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Abstract. This paper is concerned with the behaviour and strength of composite plate girders in which, the interaction
between the steel plate girder and concrete slab is partial. Based on curvature compatibility principle, an approximate
method is proposed from which, the shear capacity and deflection at any given load may be determined. The tension field
action developed in web panels at the post-buckling stage is incorporated in the solutions. From the results obtained by
using the proposed method, it is found that the flexural stiffness and failure load drop with decrease in degree of interaction.
Comparisons are made between the results obtained through the proposed method and the corresponding ones from finite
element analysis. A satisfactory correlation between the results in terms of behaviour and strength establishes the accuracy
of the proposed method.
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Introduction

Steel–concrete composite plate girders display greater
strength and stiffness compared to the corresponding
bare steel plate girder acting alone. This can be attributed
to the contribution by concrete slab which, when added to
the post-buckling strength of the thin webs results in
larger shear strength (Baskar et al. 2002). Composite
action is achieved when the concrete slab is firmly fixed
to the top flange of the steel girder by mechanical forms of
shear connection. The performance of composite girders is
governed by the effectiveness of interaction between the
interconnected elements. The possible loss in shear
connection stiffness is mainly due to the deformation of
shear connectors which permits relative slip at steel–
concrete interface (Nie, Cai 2003; Queiroz et al. 2007).
The behaviour of composite members depends on the type
of shear connection between the two materials. Rigid
shear connectors usually develop full composite action
between the individual materials, thus the conventional
principle of analysis of full interaction can be applied. In
contrast, flexible shear connectors permit development of
partial composite action due to strain incompatibility at
the interface and therefore, the analysis procedures require
consideration of the interlayer slip between the materials.
Horizontal shear force exerted at the interface is

transferred from one element to another through the
deformable connectors.

Owing to the complex mathematical problems in
partial interaction theory (Johnson 2004), composite
design is simplified by assuming perfect interaction
between steel and concrete elements. In fact, the presence
of slip induces significant additional curvature where
ignorance of this effect may result in inaccurate predic-
tions of load carrying capacity and deflection of compos-
ite girders. The flexible nature of shear connectors
indicates that imperfect interaction always exists even in
full composite design and reduced levels of shear
connection results in increase of available rotations in
the joint region of a continuous beam (Oehlers et al. 1997;
Uy, Nethercot 2005). Moreover, the need for partial
interaction design is essential when the top flange of
girder cannot accommodate the number of shear connec-
tors required for full interaction.

A considerable amount of research has been directed
in the past towards the study of composite plate girders.
Allison et al. (1982) tested composite plate girders
subjected to combined bending and shear. A procedure
to determine the shear strength was developed in accord-
ance with the Cardiff tension field method (Porter et al.
1975; Evans et al. 1978). Small-scale thin webbed
composite girders with diagonal stiffeners at end panels
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were tested to failure by Porter and Cherif (1987).
Methods for predicting shear strength of such girders are
also presented. Shanmugam and Baskar (2003) carried out
tests on composite plate girders to investigate the shear
strength and concluded that the tension band width in
webs increased due to composite action. A number of
composite girders subjected to negative bending were also
tested to failure (Baskar, Shanmugam 2003).

Second-order differential equation allowing for slip
in composite beams was first developed by Newmark
et al. (1951) by assuming equal curvature between the
interacting elements. Experimental studies were conducted
on composite beams subjected to single concentrated load
applied at the mid-span. Expressions for slip and deflec-
tion were derived accounting for imperfect interaction.
Adekola (1968) presented an interaction theory for com-
posite beams allowing for interface friction, slip and uplift
deformation. Fourth- and second-order coupled differen-
tial equations were derived and solved by finite difference
method. It was found that the uplift deformation is
insignificant. Further works on partial interaction in
simply supported composite beams (Bradford, Gilbert
1992; Xu, Wu 2007) and continuous ones (Seracino et al.
2004, 2006) have been reported in the past.

An approximate method is developed in this paper to
determine the load–deflection relationships and to predict
the ultimate strength of simply supported composite

plate girders with partial interaction. The girder may be
subjected to concentrated loads or uniformly distributed
load on the entire span. The degree of interaction is
specified by varying the longitudinal spacing of shear
connectors along the span. Nevertheless, the uplift
deformation or separation between elements is negligible
as it is assumed that, both elements deflect equally with
the same amount of curvature along the length. The long-
term effects such as creep and shrinkage in the concrete
are also disregarded herein.

1. Analytical method

In a composite plate girder with transverse stiffeners
spaced at a distance b along the span, consider a finite
length, dx of the web panel near the support as shown in
Figure 1(a). The normal force acting at steel–concrete
interface may be disregarded since the uplift deformation
is not taken into account in this study. Free body diagrams
of the finite length of the web panel and the concrete slab
are shown along with the internal forces in Figure 1(b).

In the above figures, Mc and Ms are, respectively,
moment carried by concrete slab and steel girder, Vc and
Vs are the corresponding shear forces, F is the compress-
ive or tensile force exerted on concrete or steel, Fs is the
tensile membrane forces in the web introduced in the post-
buckling stage and q is the horizontal shear force at the
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Fig. 1. Calculation model for a typical composite girder
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Fig. 2. Cross-section and strain distribution along the depth of a composite girder

S2 M. Y. M. Yatim et al. Behaviour of composite plate girders with partial interaction



steel–concrete interface. The cross-section A–A’ of the
composite girder along with the strain distribution across
the depth is shown in Figure 2. Three different load
conditions viz. single concentrated load applied at mid-
span, uniformly distributed load along the entire span and
symmetrically placed two concentrated loads, considered
in the present study, are shown in Figure 3(a)–(c). In this
figure, x refers to distance from the left support of any
section A–A’ along the span.

1.1. Slip expressions

Equilibrium consideration of horizontal forces acting on
concrete slab and steel girder in Figure 1(b) gives:

dF

dx
¼ �qþ Fs cos h

b
; ð1Þ

where θ is the angle of inclination of tensile membrane
forces in the web panel. Assuming that the amount of slip,
s, is directly proportional to q, one may write:

q ¼ ks

p
; ð2Þ

where k is shear stiffness of the connectors and p is the
longitudinal pitch between connectors along the span
length of the girder. Distribution of strain along the depth
of concrete slab and steel girder is assumed to be linear as
shown in Figure 2. Strain at the bottom of concrete slab,
εcb, and that at the top of steel, εst, are given as:

ecb ¼ Mcyc
EcIc

� F

EcAc
; ð3Þ

est ¼ �Msys
EsIs

þ F

EsAs
; ð4Þ

where Ec, Ic and Ac are referred to as Young’s modulus,
second moment of area and cross-section area of concrete,
respectively, and Es, Is and As are the respective values for
steel. The rate of change in slip along the steel–concrete
interface (Nie, Cai 2003) may be calculated as:

ds

dx
¼ ecb � est: ð5Þ

Employing the curvature compatibility principle
(Newmark et al. 1951), the curvature may be expressed as:

d2Y

dx2
¼ Mc

EcIc
¼ Ms

EsIs
¼ M � Fdc

EcIc þ EsIs
; ð6Þ

where Y is the total deflection of the entire section, M is
the moment carried by the entire section and dc= yc+ys. In
view of Eqns (3), (4) and (6), the relative slip strain in
Eqn (5) may be expressed as:

ds

dx
¼ a M � Fdcð Þ � bF ð7Þ

and

d2s

dx2
¼ a

dM

dx
� dc

dF

dx

� �� �
� b

dF

dx

� �
; ð8Þ

where α = dc/(EcIc + EsIs) and β = (EcAc + EsAs)/EcAcEsAs.
For girders subjected to a single concentrated load as
in Figure 3(a), the general expressions for moment at any
section along the span are:

Mpl1 ¼ Px

2
for 0 � x � L=2; ð9Þ

Mpl2 ¼ P

2
L� xð Þ for x > L=2: ð10Þ
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(b) Uniformly distributed load(a) Single concentrated load at mid-span

(c) Two symmetrical concentrated loads

Fig. 3. Load definitions: (a) single concentrated load at mid-span; (b) uniformly distributed load; (c) two symmetrical concentrated
loads
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Substitution of Eqns (1), (2) and (9) into Eqn (8)
yields:

d2s

dx2
¼ a

P

2
� dc

Fs cos h
b

� ks

p

� �� �
�

b
Fs cos h

b
� ks

p

� �
: ð11Þ

Integrating Eqn (11) twice, with boundary conditions
ds/dx = 0 at x = 0 and s = 0 at x = L/2, the slip expression
may be simplified as:

s1 ¼
aP � 2w

Fs cos h
b

� �

½16=ð4x2 � L2Þ� � 2wK
; for 0 � x � L=2: ð12Þ

Similarly, with Eqn (10) for moment and satisfying
boundary conditions ds/dx = 0 at x = L and s = 0 at x = L/2,
slip solution for right-hand side of the applied load reduces
to:

s2 ¼
aP þ 2w

Fs cos h
b

� �

4=½ðx� L=2Þð3L=2� xÞ�ð Þ þ 2wK
;

for x > L=2; ð13Þ
where Ψ = αdc + β and K =k/p.

As for uniformly distributed load case, similar
procedures may be carried out using the respective
moment expressions. Satisfying the boundary conditions
ds/dx = 0 at x = 0 and L and s = 0 at x = L/2, the following
slip expressions are obtained for 0 ≤ x ≤ L/2 and
L/2 < x ≤ L, respectively:

s1¼
�aw L3�6Lx2þ4x3ð Þþ3w L2�4x2ð Þ Fscosh

b

� �
24þ3wKðL2�4x2Þ ; ð14Þ

s2¼
�aw L3�6Lx2þ4x3ð Þ�3w 3L2�8Lxþ4x2ð Þ Fscosh

b

� �
24�3wKð3L2�8Lxþ4x2Þ :

ð15Þ
For a girder subjected to two point loads of equal

magnitude, P as shown in Figure 3(c), slip expressions
may be derived with appropriate boundary conditions as:

s1 ¼
aP 2L� a1 � a2ð Þ � wL Fs cos h

b

� �
2L

�
x2 � a21
	 
� �� wLK

;

for 0 � x � a1; ð16Þ

s2 ¼
apða1 þ a2Þ þ wL Fs cos h

b

� �
2L=ða22 � 2La2 þ 2Lx� x2Þ� �þ wLK

;

for x � a2: ð17Þ
1.2. Slip-induced deflection

The interlayer slip induces additional curvature when a
composite girder bends. The slip-induced curvature may

be obtained from (Nie, Cai 2003):

d2ðDyÞ
dx2

¼ 1

H

ds

dx

� �
: ð18Þ

For the girder under single concentrated load, substi-
tuting the first derivative of Eqn (12) into Eqn (18) and
performing double integration with boundary conditions d
(Δy)/dx = 0 at x = L/2 and Δy = 0 at x = 0, the expression
for slip-induced deflection, Δy can be obtained as:

Dy ¼ 1

HwLKb/
aPbL
2

� wLFs cos h

� �
�

2 tanh�1 wKx
/

� �
þ /x

� �
; ð19Þ

where / ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þwKL2

4

� �
wK

r
:

Similarly, the expressions for Δy derived using the
appropriate boundary conditions for the girders subjected
to uniformly distributed load or two concentrated loads
may be given, respectively, as:

Dy ¼ 1

HwKb-3

4wKtanh�1 2wKx
-

� �n o

aLbw 4þ 2
3 wL

2K þ 1
48w

2L4K2
� �

�
wFs cos h wL2K þ 8ð Þ

8<
:

9=
;þ

ln -2

wK � 4wKx2
� �

� ln -2

wK

� �� �
þ

wKx-
wFs cos h 8þ wL2Kð Þþ

4awb 8L� wL3K
8 þ 8xþ wKx

24

� �
0
B@

1
CA

8><
>:

9>=
>;

2
66666666666666664

3
77777777777777775

;

ð20Þ
where - ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið8þ wKL2ÞwKp

and

Dy ¼ 1

HwLKbu
aPb 2L� a1 � a2ð Þ � wLFs cos h½ �

� 2 tanh�1 wKx
u

� �
� ux

� �
; ð21Þ

where u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ wKa21ÞwK

p
:

2. Strength parameters

2.1. Shear strength of concrete slab

One of the approximate methods to predict the strength of
composite plate girders is by simply adding the shear
strength of concrete slab to the shear capacity of steel
girder acting alone (Narayanan et al. 1989). To account
for partial shear connection, the following relationship is
introduced assuming that the degree of interaction does
not affect the shear strength of steel plate girder:

Vcc ¼ Va þ N

Nf
ðVf � VaÞ; ð22Þ
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where Vcc is the shear resistance of the concrete slab in
girders with partial interaction, Va is the shear resistance
of concrete slab alone (Eurocode 2 2004), Vf is the
shear resistance of concrete slab for girders with full
interaction, N is the actual number of shear connectors
provided and Nf is the number of shear connectors
required to achieve full shear connection (Johnson
2004). It should be noted that Vf is taken equal to the
pull-out capacity of shear connectors (Liang et al. 2004).
For full shear connection, i.e. N/Nf = 1, Eqn (22) reduces
to Vcc = Vf.

Results from extensive finite element analyses on
composite plate girders with different degrees of interac-
tion showed that approximately 40% of the slab shear
strength, denoted as Vcc,e, occurs within the elastic stage
with remaining percentage, denoted as Vcc,pb, in the post-
buckling phase. Thus, in the analysis presented herein, the
contribution in the elastic and post-buckling phases, by
the concrete slab to the shear capacity of the girders is
assumed in the same proportion as that predicted by the
finite element results.

2.2. Buckling load

At the elastic stage, critical shear strength, Vcr that causes
buckling in the web plate is taken as the sum of web panel
shear resistance and the strength contribution by concrete
slab in the elastic phase, Vcc,e i.e.:

Vcr ¼ scrdt þ Vcc;e; ð23Þ
where d is the depth of the web panel, t is the web panel
thickness and τcr is the critical shear stress of web panel
given as:

scr ¼ C
p2Es

12ð1� n2Þ
� �

t

d

� �2

; ð24Þ

where C is the buckling coefficient and v is the Poisson’s
ratio of web material. For a simply supported girder
subjected to concentrated load at mid-span, one can simply
determine the load corresponding to buckling from:

Pcr

2
¼ scrdt þ Vcc;e: ð25Þ

From equilibrium, the shear carried by each of the
supports of a composite girder at any load beyond elastic
buckling may be expressed as:

VC ¼ Vcr þ Vcc;pb þ Fs sin h; ð26Þ
where Vcc,pb is shear strength contributed by the concrete
slab beyond elastic buckling phase. In view of Eqn (23)
and since Vcc = Vcc,e +Vcc,pb, Eqn (26) may be written as:

VC ¼ scrdt þ Vcc þ Fs sin h: ð27Þ
For the simply supported girder with a concentrated

load applied at the mid-span, the applied load, P may be
computed from:

P

2
¼ scrdt þ Vcc þ Fs sin h: ð28Þ

2.3. Tension field force in the web panel

In accordance with the tension field theory, once the web
plate has lost its capacity to sustain any further increase in
compressive stress, a new load carrying mechanism is
developed. Further loading beyond buckling is supported
by an inclined tensile membrane field in the web. The
resultant tensile force is given as:

Fs ¼ rt tbtf ; ð29Þ
where σt is the tensile membrane stress and btf is the width
of diagonal tension band developed in the web panel
determined in accordance with the Cardiff mechanism
(Porter et al. 1975; Evans et al. 1978). Rearranging
Eqn (28), an expression for Fs can be obtained as

Fs ¼ P � 2ðscrdt þ VccÞ
2 sin h

; ð30Þ

where when substituted in Eqn (29) yields σt as:

rt ¼ P � 2ðscrdt þ VccÞ
2tbtf sin h

: ð31Þ

It should be noted that in the elastic stage, Fs = 0.
Additionally, the applied load, P beyond elastic limit is
sustained by the tensile membrane stress, σt in theweb panel.

3. Load–deflection behaviour

3.1. Effective flexural stiffness

The bending stiffness of a composite section is signifi-
cantly governed by the shear connection stiffness. Even in
a composite design with full interaction, the interface
shear transfer is not completely perfect and stiffness may
be reduced to some extent due to flexibility of shear
connectors. In this study, effective bending stiffness, EIeff
is employed in accordance with the principle suggested by
Girhammar (2009). The flexural stiffness for composite
section with perfect interaction may be written as:

EI1 ¼ EI0 þ EApd2c
EA0

; ð32Þ

where EI0 is the flexural stiffness of the section with no
interaction, EAp is the product of axial stiffness of the sub-
elements and EA0 is the sum of the axial stiffness of the
sub-elements. To account for partial interaction, the
effective bending stiffness is computed as:

EIeff ¼ EI0 þ n
EApd2c
EA0

� �
; ð33Þ

where n ¼ 1þ p2EAp

KL2EA0

� ��1

for simple support
conditions.

It should be noted that EIeff remains constant
throughout the elastic phase. Upon buckling, the rigidity
changes proportional to the applied load. The EIeff value at
post-buckling state should, therefore, be computed at
every load increment using tangent modulus, Et

(Timoshenko, Gere 1961) in place of constant Es value
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in Eqn (32). Tangent modulus may be expressed as:

Et ¼ Es
ryw � rh
ryw � xrh

; ð34Þ

where σyw is the yield stress of web material, ω is a
constant and σθ is the resulting tensile stress given as:

rh ¼ scr sin 2hþ rt: ð35Þ
3.2. Total deflection

Deflection of the whole composite section is computed at
every load increment. The total deflection, Y is the sum of
bending deflection, yb, shear deflection, yv and slip-
induced deflection, Δy. For a girder under single point
load applied at the mid-span, deflection at the elastic and
post-buckling stages may be expressed, respectively, as:

Ye ¼ PL3

48ðEIeff Þe
þ PLð1þ nÞ

2EsAw
þ Dye; ð36Þ

Ypb ¼ PL3

48ðEIeff Þpb
þ PLð1þ nÞ

2EtAw
þ Dypb; ð37Þ

where Ye, Δye and (EIeff)e refer to total deflection, slip-
induced deflection and effective flexural stiffness, respect-
ively, in the elastic stage, Ypb, Δypb and (EIeff)pb are the
respective values in the post-buckling stage, v is the
Poisson ratio and Aw is the shear area. The contribution by
the concrete slab is ignored for shear deflection.

Substituting in Eqns (36) and (37), the relevant
parameters for the composite plate girder subjected to a
single concentrated load applied at the mid-span, load–
deflection curve OBCD can be plotted as shown in Figure 4.
Point B refers to the upper limit of the elastic buckling
stage given by Eqn (25). Beyond this stage, the load–
deflection response exhibits different behaviour compared
to the unbuckled state. The change in slope shown by
curve BC is due to the reduced flexural rigidity calculated
from Eqn (33) which induces larger deflection even for
small increment in P when approaching the yield point.
The girder reaches its capacity at the point C when the
resulting stress, σθ obtained from Eqn (35) reaching the
yield stress of the web panel, σyw. Further increase in
deflection does not result in appreciable increase in
applied load, P beyond this point. Thus, the load–
deflection curve levelled off as shown by CD. Similarly,
the load–deflection plots for other load conditions may be
obtained. The ultimate load for the girder is obtained as
the load corresponding to the peak point of the load–
deflection plot.

4. Accuracy of the proposed method

Four composite plate girders namely CPG 1, CPG 2,
CPG 7 and CPG 8 tested earlier by other researchers
(Shanmugam, Baskar 2003; Baskar, Shanmugam 2003)
were employed in the present study in order to establish
the accuracy of the proposed method and to assess the
influence of partial interaction. The relevant details of the
girders are given in Table 1. These girders were originally
tested under concentrated load applied at the mid-span. In
the current study, all these girders were analysed by the
proposed method and also by finite element modelling
using the finite element package LUSAS. Two different
loading conditions viz., single concentrated load at the

Pult

Pcr
B

O

C D

Deflection, Y

yield zonepost-buckling phase

Load, P

Fig. 4. Construction of load-deflection behaviour

Table 1. Geometrical properties of the girders

Specimens L (mm)
Panel aspect
ratio (b/d)

Slenderness
ratio (d/t) Web, t (mm)

Flanges (top and bottom) Shear connectors
Reinforced
concrete slab

tf (mm) bf (mm) ts (mm) ds (mm) abc×hc (mm)

CPG 1 2400 1.5 250 3 20 200 100 19 1000×150

CPG 2 2400 1.5 150 5 20 260 100 19 1000×150

CPG 7 4800 1.5 250 3 12 160 100 19 1200×150

CPG 8 4800 1.5 150 5 20 235 100 19 1200×150

CPG 1-A 3655 1.5 250 3 20 200 100 19 1000×150

abc denotes effective width of reinforced concrete slab.
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mid-span or uniformly distributed load over the entire
span were considered in the analyses. Another composite
girder, namely CPG 1-Awas also introduced and analysed
under two symmetrical concentrated loads.

Initially, these analyses were carried out for girders
with full interaction with K = 0.65 kN/mm2. Additionally,
analyses were also carried out on all the girders with four
different values of K, obtained by changing the spacing of
shear connectors along the span length of the girder. Brief
description of the finite element modelling is given in the
following section.

5. Finite element analysis

Three-dimensional finite element models were
developed using the finite element package, LUSAS
for all the girders. Shell and brick elements were used
for steel part of the girders and concrete slabs,
respectively. Both elements are compatible for non-
linear analysis which allows buckling and second-order
effects. The steel plate girders were modelled as elastic-
perfectly plastic using mild steel material with Poisson’s
ratio of 0.3. Young’s modulus, Es for S275 steel is
taken as 200 GPa while the yield stresses assigned to
the flanges, webs and stiffeners vary from 272 MPa to
300 MPa in accordance with those reported in the
experiments. The geometrical properties are as per those
given in Table 1. Specifically, concrete slab was
idealised by hexahedral isoparametric element with six

degrees of freedom at each node. All material properties
assigned for concrete are also based on the experimental
data. Strains corresponding to the maximum uniaxial
compressive stress and that to the softening end where
concrete crushes were adopted as 0.0022 and 0.0035,
respectively. Additionally, joint element with specified
spring stiffness was assigned at the unmerged steel–
concrete interface accordingly to allow for horizontal
slide. Total Lagrangian strain formulation along with
Crisfield’s load incremental procedure was adopted to
account for geometric non-linearity in the analysis.
Basically, the global stiffness matrix of the structure
depends on the displacement increments where the
solution of the equilibrium equations is typically
accompanied by an iterative method through the con-
vergence check. In the present models, the non-linear
Newton–Raphson iterative approach was used by updat-
ing the tangent stiffness matrix for each of the iterations
(Zubydan, ElSabbagh 2011).

Fig. 5. Typical finite element mesh

Table 2. Comparison of ultimate loads for girders under single concentrated load at mid-span

Specimens K (kN/mm2) Pu (kN) Pu, partialint. /Pu, fullint. Pu, LUSAS (kN) Pu/Pu, LUSAS

CPG 1

0.65 827 1.0 836 0.99

0.51 787 0.95 818 0.96

0.37 746 0.90 793 0.94

0.31 726 0.88 715 1.02

0.17 686 0.83 698 0.98

CPG 2

0.65 1355 1.0 1371 0.98

0.51 1315 0.97 1324 0.99

0.37 1276 0.94 1282 0.99

0.31 1255 0.92 1226 1.02

0.17 1216 0.90 1171 1.04

CPG 7

0.65 754 1.0 760 0.99

0.51 714 0.94 736 0.97

0.38 675 0.90 683 0.98

0.32 653 0.86 625 1.04

0.19 612 0.81 588 1.04

CPG 8

0.65 1266 1.0 1285 0.98

0.51 1238 0.98 1281 0.96

0.38 1210 0.96 1271 0.95

0.32 1195 0.94 1236 0.96

0.19 1166 0.92 1134 1.02
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A perfectly straight and undeformed model may be
stiff and provide different response compared to a model
with imperfect geometry. Thus, an imperfection model has
been built in LUSAS by loading the results from buckling
analysis in which the deformed mesh was considered as
initially imperfect geometry of the girders (Basher et al.
2011; Chen, Jia 2010). The buckling analysis predicts the
possible deformed shapes due to structural instability. The
subspace iteration algorithm approximation technique,
available in LUSAS facilities, was employed for solving
the associated eigenvalue problems. Different deformed
shapes were attempted for non-linear analysis. From
extensive trials, a mode shape from the first eigenvalue
was selected as it provides satisfactory results in terms of
ultimate load and behaviour. A typical mesh as shown in

Figure 5 with element size of 50×50 mm was adopted in
the analyses. The mesh was chosen based on convergence
studies carried out to ascertain the efficiency and effec-
tiveness to provide accurate solutions within an acceptable
computational time.

6. Discussion on the results

Results in terms of ultimate loads and load–deflection
behaviour were obtained from the proposed method for
the girders. The analyses by finite element modelling
provided a detailed output from which the ultimate loads
and load–deflection plots were extracted. The results for
ultimate loads are presented in Tables 2–4 for different
load conditions. The ultimate loads obtained by the

Table 3. Comparison of ultimate loads for girders under uniformly distributed load

Specimens K (kN/mm2) wu (kN/m) wu, partialint. /wu, fullint. wu, LUSAS (kN/m) wu/wu, LUSAS

CPG 1

0.65 344 1.0 368 0.93

0.51 328 0.95 335 0.98

0.37 311 0.90 299 1.04

0.31 302 0.88 276 1.09

0.17 286 0.83 270 1.06

CPG 2

0.65 565 1.0 614 0.92

0.51 549 0.97 589 0.93

0.37 532 0.94 578 0.92

0.31 524 0.93 483 1.08

0.17 507 0.90 470 1.08

CPG 7

0.65 157 1.0 174 0.90

0.51 148 0.94 162 0.91

0.38 140 0.89 150 0.93

0.32 135 0.86 144 0.94

0.19 127 0.81 116 1.09

CPG 8

0.65 264 1.0 291 0.91

0.51 258 0.98 280 0.92

0.38 252 0.95 269 0.94

0.32 249 0.94 262 0.95

0.19 243 0.92 221 1.10

Table 4. Comparison of ultimate loads for girders under two concentrated loads

Specimens K (kN/mm2) Pu (kN) Pu, partialint. /Pu, fullint. Pu, LUSAS (kN) Pu/Pu, LUSAS

CPG 1-A

0.74 409 1.0 430 0.95

0.60 389 0.95 401 0.97

0.43 369 0.90 385 0.95

0.36 359 0.88 370 0.97

0.21 338 0.83 346 0.97
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proposed method are compared with the corresponding
finite element values, as shown by the ratios Pu/Pu, LUSAS

or wu/wu, LUSAS in the tables, in order to establish
the accuracy of the proposed method. Also, ultimate
loads for girders with different K values are compared
with the corresponding values for the girder with full
interaction viz. K = 0.65 kN/mm2, as shown by the ratios
Pu, partialint./Pu, fullint., so as to assess the influence of

partial interaction on the ultimate strength. Comparison
of the ultimate loads shows that the two values are close
within the acceptable level of accuracy. In Tables 2–4,
the ratio Pu/Pu, LUSAS varies from 0.90 to 1.10 indicating
that the two values viz. Pu and Pu, LUSAS lie within ±10%.
It is, therefore, confirmed that the proposed method is
capable of predicting the shear strength with sufficient
accuracy.

0 2 4

Midspan deflection (mm)
6 8

(a) CPG 1 & CPG 2 (K = 0.37)

CPG 1 – Proposed method
CPG 1 – LUSAS
CPG 2 – Proposed method
CPG 2 – LUSAS

CPG 1 – Proposed method
CPG 1 – LUSAS
CPG 2 – Proposed method
CPG 2 – LUSAS

CPG 7 – Proposed method
CPG 7 – LUSAS
CPG 8 – Proposed method
CPG 8 – LUSAS

CPG 7 – Proposed method

CPG 1-A – Proposed method

CPG 1-A – LUSAS

CPG 1-A – Proposed method

CPG 1-A – LUSAS

CPG 7 – LUSAS
CPG 8 – Proposed method
CPG 8 – LUSAS

(b) CPG 1 & CPG 2 (K = 0.17)

(c) CPG 7 & CPG 8 (K = 0.51) (d) CPG 7 & CPG 8 (K = 0.32)

(e) CPG 1-A (K = 0.74) (f) CPG 1-A (K = 0.21)

10 12 14 16 18 0 2 4

Midspan deflection (mm)
6 8 10 12 14 16 18 20

0 5 10 15 20 25 30 35 40 45 50 55 60

Midspan deflection (mm)
0 5 10 15 20 25 30 35 40 45 50 55

Midspan deflection (mm)

0
0

50

100

150

200

250

300

350

400

450

1 2 3 4 5

Midspan deflection (mm)
6 0 1 2 3 4 5

Midspan deflection (mm)
6

A
p

p
lie

d
 lo

ad
 (

kN
)

0

200

400

600

800

1000

1200

1400

A
p

p
lie

d
 lo

ad
 (

kN
)

0

200

400

600

800

1000

1200

1400

A
p

p
lie

d
 lo

ad
 (

kN
)

0

200

400

600

800

1000

1200

1400

A
p

p
lie

d
 lo

ad
 (

kN
)

0

200

400

600

800

1000

1200

1400

A
p

p
lie

d
 lo

ad
 (

kN
)

0

50

100

150

200

250

300

350

A
p

p
lie

d
 lo

ad
 (

kN
)

Fig. 6. Comparisons of load-deflection plots – typical behaviour: (a) CPG 1 & CPG 2 (K = 0.37); (b) CPG 1 & CPG 2 (K = 0.17);
(c) CPG 7 & CPG 8 (K = 0.51); (d) CPG 7 & CPG 8 (K = 0.32); (e) CPG 1-A (K = 0.74); (f) CPG 1-A (K = 0.21)
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Comparison of shear strength values for girders with
partial interaction with those corresponding to the girders
of full interaction is shown in the tables in terms of the
ratios Pu, partial int. /Pu, full int. In Tables 2 and 3, composite
girders with K = 0.65 kN/mm2 and the one in Table 4
with K = 0.74 kN/mm2 are considered as those with full
interaction. The remaining girders in which K values are
less are considered as those with partial interaction. It is
clear from the tables that the ultimate shear strength drops
with reduction in degree of interaction. For example, in
the girder CPG 1 subjected to a concentrated load shown
in Table 2, the girder with K = 0.17 kN/mm2, shows 17%
drop in the shear strength compared to the one with
K = 0.65 kN/mm2. This girder under uniformly distributed
load also displays same amount of drop in shear strength.
The drop is larger viz. 19% in the case of CPG 7 having
longer span length. Similar reduction in load carrying
capacity can be observed in all the girders with smaller
K values. The results presented in the tables also show
that the proposed method is capable of predicting the
shear strength within the acceptable level of accuracy for
all the girders with partial interaction, K value ranging
from 0.65 to 0.17 kN/mm2. The average value of the ratio
Pu/Pu, LUSAS in all cases varies from 0.96 to 0.99.

Additionally, the accuracy of the proposed method
has also been assessed by comparing the predicted load–

deflection behaviour with the corresponding results
obtained from the finite element analyses. Typical results
presented in Figure 6 show the variation of mid-span
deflection with the applied load for selected girders with
different K values. It can be seen from the figures that the
two results are very close to each other from the initial
stage of loading to the ultimate load condition. The
observation is true for different loading conditions and
for different K values. The results show that the proposed
method is also capable of predicting the behaviour with
sufficient accuracy.

The flexural behaviour of the girders obtained by the
proposed method is also illustrated in Figures 7–9, in
which load–deflection plots are shown for girders sub-
jected to single concentrated load applied at the mid-span,
uniformly distributed load and two point loads, respect-
ively. In each of the figures, load–deflection curves for
girders having different values of K are presented in order
to show the extent of influence of this parameter on the
behaviour of the girders. It is clear from the figures that
ultimate load drops with different rate and magnitude of
drop as the value of K is reduced from full degree of
interaction to negligible amount of interaction. Stiffness
of the girders at the initial stages of loading is marginally
affected with the variation in the K values. This
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Fig. 7. Behaviour of girders under single concentrated load at mid-span: (a) CPG 1; (b) CPG 2; (c) CPG 7; (d) CPG 8
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observation is true irrespective of the girders and the
loading patterns.

Conclusions

An approximate method to determine the behaviour and
flexural capacity of composite plate girders with partial
shear connection is presented in this paper. The girders
considered include those subjected to concentrated or
uniformly distributed loads. The accuracy of the method

has been established by comparing the results with the
corresponding results obtained by finite element method
using LUSAS software. Additionally, effect of varying the
degree of interaction has been examined by analysing the
girders with different degrees of interaction. It is found
from the results presented herein that the proposed method
is accurate enough to predict the behaviour of composite
plate girders under different types of loading and that the
method could account for variation in degree of interac-
tion. It is observed that the bending stiffness and load
carrying capacities of the girders reduced with decreasing
degree of interaction. The drop in ultimate load with
degree of interaction varies with the loading type,
significant in some cases and negligible in certain cases.
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