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Abstract. A major concern in design of structures is to provide precise estimations of ultimate bearing capacity of 
soil beneath their foundations. Direct determination of the bearing capacity of foundations requires performing expen-
sive and time consuming laboratory tests. To cope with this issue, several numerical models have been presented by 
researchers. This paper presents the development of a new design equation for the prediction of the ultimate bearing 
capacity of shallow foundations on granular soils using linear genetic programming (LGP) methodology. The ultimate 
bearing capacity is formulated in terms of width of footing, footing geometry, depth of footing, unit weight of sand, 
and angle of shearing resistance. The LGP-based design equation is established using the results of several load tests 
on real sized foundations presented in the literature. Validity of the model is verified using a part of laboratory data that 
are not involved in the calibration process. The statistical measures of coefficient of determination, root mean squared 
error and mean absolute error are used to evaluate the performance of the model. Sensitivity and parametric analyses are 
conducted and discussed. The proposed model accurately characterizes the ultimate bearing capacity resulting in a very 
good prediction performance. The LGP model reaches a better prediction performance than the well-known prediction 
equations for the bearing capacity of shallow foundations. 
Keywords: ultimate bearing capacity, shallow foundations, linear genetic programming, granular soils, prediction.
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Introduction 

Columns, bearing walls or other bearing members trans-
mit the building loads to foundations. A foundation is the 
lowest part of a structure which transmits loads to the un-
derlying soil. Considering the depth of construction, the 
foundations can be classified into two major groups of 
shallow and deep foundations. A foundation with a depth 
(D) to width (B) ratio less than or equal to three or four 
(D/B ≤ 3 or 4) is simply called a “shallow foundation” 
(Das 1995; Cerato 2005). Fig.1 shows a definition sketch 
for shallow foundations. In general, any foundation de-
sign must meet three essential requirements (Chen, Duan 
2000): (1) providing adequate safety against structural 
failure of the foundation, (2) offering adequate bearing 
capacity of soil beneath the foundation with a specified 
safety against ultimate failure, and (3) achieving accept-
able total or differential settlements under working loads. 

Bearing capacity failure usually occurs in one of the three 
modes of general shear, local shear, or punching shear 
failure (Vesic 1973). The ultimate bearing capacity can 
be defined as the gross pressure at the base of the foun-
dation at which soil fails in shear. Providing a precise 
estimation of the ultimate bearing capacity of the soil 
beneath the foundation is crucial for an efficient design.  
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Fig. 1. A typical sketch for shallow foundation
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Four approaches commonly used to determine the bear-
ing capacity of shallow and deep foundations are (Eslami 
and Gholami 2006): (1) static analysis, (2) in-situ testing 
methods, (3) full-scale loading tests, and (4) using pre-
sumed values recommended by codes and handbooks. 
Among these approaches, a theoretical solution (i.e. stat-
ic analysis) is more common.

In this context, Prandtl (1921) and Reissner (1924) 
presented methods of calculating the ultimate bearing ca-
pacity of shallow strip footings based on the plastic theo-
ry. Later, the formulation was considerably developed by 
other researchers over the years (Terzaghi 1943; Taylor 
1948; Meyerhof 1963; Hansen 1968; Vesic 1973; Kalin-
li et al. 2011). Terzaghi (1943) extended the theory of 
Prandtl (1921) by taking into account the weight of soil 
by the principle of superposition. Taylor (1948) incorpo-
rated the surcharge effect of the overburden soil at the 
foundation level into the Prandtl’s formulation. Meyerhof 
(1963) extended the Terzaghi’s bearing capacity equation 
by including different shape and depth factors. The Mey-
erhof’ model was later modified by Hansen (1968). Vesic 
(1973) developed a bearing capacity prediction equation 
similar to that proposed by Hansen (1968).

Recently, Kalinli et al. (2011) improved the Meyer-
hof formula by using a parallel ant colony optimization 
algorithm. The improved Meyerhof formula proposed by 
Kalinli et al. (2011) found to be more accurate than the 
theoretical computation formulas. Some of the general 
forms of the classical equations are summarized in Ta-
ble 1. As can be observed from this table, the form of the 
equations presented by the other researchers remained 
the same as that of Terzaghi’s. After extensive in situ and 
laboratory tests, Meyerhof (1963), Hansen (1968), Vesic 
(1973) and several other researchers proposed different 
shape, depth, inclination, ground, and base factors for the 

bearing capacity equations. However, a major drawback 
of these classical formulations is that some simplifying 
assumptions are incorporated into their development. 
Therefore, they do not always provide reliable estima-
tions of the bearing capacity (Cerato 2005; Kalinli et al. 
2011). 

The complexity of analysis of bearing capacity be-
havior implies the necessity to utilize alternative predic-
tion methods. Numerous computer-aided modeling tools 
such as soft computing techniques have been proposed 
by extending developments in computational software 
and hardware. Artificial neural networks (ANNs) are 
one of the most popular branches of the soft computing 
techniques. In recent years, they have been successfully 
applied to behavioral modeling of many civil engineer-
ing problems (Hoła, Schabowicz 2005; Malinowski et al. 
2006; Kaplinski, Janusz 2006; Schabowicz, Hola 2007; 
Das, Basudhar 2008; Sonmez, Ontepeli 2009; Dikmen, 
Sonmez 2011). Recently, Padmini et al. (2008) utilized 
neuro-fuzzy inference system (ANFIS) to predict the ul-
timate bearing capacity of shallow foundations on cohe-
sionless soils. ANFIS combines the transparent, linguistic 
representation of a fuzzy system with the learning ability 
of ANNs. Furthermore, Padmini et al. (2008) conducted 
a comparative study between ANFIS, ANN and fuzzy 
inference system (FIS) for the prediction of the ultimate 
bearing capacity. Kuo et al. (2009) used ANNs to predict 
the bearing capacity of strip footing on multi-layered co-
hesive soil. More recently, Kalinli et al. (2011) developed 
an ANN model to predict the ultimate bearing capacity. 
Despite the acceptable performance of the ANN-based 
approaches, they are not capable of producing simplified 
prediction equations. 

Genetic algorithm (GA) is a powerful optimization 
method based on the principles of genetics and natural 
selection. GA has been shown to be suitably robust for 
a wide variety of engineering problems (Baušys, Pank-
rašovaite 2005; Milani, G., Milani, F. 2008; Šešok, 
Belevicius 2008; Šešok et al. 2010). Genetic program-
ming (GP) (Koza 1992) is a specialization of GA where 
the solutions are computer programs rather than binary 
strings (Banzhaf et al. 1998). Genetic programming (GP) 
(Koza 1992) is a new alternative approach to overcome 
the limitations of ANNs. One of the main features of GP 
over other soft computing tools (e.g. ANNs, ANFIS, etc.) 
is its ability to generate simplified prediction equations 
without assuming prior form of the existing relationship 
(Alavi et al. 2011). For the last decade, GP has been 
pronounced as a powerful method for simulating the 
behavior of civil engineering problems (Narendra et al. 
2006; Javadi et al. 2006; Tung et al. 2009; Gandomi 
et al. 2011a; Gandomi and Alavi 2011). Linear genetic 
programming (LGP) (Brameier, Banzhaf 2007) is a new 
subset of GP. LGP operates on programs that are repre-
sented as linear sequences of instructions of an imper-
ative programming language (Brameier, Banzhaf 2001, 
2007). In contrast with GA, classical GP and ANNs, ap-

Table 1. General forms of the classical prediction equations 
for the bearing capacity of shallow foundations

Reference Equation

Terzaghi
(1943)

0.5ult c c qq cN s DN BN sγ γ= + γ + γ

Meyerhof
(1963)

0.5 .ult c c c c q q q qq cN s d i DN s d i B N s d iγ γ γ γ= + γ + γ

Hansen
(1970) 0.5 .

ult c c c c c c q q q q q qq cN s d i g b DN s d i g b
B N s d i g bγ γ γ γ γ γ

= + γ +
γ

Vesic
(1975) Same as Hansen’s equation

Notes: qult: ultimate unit resistance or bearing capacity of foot-
ing; c: cohesion parameter; γ: average effective unit weight of 
the soil below and around the foundation; B: foundation width; 
D: embedment depth of foundation; Nc, Nq and Nγ: non-dimen-
sional bearing capacity factors as exponential functions of f; 
f: soil internal friction angle; sc, sq and sγ: non-dimensional 
shape factors; ic, id and iγ: non-dimensional inclination factors; 
dc, dq and dγ: non-dimensional depth factors; gc, gq and gγ: non-
dimensional ground factors (base on slope); bc, bq and bγ: base 
factors (tilted base).
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plication of LGP in the field of civil engineering is totally 
new and original (Gandomi et al. 2010; Alavi, Gandomi 
2011, 2012).

The paper aims at employing LGP to derive a new 
design equation for the estimation of the ultimate bear-
ing capacity of shallow foundations. The proposed model 
relates the bearing capacity to various predictor variables 
including width of footing, depth of footing, footing ge-
ometry, unit weight of sand, and angle of shearing resis-
tance. A database containing 97 load test data is used to 
calibrate the model. 

1. Methodology
Linear genetic programming
GP creates computer programs to solve a problem 
through simulating the biological evolution of living or-
ganisms (Koza 1992). Generally, in GP, inputs and cor-
responding output data samples are known and the main 
goal is to find a program that connects them (see Fig. 2) 
(Weise 2009). Most of the genetic operators used in GA 
can be implemented in GP with minor changes. The main 
difference between GP and GA is the representation of 
the solution. GA creates a string of numbers that repre-
sent the solution. The classical GP solutions are comput-
er programs represented as tree structures and expressed 
in a functional programming language (such as LISP) 
(Koza 1992; Alavi et al. 2011). In other words, in GP, the 
evolving programs (individuals) are parse trees than can 
vary in length throughout the run rather than fixed-length 
binary strings. The fitness of each program generated by 
GP is evaluated using a fitness function. Thus, the fitness 
function is the objective function that GP aims to opti-
mize (Gandomi et al. 2011b).

In addition to classical tree-based GP, there are other 
types of GP where programs are represented in differ-
ent ways. These are linear and graph-based GP (Ban-
zhaf et al. 1998). Recently, several linear variants of GP 
have been developed such as linear genetic programming 
(LGP) (Brameier, Banzhaf 2007) and multi-expression 
programming (MEP) (Oltean, Grosan 2003). The linear 
variants of GP make a clear distinction between the gen-
otype and phenotype of an individual. In these variants, 
individuals are represented as linear strings (Oltean, 
Grosan 2003). There are some main reasons for using 
linear GP. Computers do not naturally run tree-shaped 
programs. Therefore, slow interpreters have to be used as 
a part of classical tree-based GP. Conversely, by evolv-
ing the binary bit patterns, the use of an expensive inter-
preter is avoided. Consequently, a linear GP system can 
run several orders of magnitude faster than comparable 
interpreting systems. The enhanced speed of the linear 
variants of GP (e.g. LGP and MEP) permits conducting 
many runs in realistic timeframes. This leads to deriving 
consistent and high-precision models with little customi-
zation (Francone, Deschaine 2004; Poli et al. 2007; Gan-
domi et al. 2011b).

LGP is a new subset of GP with a linear structure 
similar to the DNA molecule in biological genomes. In 
LGP, expressions of a functional programming language 
(such as LISP) are substituted by programs of an im-
perative language (such as C/C++) (Brameier, Banzhaf 
2001, 2007). Fig. 3 presents a comparison of structure of 
a program evolved by LGP and classical GP. As shown 
in this figure, a linear genetic program can be seen as a 
data flow graph generated by multiple usage of register 
content. In classical tree-based GP, the data flow is more 
rigidly determined by the tree structure of the program 
(Brameier, Banzhaf 2001; Gandomi et al. 2011b). 

In the LGP system described here, a program is 
interpreted as a variable-length sequence of simple C 
instructions. The instruction set or function set of LGP 
contains arithmetic operations, conditional branches, and 
function calls. The terminal set of the system is com-
posed of variables and constants. The instructions are 
restricted to operations that accept a minimum number 
of constants or memory variables, called registers (f), and 
assign the result to a destination register, e.g. f0 := f1 + 
1. A part of a linear genetic program in C code is repre-
sented in Fig. 4. In this figure, register f[0] holds the final 
program output (Gandomi et al. 2010).

 Here are the steps which the LGP system follows 
for a single run (Brameier, Banzhaf 2007; Gandomi et al. 
2010): 

1) Initializing a population of randomly generated pro-
grams and calculating their fitness values.

Fig. 2. GP in the context of the input-processing-output model

Fig. 3. A comparison of a GP program structure evolved by: 
(a) LGP; (b) Classical tree-based GP  
(after Gandomi et al. 2011b)

Input Output

To be Found by GP

Running Program

f[0] = 0;

L0: f[0] += v[2];

L1: f[0] += 1;

L2: f[0] = sin( [0]);f
L3: f[0] += v[1];

return f[0];

y = f[0] = sin(v[2] + 1) + v[1]

v[2] v[1]

++

sin

1

b)a)

L0: f[0] =v[1]–

L1: f[0]*=2.5;

L2: f[0]/=v[0];

L3: f[0]+=v[4];

L4: f[0]/=2.5;

L5: f[0]=sin(f[0] );

L6: f[0]+=f[0];

Fig. 4. An excerpt of a linear genetic program
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2) Running a Tournament. In this step four programs 
are selected from the population randomly. They are 
compared based on their fitness. Two programs are 
then picked as the winners and two as the losers.

3) Transforming the winner programs. After that, two 
winner programs are copied and transformed proba-
bilistically into two new programs via crossover and 
mutation operators.

4) Replacing the loser programs in the tournament with 
the transformed winner programs. The winners of 
the tournament remain unchanged.

5) Repeating steps two through four until termination 
or convergence conditions are satisfied.

Crossover occurs between two or more instruction 
blocks whereas mutation occurs on a single instruction. 
Fig. 5 demonstrates typical crossover and mutation in 
LGP. The crossover operation works by exchanging con-
tinuous sequences of instructions between parents. As it 
is seen in Fig. 5(a), a segment of random position and 
arbitrary length is selected in each of the two parents 
(f(0) and g(0)) and exchanged. If one of the two children 
would exceed the maximum length, crossover is aborted 
and restarted with exchanging equally sized segments 
(Brameier, Banzhaf 2001; Gandomi et al. 2011b). Two 
commonly used types of standard LGP mutations are 
micro and macro mutation. The micro mutation changes 
an operand or an operator of an instruction. The macro 
mutation operation inserts or deletes a random instruction 
(Brameier, Banzhaf 2001; Gandomi et al. 2011b). 

2. Numerical simulation of bearing capacity  
of shallow foundations

In order to provide reliable estimations of the bearing 
capacity of shallow foundations, the effect of several 
parameters should be incorporated into the model de-
velopment. Considering the basic forms of the existing 
prediction equations (see Table 1), the bearing capacity 
of shallow foundations of cohesionless soils mainly de-
pends on the foundation geometry and properties of the 
soil beneath it (Padmini et al. 2008). The most important 
parameters related to the geometry of the foundation are 
its width, length of footing, shape (square, rectangular 
and circular) and depth of embedment. The significant 
influence of the soil (sand) physical properties such as 
angle of shearing resistance and the unit weights from 
above and below the water table on its bearing capacity 
is well understood (Padmini et al. 2008). In the present 

study, the LGP approach is employed to develop a new 
model relating the ultimate bearing capacity of shallow 
foundations (qult) and the above mentioned influencing 
parameters. Consequently, qult (kPa) is considered to be 
a function of the following parameters: 

  
  , , , , ,ult

Lq f B D
B

 
= γ f 

   
(1)

where: B (m): width (least lateral dimension) of footing; 
D (m): depth of footing; L/B: footing geometry; where L 
is length of footing; γ (kN/m3): unit weight of soil. If the 
soil is located above the water table, its dry unit weight 
(γd) is used. For the cases where the soil is located below 
the water table, its effective unit weight (γ΄) is consid-
ered; f (o): angle of shearing resistance.

 2.1. Experimental database
A comprehensive database containing 97 experimental 
test results from 6 independent studies is obtained from 
the literature to develop the model. The database consists 
of 47 load tests on large-scale footings and 50 load tests 
on small-scale model footings. The large-scale test results 
are reported by Muhs and Weiß (1971), Weiß (1970), 
Muhs et al. (1969), Muhs and Weiß (1973), and Briaud 
and Gibbens (1999). Gandhi (2003) reported the results 
of the smaller scale model footings. The ultimate load 
in large-scale tests is defined as the load corresponding 
to the point where the slope of the load settlement curve 
is minimum. For small-scale tests, the ultimate load is 
defined as the load corresponding to the point of break 
of the load settlement curve in a log–log plot (Padmini 
et al. 2008). The database includes the results of experi-
ments on square, rectangular and strip footings of differ-
ent sizes tested in sand beds of various densities. This 
reliable database has been employed by Padmini et al. 
(2008) and Kalinli et al. (2011) to develop ANFIS, ANN 
and FIS-based prediction models for the ultimate bear-
ing capacity. The descriptive statistics of the test results 
is given in Table 2. To visualize the distribution of the 
samples, the data are presented by frequency histograms 
(Fig. 6). As can observe from Fig. 6, the distributions of 
the predictor variables are not uniform. The frequency 
histograms present important information about the den-
sity of the samples. For instance, the histogram for D 
indicates that the samples are generally weighted about 
0.1 m (Fig. 6(b)). The LGP model would most probably 
provide better predictions for such cases where the densi-
ties of the variables are higher.

Overfitting is one of the principal problems in gen-
eralization of the soft computing methods. It is a case 
in which the error on the learning set is driven to a very 
small value, but when new data is presented to the mod-
el, the error is large. An efficient approach to prevent 
overfitting is to test other individuals from the run on 
a validation set to find a better generalization (Banzhaf 
et al. 1998). This technique is used herein for improving 
the generalization of the models. For this purpose, the 

Fig. 5. Typical variation operations in LGP:  
(a) crossover and (b) mutation

f –[0] = v[0] v[1]

g[0] = v[2] + v[3]

f –[0] = v[0] v[1]

a) f �[0] = v[0] + v[3]

g�[0] = v[2] v[3]–

f v[1]�[0] = v[0] /

Crossover

Mutationb)
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available data sets are randomly divided into three sets: 
(1) learning, (2) validation, and (3) testing subsets. The 
learning data are used for the genetic evolution. The vali-
dation data are used to specify the generalization capa-
bility of the evolved programs on data they did not train 
on (model selection). In other words, the learning and 
validation data sets are used to select the best evolved 
programs and are included in the training process. Thus, 
they are categorized into one group referred to as train-
ing data. Finally, the testing data are used to measure the 
performance of the models by LGP on data that play no 
role in building the models (Gandomi et al. 2011b). Of 
the 97 data, 78 data sets are taken as the training data (69 
data vectors for the learning process and 9 data vectors 

for the validation phase). The remaining 19 sets are used 
for the testing of the derived models.

2.2. Parameters for measuring performance 
The parameters used to evaluate the performance of the 
models are coefficient of determination (R2), root mean 
squared error (RMSE) and mean absolute error (MAE). 
These parameters are calculated using the following 
equations:

 

( )( )

( ) ( )

2

12
2 2

1 1

R ;

n

i i i i
i

n n

i i i i
i i

h h t t

h h t t

=

= =

 
− −  
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− −

∑

∑ ∑
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Fig. 6. Histograms of the variables used for the model development
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Table 2. Descriptive statistics of the variables used for the model development

Parameter B (m) D (m) L/B γd or γ’ (kN/m3) f (o) qult (kPa)

Mean 0.40 0.165 3.100 14.18 38.55 439.6

Standard Error 0.05 0.020 0.217 0.266 0.33 53.9

Standard 
Deviation 0.51 0.200 2.140 2.623 3.27 530.8

Sample 
Variance 0.26 0.040 4.578 6.880 10.74 281832

Kurtosis 15.3 2.767 –1.62 –1.62 –0.64 6.1

Skewness 3.6 1.774 0.373 –0.355 –0.03 2.46

Range 2.95 0.889 5.0 7.25 12.80 2788.5

Minimum 0.05 0.000 1.0 9.85 32 58.5

Maximum 3.01 0.889 6.0 17.10 44.8 2847
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where: hi and ti  are the actual and predicted output val-
ues for the ith output, respectively. ih  and it are, respec-
tively, the average of the actual and predicted outputs, 
and n is the number of samples.

2.3. LGP-Based Prediction Model  
for Bearing Capacity 
The available database is used for establishing the LGP 
prediction model relating qult to B, D, L/B, γ, and f. Sev-
eral runs are conducted to obtain a parameterization of 
LGP that provided enough robustness and generalization. 
The LGP parameters are changed for different runs. The 
parameters are selected on the basis of both previous-
ly suggested values (Francone 1998–2004; Baykasoglu 
et al. 2008; Gandomi et al. 2010) and making several 
preliminary runs and observing the performance behav-
ior. Three optimal levels are set for the population size 
(500, 2000 and 3000) and two levels are considered for 
the crossover and mutation rate (50% and 95%). The 
success of the LGP algorithm usually increases with in-
creasing the initial and maximum program size parame-
ters. In this case, the complexity of the evolved functions 
increases and the speed of the algorithm decreases. The 
initial program size is set to 80 bytes. Two optimal values 
(128, 256) are considered for the maximum program size 
as tradeoffs between the running time and the complex-
ity of the evolved solutions. Two values (10, 20) are set 
for the number of demes. This parameter is related to 
the way that the population of programs is divided. Note 
that demes are semi-isolated subpopulations that evolu-
tion proceeds faster in them in comparison to a single 
population of equal size (Brameier, Banzhaf 2007). In 
this study, four basic arithmetic operators (+, –, ×, /) and 
basic mathematical functions (√) are utilized to get the 
optimum LGP models. There are 3 × 2 × 2 × 2 × 2 = 
48 different combinations of the parameters. All of these 
parameter combinations are tested and 5 replications for 
each are carried out. Therefore, the overall number of 
individual runs is equal to 48 × 5 = 240. The termina-
tion criterion for each run is based on the number of 
generations that run has gone without improving. In this 
study, the number of generations without improvement 
is set to 600. Each run is observed while in progress for 
overfitting. For this aim, situations are checked in which 
the fitness of the samples for the learning of LGP is neg-
atively correlated with the fitness on the validation data 
sets. To evaluate the fitness of the evolved program, the 
average of the squared raw errors is used. For the runs 
showing signs of overfitting, the LGP parameters re pro-
gressively changed so as to reduce the computational 

power available to the LGP algorithm until the observed 
overfitting is minimized. The resulting run is then accept-
ed as the production run. For the LGP-based analysis, the 
Discipulus software (Conrads et al. 2004) is used. The 
best model is chosen on the basis of a multi-objective 
strategy as follows: 

1) Finding the simplest model, although this is not a 
predominant factor. 

2) Providing the best fitness value on the training 
(learning and validation) set of data. 
The best LGP program obtained at the end of train-

ing in C++ is given in Appendix A. This program can 
be run in C++ environment. The resulting code may be 
linked to the optimizer and compiled or it may be called 
from the optimization routines (Deschaine 2000). To fa-
cilitate the use of the derived code, it is converted into a 
functional representation by successive replacements of 
variables starting with the last effective instruction (Ol-
tean and Grossan 2003). The optimal LGP-based formu-
lation of qult is as follows:

( ) ( )( )
2

23.95 35
( ) 2.5 35 1 .ultq kPa D B

L
B

  f −  = f γ + f+ + f− +
  
  

(5) 

The initial population size, crossover rate, mutation 
rate, and maximum program size for the optimal run are 
equal to 500, 95%, 50% and 128, respectively. This run 
took 2 min and 38 s on a Pentium 4 personal computer 
with 3.00 GHz of processor speed and 1 Gb of memory. 
Fig. 7 shows a comparison between the experimental and 
predicted qult values. 

3. Discussion of Model Validity

Smith (1986) suggested the following criteria for evaluat-
ing the performance of a model:

 – If a model gives correlation coefficient (R) > 0.8 
(R2 > 0.64), a strong correlation exists between the 
predicted and measured values.
In all cases, the error values (e.g. RMSE and MAE) 

should be at the minimum. It can be observed from Fig. 7 
that the LGP model with high R (R2) and low RMSE and 
MAE values is able to predict the target values with an 
acceptable degree of accuracy. The performance of the 
model on the training and testing data suggests that it 
has both good predictive ability and generalization per-
formance. The reliability of the models created by LGP 
is notably dependant on the amount of data used for the 
training process (Alavi et al. 2011). In this context, Frank 
and Todeschini (1994) argue that the minimum ratio of 
the number of objects over the number of selected vari-
ables for model acceptability is 3. Also, they suggest that 
considering a higher ratio equal to 5 is safer. In the pre-
sent study, this ratio is higher and is equal to 97/5 = 19.4. 
Additionally, new criteria recommended by Golbraikh 
and Tropsha (2002) are checked for the external valida-
tion of the model on the testing data sets. It is suggested 
that at least one slope of regression lines (k or k’) through 
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the origin should be close to 1. Also, the performance 
indexes of m and n should be lower than 0.1. Recently, 
Roy, P. and Roy, K. (2008) introduced a confirming in-
dicator (Rm) for controlling the external predictability of 
models. For Rm > 0.5, the condition is satisfied. Either 
the squared correlation coefficient (through the origin) 
between predicted and experimental values (Ro2), or the 
coefficient between experimental and predicted values 
(Ro’2) should be close to R2, and to 1. The considered 
validation criteria and the relevant results obtained by the 
models are presented in Table 3. As it is seen in this table, 
the derived model satisfies all of the required conditions. 
The validation phase ensures the derived LGP model is 
strongly valid and it is not established by chance. 

In order to have an idea about the predictive power 
of the LGP model, its performance is compared with that 
of four traditional models proposed by Terzaghi (1943), 
Meyerhof (1963), Hansen (1968), and Vesic (1973). 
Fig. 8 shows a comparison of the predictions made by 
these models on the testing data sets. 

A precise way of observing the systematic mis-
matches between the predictions and observations is to 
analyse the residuals, defined as the ratio of the observed 
to predicted values (Boore, Atkinson 2007). Therefore, 
in addition to the performance indices described above 
(i.e. R2, RMSE and MAE), the values of mean (Mean) 
of the residuals are also shown in Fig. 8. As can be ob-
served from this figure, the proposed formula signifi-

Fig. 7. Experimental versus predicted bearing capacity values using the LGP model: (a) training data, and (b) testing data
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Table 3. Statistical parameters of the LGP model for the external validation

Item Formula Condition The proposed model
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cantly outperforms the Terzaghi, Meyerhof, Hansen, and 
Vesic models. It is worth mentioning that the traditional 
models are mostly developed using statistical regression 
techniques. Such models are obtained after controlling 
only few equations established in advance. Thus, these 
models cannot efficiently consider the interactions be-
tween the dependent and independent variables. On the 
other hand, LGP introduces completely new features. A 
major distinction of LGP for determining the bearing ca-
pacity lies in its powerful ability to model the mechanical 
behaviour without requesting a prior form of the existing 
relationships. The best equation generated by the LGP 
technique is determined after controlling numerous lin-
ear and nonlinear preliminary models. For instance, the 
proposed design equation is selected among a total of 
426,800,992 programs evolved and evaluated by the LGP 
method during the conducted 240 runs. 

Besides, the results obtained by the ANFIS, FIS 
(Padmini et al. 2008) and ANN (Kalinli et al. 2011) 

models are included in the comparative study. The pre-
dictions made by these models on the testing data sets are 
presented in Fig. 8. Comparing the R2, RMSE and MAE 
values for the soft computing tools, it can be seen that 
the best results are achieved by the ANN model (R2 = 
0.998, RMSE = 29.16, MAE = 10.07) followed by the 
ANFIS, FIS and LGP solutions. Considering the Mean 
values, the ANFIS model provides better results than the 
other models. 

Interestingly, in this case, the proposed LGP formu-
lation with a Mean value equal to 1.040 outperforms the 
ANN (Mean = 1.059) and FIS (Mean = 1.048) models. 

Although ANN and ANFIS are successful in pre-
diction, they require the structure of the network (e.g. 
transfer functions, number of hidden layers and neurons) 
to be identified in advance. This is usually done through 
a time consuming trial and error procedure. The knowl-
edge extracted by ANNs is stored in a set of weights 
that cannot properly be interpreted. ANNs do not give a 

Fig. 8. A comparison of the bearing capacity predictions made by different models
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transparent function because of the large complexity of 
the network structure. The main advantage of LGP over 
ANN-based approaches is that it generates a transparent 
and structured representation of the system being studied. 
Furthermore, LGP can strongly discriminate between the 
relevant input data and inputs that have no bearing on the 
solution. ANNs has little capability in this regard and the 
variable selection is usually an extensive manual job for 
the researcher (Francone 1998–2004). The explicit nature 
of FIS may grant its use for prediction purposes. On the 
other hand, a fundamental disadvantage of FIS is that de-
termination of the fuzzy rules is a difficult task. However, 
LGP and other soft computing techniques (e.g. ANNs) 
are based on the data alone to determine the structure 
and parameters of the model. Thus, the derived model 
is considered to be mostly valid for use in preliminary 
design stages and should cautiously be used for final de-
cision-making. The proposed LGP model is suggested to 
be used to check the general validity of the laboratory or 
field test results. Further, the proposed model is a good 
alternative to determine the ultimate bearing capacity of 
shallow foundations when testing is not possible.

4. Sensitivity and Parametric Analyses

The contributions of the final predictor variables (B, D, 
L/B, γ, and f) in the LGP model are evaluated through a 
sensitivity analysis. To perform the sensitivity analysis, 
frequency values of the input parameters are obtained. 
A frequency value equal to 100% for an input indicates 
that this variable has appeared in 100% of the best thirty 
programs evolved by LGP. This is a common approach 
in the GP-based analyses (Gandomi et al. 2011a, b). The 

frequency values of the predictor variables are presented 
in Fig. 8. In addition to frequencies, this figure presents 
the average impact of removing all instances of each in-
put from the best thirty programs of the project. A value 
of 100% represents the largest possible impact value. The 
greater the value is, the more impact its removal has. As 
can be observed in Fig. 9, all of the predictor variables 
have very high frequency values. According to this fig-
ure, qult is slightly more sensitive to D, L/B and f than 
B and γ. Also, the average impact of removing D and f 
is higher than the other predictor variables. According 
to Meyerhof (1950) and Padmini et al. (2008), D and f 
have the greatest effects on the bearing capacity than the 
other properties of the foundation.

Further, a parametric analysis is performed in this 
study. The parametric analysis investigates the response 
of the predicted bearing capacity from the LGP model to 
a set of predictor variables. The methodology is based on 

Fig. 9. Contributions of the predictor variables in the 
LGP analysis

Fig. 10. Parametric analysis of qult in the LGP model

Frequency Average Impact

P
e
rc

e
n
ta

g
e

��0

20

40

60

80

100

120

L B/B D

D = 0 m

D = 0.3 m

D = 0.6 m

D = 0.9 m

B (m) L B/

� (kN/m )3 � ( )�

0

1000

2000

3000

4000

5000

6000

500

1500

2500

3500

4500

5500

0

1000

2000

3000

4000

5000

0

3000

6000

9000

12000

15000

0.5 1 1.5 2 2.5 3 1.00 2.00 3.00 4.00 5.00

9.00 11.00 13.00 15.00 17.00 32 35 38 41 44

a)

c)

b)

d)

q u
lt
(k

P
a
)

q u
lt
(k

P
a
)

q u
lt
(k

P
a
)

q u
lt
(k

P
a
)

D = 0 m

D = 0.3 m

D = 0.6 m

D = 0.9 m

D = 0 m

D = 0.3 m

D = 0.6 m

D = 0.9 m

D = 0 m

D = 0.3 m

D = 0.6 m

D = 0.9 m

S86 E. Sadrossadat et al. A new design equation for prediction of ultimate bearing capacity of shallow foundation on granular soils ...



changing only one predictor variable at a time while the 
other variables are kept constant at the average values of 
their entire data sets. A set of synthetic data for the single 
varied parameter is generated by increasing the value of 
this in increments. These variables are presented to the 
prediction equations and qult is calculated. This proce-
dure is repeated using another variable until the model 
response is tested for all of the predictor variables (Gan-
domi et al. 2011b). Fig. 10 presents the tendency of the 
qult predictions to the variations of the influencing param-
eters, i.e. B, D, L/B, γ, and f. These design charts indicate 
that qult continuously increases with increasing B, D, γ, 
and f. Further, it can be observed that qult decreases with 
increasing L/B. Interestingly, all of the plotted trends are 
soundly expected cases from a geotechnical viewpoint.

Conclusions

In the present study, a new prediction model is derived 
for the ultimate bearing capacity of shallow foundations 
using the LGP approach. The proposed model is devel-
oped upon several load test results obtained from the lit-
erature. The LGP model gives precise estimations of the 
qult values. The validation phases confirm the efficiency 
of the model for its general application to the bearing 
capacity estimation. The derived model is mostly suit-
able for pre-design purposes. It may be used as a quick 
check on solutions developed by more time consuming 
and in-depth deterministic analyses. The optimal model 
takes into account the key role of the width of footing, 
depth of footing, footing geometry, unit weight of sand, 
and angle of shearing resistance. The proposed model 
produces considerably better outcomes over the well-
known models proposed by Terzaghi (1943), Meyerhof 
(1963), Hansen (1968), Vesic (1973). The values of the 
performance indices (R2, RMSE and MAE) indicate that 
the LGP model does not outperform the ANFIS, FIS and 
ANN solutions presented in the literature. Considering 
the values of mean of the residuals, the LGP model per-
forms superior than the FIS and ANN models. However, 
a major advantage of LGP over ANFIS, FIS and ANN 
is that it generates a simple equation which can be eas-
ily used for prediction purposes via hand calculations. 
The predictive capability of the derived model is mostly 
limited to the range of the data used for its calibration. 
To cope with this limitation, the model can be easily re-
trained and improved to make more accurate predictions 
for a wider range by including the data for other test 
conditions. The proposed model would probably provide 
better predictions for the situations where the densities 
of the data considered for the training of the LGP algo-
rithm are higher. A distinctive feature of the LGP-based 
model is that it is based on the experimental data rather 
than on assumptions made in developing the conventional  
models.
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Appendix A 

The optimum LGP program  
for the prediction of qult 

The following LGP program can be run in the Discipulus interactive evaluator mode or can be compiled in C++ 
environment. (Note: v[0], ..., v[4] respectively represent B, D, L/B, γ, and f. f[0] holds the output.)

 float DiscipulusCFunction(float v[])
 {long double f[8];
 long double tmp = 0;
 int cflag = 0;
 f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0;
 L0: f[0]+=v[0];
 L1: f[0]+=f[0];
 L2: f[1]+=f[0];
 L3: f[0]/=v[0];
 L4: f[0]+=5f;
 L5: f[0]*=-5f;
 L6: f[0]+=v[4];
 L7: f[1]*=f[0];
 L8: f[0]/=v[2];
 L9: f[0]*=f[0];
 L10: f[0]*=v[2];
 L11: f[0]/=0.25f;
 L12: f[0]/=0.449999988079071f;
 L13: f[0]+=v[4];
 L17: f[0]+=v[3]; 
 L18: f[0]*=v[1];
 L19: f[0]*=v[1];
 L20: f[0]+=5f;
 L21: f[0]+=f[1];
 L22: f[0]/=1.5f;
 L23: f[0]+=f[1];
 L24: f[0]/=1.5f;
 L25: f[0]*=v[4];
 L26:
 if (!_finite(f[0])) f[0]=0;
 return f[0];}
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