0 108 684 6 28 5.12 124 2013 
5 0.6 50 3.0 300 300 0 28 5.38 123 1971 
6 2.0 50 3.2 90 390 2 28 5.50 109 2003 
n … … … … … … … … … … 

 
In brief, the procedure can be summarized in the fol-

lowing steps: 
− Collection of a training data set (the first 300 ob-

servations) that contains the desired input/output 
data of the system to be modelled; 

− Specification of an initial model structure (in this 
case, it was the Sugeno type);  

− After generating the initial fuzzy model structure, 
training by means of back-propagation form of 
the steepest descent method. The optimization 
method train the membership function parameters 
to emulate the training data; 

− After the fuzzy model is trained, validation using 
a testing or checking data different from the used 
one; 

− In the present case, a part of the observations 
(300) were used to select the best classifier (re-
spectively, with one, with a pair and with three 
variables at a time) and the remainder (60) to es-
timate the error rate of trained classifier. 

The steepest descent method is a first-order optimi-
zation algorithm. To find a local minimum of a function 
this procedure takes steps proportional to the negative of 
the function gradient at the current point. On the contrary, 
if the steps are proportional to the positive of the gradient, 
a local maximum of that function will be approached. 
The training error is the difference between the training 
data output value and the output of the fuzzy system cor-
responding to the same training data input value (the one 
associated with that training data output value). The train-
ing error records the Root Mean Squared Error (RMSE) 
of the training data set. The checking error is the differ-
ence between the checking data output value and the 
output of the fuzzy system corresponding to the same 
checking data input value, which is the one associated 
with that checking data output value. The Root Mean 
Squared Error (RMSE) has measured the average mis-
match between each data point and the model and there-
fore it has provided an answer about the correctness of 
the procedure. As it is known, if the value of RMSE is 
zero, the model has performed in a perfect way the survey 
data and, on the contrary, high RMSE results can indicate 
a bad fit. The least error indicates the most influent fea-
ture but it is also important to verify the difference be-
tween training and checking errors because a high value 
would indicate the presence of overfitting. 

The results from the previous simulations (Ta-
bles 3–5) show that, at least from the numerical point of 

Table 3. Evaluation of the most influent feature by means of 
ANFIS and quantification of RMSE  

Input Training Checking Difference 
Ti 0.0995 0.0812 0.0183 
Pa 0.1029 0.0858 0.0171 
Sp 0.1083 0.0962 0.0121 
Pr 0.1114 0.1153 0.0039 

Te_M 0.1141 0.1201 0.006 
Wa 0.1296 0.1633 0.0337 
Le 0.1322 0.1654 0.0332 

Te_A 0.1375 0.1633 0.0258 
Th 0.1375 0.1657 0.0282 

 
Table 4. Evaluation of two out of nine by means of ANFIS. 

The most influent features are the pair Time and Wa-
ter and, in order to error differences, without problem 
of overfitting 

Input Training Checking Difference 
Ti-Wa 0.0682 0.077 0.0088 

Ti-Te_A 0.0838 0.0726 0.0112 
Ti-Le 0.0862 0.1065 0.0203 
Ti-Th 0.0916 0.0863 0.0053 
Ti-Pr 0.0929 0.068 0.0249 
Ti-Pa 0.0938 0.1159 0.0221 

Ti-Te_M 0.0954 0.0967 0.0013 
Ti-Sp 0.0989 0.0805 0.0184 
 

Table 5. Evaluation of three out of nine by means of ANFIS. 
The most influent features are the group Time, Water 
and Material Temperature and, in order to error dif-
ferences, without problem of overfitting 

Input Training Checking Difference 
Ti-Wa-Te_M 0.0593 0.1053 0.046 

Ti-Wa-Pr 0.0597 0.0918 0.0321 
Ti-Wa-Pa 0.0598 0.1293 0.0695 

Ti-Wa-Te_A 0.0598 0.1777 0.1179 
Ti-Wa-Th 0.0623 0.1192 0.0569 
Ti-Wa-Le 0.0641 0.083 0.0189 
Ti-Wa-Sp 0.0673 0.084 0.0167 

 
view, Rolling Time (Ti) is the most influent feature. The 
analysis carried out with set of two and three variables at 
the same time has highlighted the role of, respectively, 
Rolling Time (Ti)-Water (Wa) and Rolling Time (Ti)-
Water (Wa)-Material Temperature (Te_M). The results 
drawn from the different simulations are fully consistent, 
as the most influential variables of the previous phase are 
confirmed later. 
 
3. Discussion 
Figures 2, 3 and 4 represent the trend of some features 
(density, rolling time, number of passes, etc.) deduced by 
individual test of compaction, regarding the section 1 
and, therefore, they are indicative only of a small part of 
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the experiment. However, their inclusion in this paper is 
necessary to understand the limits of this information. 
That is, the knowledge of a simple relationship between 
two variables is of little utility for the executor and does 
not provide any help in making decisions or for long-term 
strategy. On the contrary, it is necessary to organize an 
analytical, though simple, tool making it possible to take 
into account the influence of the variables that are present 
in the environment, not just those strictly related to the 
roller compactor or material characteristics. 

As mentioned in Method section, a neuro-fuzzy 
technique has been applied. This approach assures quick-
ness, especially with large data base even though the 
results may relate to local optima rather than global opti-
mum. The examination of numerical results shows some 
interesting aspects. First, the analysis performed on a 
single variable makes little sense and only serves to clas-
sify the inputs in order of importance. At this regard, 
Table 3 shows that the compaction time (Ti) has the 
greatest relevance to the output. The training and check-
ing errors are very close and this clearly indicates the 
absence of overfitting. The very similar values of the 
other variables show a strong dependence among them, as 
it is easy to understand.  

The following table (Table 4) is certainly more in-
teresting. As a matter of fact, it confirms the importance 
of Ti, but also involves the Wa, that is the percentage of 
water present during the rolling and released from the 
drum to avoid the adhesion with the asphalt mix. This is 
an aspect that would be escaped in a very complex rheo-
logical model, too. From the numerical point of view, the 
pair Ti-Wa is certainly the best choice even if others 
could give good results in terms of error and this is due to 
the inter-dependence of variables. The difference between 
the errors of training and checking is always negligible. 

The last table (Table 5) identifies the group Ti-Wa-
Te_M as the best selection among the triplets that affect 
the density. In fact, it is understandable the identification 
of the material temperature (Te_M) because this directly 
affects the compaction but also the time available for 
rolling. Errors in training this time indicate that this group 
has stronger influence on the output than any other triplet 
and also in this case we have a good response about the 
danger of overfitting. 

This problem would have been presented if, for a 
given size of the matrix, we had increased the number of 
input variables or had grouped together four or more 
input features. This does not mean that these limits can-
not be exceeded, but only that the data set have to grow in 
size. 

The tables included in this article (Tables 3–5) need 
a last consideration. The input variables have error values 
still acceptable and, therefore, one could argue that this 
technique does not perform a sharp selection. Instead the 
tables show the best combinations in terms of training 
and checking error compared to the total. For example, 
the case of two variables simultaneously compared to the 
nine input, should produce a number of combinations of 
36 pairs, while the case of three variables should produce 
84 different combinations. It is obvious that the technique 

has allowed us to identify the best combinations and only 
these were reported in the tables. 

 
Conclusions 
With this research the authors have proposed a procedure 
that allows the rapid recognition of some variables that 
influence the process of compaction. As a matter of fact, 
although this aspect is generally studied with attention 
during the design phase, there are some factors that are 
characterized by uncertainty and variability and that se-
verely affect the material density. For example, the roll-
ing time is related to the temperature of the material that 
in turn depends on the distance from the asphalt plant and 
from the air temperature. Because of these uncertainties, 
traditional procedures require laying tests, characterized 
by different conditions, from which some cores will be 
extracted and sent to the laboratory. The test on cores 
provides a measure of the correctness of the methodology 
followed. However, these activities are carried out in a 
couple of days and if the boundary conditions change (air 
temperature and material, paving surfaces, humidity, etc.) 
it can be possible that the expected results are different 
from real measures. 

For these reasons, the authors used an instrument 
that detects in real time the density of the material but 
have also applied some neuro-fuzzy techniques for sort-
ing the data set collected and identifying the most im-
portant features in relation to density. This information 
allows to pay attention to those features so that to obtain 
the results required by the design. This will prevent the 
laying tests that, in the sections where the desired density 
do not achieve a minimal value, must be demolished. 
Again, there is a greater economy because it is no longer 
necessary to use laboratory tests with the same frequency. 
But, above all, it is possible to recognize, for that specific 
scenario, the most sensitive features. 

The correctness of the proposed approach, even in 
relation to the existing literature, appears for certain as-
pects. The purely theoretical control of the phenomenon 
is, in our opinion, very complex. The transfer of compac-
tion energy used in the laboratory, for example with the 
gyratory compactor, on site is difficult because the varia-
bles involved are a large number. Some of these are relat-
ed to the roller and have static and dynamic characteris-
tics; but other, more complex to control, are linked to the 
environment and are continuously modified. For this 
reason we need a procedure, perhaps less refined from the 
analytical point of view respect to the complex rheologi-
cal models already existing in literature, but that would 
provide realistic answers and in a very short time. 
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