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Abstract. This paper discusses an optimized structural plate of plywood composite that consists of top and bottom
plywood flanges and a core of plywood ribs. The objective function is structure’s weight. Typical constrains �
maximal stress criteria and maximal deformation criteria � are used. The optimization is done by Genetic
Algorithm (GA), and optimization results are used to train Feed-Forward Artificial Neural Network. The
numerical simulation of plywood structure is done by using classical linear Kirchoff�Love theory of multilayer
plate and Finite Element Method. As a result, an effective optimization methodology for plywood composite
material is proposed. The most rational (according to strength-stiffness criteria) plywood composite macrostructure
is obtained for some typical cases.
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Introduction

Optimization of plywood macrostructure that pro-

vides minimal material consumption, weight, and

good heat�moisture performance is one of the most

challenging tasks in today’s engineering science.

Plywood structures provide a rational usage of

wood (Sliseris, Rocens 2010); one of the reasons,

for instance, is less sawdust in manufacturing. The

maximal thickness of typical hot-pressed plywood

sheet is limited and, in many cases, there is insuf-

ficient bending stiffness. The object of this research

is plywood composite that consists of top and bottom

plywood flanges and a core that is formed from

plywood ribs.

As a result of the structure’s complexity (many

variable parameters or complicated relationships,

many local minimums and/or maximums) between

design vector and objective function, its macro-

structure optimization is a very challenging problem.

Therefore, classical optimization methods such as

response surface method (Goremikins, Serdjuks

2010) may fail or find the local optimum (Rao

2009). The optimization of plywood macro-structure

is achieved by the following optimization methods:

Artificial Neural Network (ANN), Genetic Algo-

rithm, and Simulated Annealing Method (Goldberg

1989; Sliseris, Rocens 2011). All these methods were

inspired by processes in nature.

1. Plywood composite macrostructure

The optimization of macrostructure is done for ply-

wood composite, and the cross section and structural

analysis scheme of which are shown in Figure 1. This

kind of scheme is widely used in the structure of heavy

truck floor. The two point loads arise from the front

wheels of forklift machine. The plywood composite

consists of top and bottom plywood flanges with

thickness t1 and t2, respectively. The core of the

composite consists of plywood ribs with thickness t3

(Fig. 1). The connection between flanges and ribs is

obtained by a glued joint.

This kind of structure is characterized by good

heat�moisture performance. The moisture caused

swelling in transversal direction is significantly de-

creased by vertical ribs with most of wood fiber

orientation in transversal direction. The voids in the

structure provide better heat insulation properties

especially if they are filled with foam-like insulation

materials.
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The design vector consists of four parameters

that characterize the cross section:

x ¼ t1; t2; t3; nf g; (1)

where n is the number of ribs that is calculated by

equation:

n ¼ L1

b
þ 1: (2)

The supports are shown in Figure 1 by dashed lines.

The load acting on the structure consists of two
loaded areas with uniformly distributed load. The

dimensions of loading areas are small compared to

structure dimensions; therefore, they could be replaced

by two point loads. Distance between the loading

areas is L3, and the center coordinates of both loading

areas are Xc and Yc.

2. Optimization methodology

The plywood’s composite macrostructure is optimized

by the following algorithm:

– The main structure’s properties � length L1,

width L2, distance between steel supports �
b1, a1, a2, maximal thickness t, loading area

properties: L4, L5, and load Q on each area

are collected.
– The decision of which direction it is necessary

to orient plywood ribs according to location

of supports is made.

– The location (Xc, Yc) of loading area that is

the most dangerous (produce maximal stress

and deflection) is obtained.

– The geometrical parameters x�{t1, t2, t3, n}
of plywood’s composite macrostructure by

using structures total weight as an objective

function are optimized.

– The previous steps are repeated for various

main geometrical properties.

– The optimal Artificial Neural Network (ANN)

architecture is chosen. The ANN training by

using results from previous procedures is done.
– ANN testing.

It was decided to connect the Genetic Algorithm (GA)

and ANN because they provide a relatively fast and

precise optimization with good accuracy and render-

ing of optimal results for cases that were not

optimized with GA.

The proposed methodology that is based on GA

and ANN is universal and could be easily used to
optimize a wide range of structures to obtain better

physical�mechanical properties such as strength-stiff-

ness, heat insulation, moisture swelling, sound insula-

tion, and others. In case of other objective functions,

constrains and design space should be changed.

3. Optimization methods

3.1. Genetic Algorithm (GA)

A general constrained minimization problem can be
stated as follows:

Minimizeðf ðxÞÞ
giðxÞ � 0; i ¼ 1::m
hjðxÞ ¼ 0; j ¼ 1:: p

8<
: ; (3)

where: x � vector of design variables; f(x) � objective

function; gi(x), hj(x) � constrains that are in form of

inequalities and equalities.

GA can be used for unconstrained problems.

Therefore, Eqn. (3) is converted into an equal

unconstrained minimization problem by using the

concept of penalty functions as follows:

MinimizeðUðxÞÞ;

UðxÞ ¼ f ðxÞ þ
Xm

i¼1

ri GiðxÞð Þ2þ
Xp

j¼1

Rj hjðxÞ
� �2

; ð4Þ

where ri, Rj are penalty parameters, and its values are

constant during optimization, Gi(x) is defined as

follows:

GiðxÞ ¼
giðxÞ; giðxÞ > 0

0; giðxÞ � 0
:

�
(5)

These penalty functions were chosen in particular

because usually there are some constraints that are

more significant and penalty parameters allow to

Fig. 1. The cross section and structural analysis scheme of

plywood composite
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divide the constrains according to their significance.

The square of functions Gi(x), hj(x) allows avoiding

negative values.

GA is based on the principles of natural genetics

and natural selection (Darwin’s theory of survival of

the fittest). The basic operators of natural genetics are

Reproduction, Crossover, and Mutation (Goldberg

1989; Sliseris, Rocens 2011). A simplified flowchart of

GA is shown in Figure 2.

At the beginning of the algorithm, there is a

generation of initial population that consists of

generation of design vectors and calculation of its

fitness functions. The genetic operators � Reproduc-

tion, Crossover, and Mutation are applied to initial

population to generate new design vectors and elim-

inate the bad ones.

Reproduction is the first operator applied to the

population to select ‘‘good’’ design vectors that gives a

minimal value of objective function.

Crossover is the second operator applied to the

population with initially defined probability Pc. The

Crossover operator randomly selects two design

vectors (called parents) from the population and by

changing its binary codes obtains two new design

vectors although there are also methods that use only

decimal numbers (Rao 2009).

The Crossover operator generates random

integer number in an interval from 1 to j, where j is

the length of the binary code. By changing binary

numbers of parents from i-th place, where i is
generated as a random number, it obtains two new

binary codes (called child). The Crossover operation is

done only in case if the child gives a better value of

fitness function.

Mutation operator is applied to the new binary

codes with a specific small probability Pm. This

operator changes each number in the binary code

from value 1 to 0 or 0 to 1 with probability Pm, that is
very small, usually PcB0.01.

3.2. Artificial Neural Network (ANN)

ANNs are inspired by biological nervous systems

(Garson 1991). With many simplifications, the biolo-

gical nervous system could be reduced to a set of cell

bodies covered by membranes, dendrites, synapses,
and axons. Around each cell body there are a set of

dendrites that are connected to cell bodies by synapses

and may be connected to other cell bodies by axons.

Each dendrite sends an electrochemical signal to a cell

body and if the sum of signals is strong enough, then

the cell body potential exceeds a threshold and a pulse

is generated and send by axon further to the other

neuron. The total number of neurons in human brain
is approximately 1011, although in this work the

mathematical model contains only 20 neurons.

ANN (mathematical model) have been trained to

perform complex tasks in various fields (Goh 1995;

Maier, Dandy 2001), including function fitting, pat-

tern recognition, identification, classification, speech,

vision, and control systems. In structural engineering,

ANN is used widely in geotechnical analysis (Das,
Basudhar 2006; Ferentinou, Sakellariou 2007; He, Li

2008).

ANN consists of an input parameter p, strength

of scalar w, bias b, and an activation function f. The

output scalar of neuron could be calculated by the

following equation:

a ¼ f w � pþ bð Þ: (6)

In Figure 3 is shown the ANN that consists of three
layers. Input vector p contains R entities. The number

of neurons in the first, second, and third layers are s1,

s2, and s3, respectively. Similarly the bias, activation

function, and output: b1, b2, b3, f1, f2, f3 and a1, a2, a3,

respectively. The weight matrix in the first layer is

IW1,1(matrix dimensions s1�R), in the second layer �
LW2,1(matrix dimensions s2�s1) and in the third layer �
LW3,2 (matrix dimensions s3�s2). In a more general
form, LWi,j is the weight matrix that is used to

calculate the output vector of j-layer and input vector

of i-layer.

Fig. 2. The flowchart of GA
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The output vectors a1, a2, a3 of ANN are shown

in Figure 3. They could be calculated by the following

equations:

a1 ¼ f 1 IW 1;1 � pþ b1
� �

; (7)

a2 ¼ f 2 LW 2;1 � a1 þ b2
� �

; (8)

a3 ¼ f 3 LW 3;2 � a2 þ b3
� �

: (9)

After algebraic substitutions the Eqn. (9) changes to

a3¼ f 3 LW 3;2 � f 2 LW 2;1 � f 1 IW 1;1 �pþb1
� �

þb2
� �

þb3
� �

:

(10)

Transfer function could be arbitrary but usually purelin

(Fig. 4) or tansig (Fig. 5) function is used.

3.2.1. Training algorithms of ANN

The training process requires a set of examples �
inputs p and target outputs t to provide the proper

ANN behavior of ANN. Weights and biases of the

ANN are iteratively adjusted to minimize the ANN

performance function during the training process. The

performance function is usually mean square error

mse � the average squared error between the ANN

outputs a and the target outputs t.

The simplest learning algorithm is back propa-
gation. It updates the vector containing weight and

bias matrix coefficients � X. It is done by using a

gradient of the performance function. The vector X

components are changed in the direction of maximal

negative gradient of performance function so that it

decreases most rapidly. It is described by the following

equation:

Xkþ1 ¼ Xk � ak � gk; (11)

where: Xk�1 � are the updated values of unknown

vector; Xk � the old values of an unknown vector; ak �
the learning rate; gk � the gradient of performance

function.

This algorithm is quite simple, but its conver-

gence rate is slow. Next algorithms provide the

convergence increase about 10 to 100 times.

Conjugate Gradient Algorithms (Hagan et al.

1996) are based on the fact that the function decreases

most rapidly along the negative of gradient but this
does not necessarily produce the fastest convergence.

So the search is performed along the conjugate

directions.

Quasi�Newton Algorithms are used very often

(Hagan et al. 1996) that they often converge faster

than Conjugate Gradient Algorithms. These algo-

rithms are based on the following equation:

Xkþ1 ¼ Xk � A�1
k gk; (12)

where A�1
k is the inverse of Hessian matrix (second

derivatives of performance function with respect to

vector X unknown coefficients).
The next algorithm is called Levenberg�Mar-

quardt Algorithm (Hagan, Menhaj 1994) that usually

works faster than all the earlier mentioned ones;

therefore, it is used in this work. The Hessian matrix

Fig. 3. Multilayer neural network architecture

Fig. 4. Plot of purelin transfer function and its graphical

sign Fig. 5. Plot of tansig transfer function and its graphical sign
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is approximated by the square of Jacobian matrix � J

(it is true if the performance function is mean square

error):

A ¼ JT � J: (13)

The vector X is updated according to the following

equation:

Xkþ1 ¼ Xk � JT J þ l � I
� ��1�JT � e; (14)

where: e is the vector of mean square error mse; m �
scalar; I �identity matrix.

When m 0 0, then this method works like Quasi�
Newton Method, but when it is large, then it works
like Conjugate Gradient Method. The scalar m is

decreased after each successful step.

4. Obtained results

The optimization results are shown for a particular

example with the following properties: L1� 2.16 m,

L2 � 1.36 m, b1 � 0.453 m, a1 � 0.54 m, a2 � 1.08 m,

L3 � 0.9 m, L4 � 0.08m, L5 � 0.18 m, Q � 2700 kg

(on each load area, see Fig. 1). These dimensions and
loads are commonly used in the structure of a heavy

truck floor.

4.1. Analysis of the worst location of load

The coordinates of center of loading area � Xc and Yc �
were varied. The maximal stress in the direction of

wood fiber and maximal deflection were obtained for

each case. According to the results, the most dangerous

(provides maximal stress and deflection of plate)

location of load areas was obtained.
In Figures 6 and 7 are shown the relative-

maximal deflection (ratio of Uz/Uz (max), where Uz �
out of plane deflection) and in Figure 8 � relative-

maximal stress in the direction of wood fiber depend-

ing on the coordinates of center of loading area. In

Figure 9 is shown the most dangerous loading case

(because of structures symmetry there are other three

loading cases with the same dangerousness). The

numerical simulation is done by commercial Finite

Element Program Code ANSYS using PC with

properties: Intel Core 2 Duo CPU 2.93 GHz,

2.5 GB of RAM.

The worst-load case is obtained for specific

bending stiffness properties. It is assumed that bend-

ing stiffness in Y direction is 15% greater than in X

direction. This assumption was used because the

actual bending stiffness depending on design vector

is close to this assumption. There was done another

simulation with a different ratio of bending stiffness

and the location of worst-loading area was not

changed significantly.

4.2. Optimization of plywood composite macrostructure

The optimization is done by using GA described in

Section 4.1. GA is a stochastic algorithm, therefore,

there was done three independent runs for each case. If

the dispersion of results is less than 5%, then the best

solution is taken. If the dispersion is more than 5%,

then several extra runs are done.

Fig. 6. Plot of relative-maximal deflection, depending on

center coordinates (Xc, Yc) of the loading area

Fig. 7. One quarter part of the plot of maximal deflection,

depending on center coordinates (Xc, Yc) of the loading area

Fig. 8. The maximal stress in the direction of wood fiber,

depending on the coordinates of the loading area center
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The design vector (1) was optimized for various

loads Q�{2; 2.5; 3; 3.5} (tons per each loading area)

and for various input geometrical parameters:

L1�{1.5; 2; 2.5; 3} (m);

L2�{0.75; 1; 1.25; 1.5} (m);

t�{30; 40; 50; 60} (mm).

The total number of cases that were optimized is 256.

Some of the results (in case if Q �2.5 tons and t �
40 mm) are shown in Table 1. Constrains were

calculated according to European Committee for

Standardization (2004):
1) Stress in compressed flange;

2) Stress in tensioned flange;

3) Shear stress in plywood ribs;

4) Shear stress in glued joints;

5) Local bending of top plywood flange.

The plywood structure was modeled using linear plate

Finite Element based on Kirchoff�Love theory of thin

plates. The time of simulation was significantly

decreased (compared to the full model, where plywood

sheets are modeled with Shell Finite Elements) by

dividing the calculation into two parts. In the first

part, the plate was modeled by using homogenization

method. It means that ribs were replaced with the

same stiffness elastic layer. In the second part was

simulated only the behavior of top flange. The ribs

were assumed to be supports. The second part is

necessary to model the local bending behavior of top

plywood flange.

The plywood elements were simulated using the

mechanical characteristics of Finnish birch ply-

wood according to the Handbook of Finnish Plywood

Fig. 9. The most dangerous location of the loading area

center

Table 1. The geometrical parameters of optimized structure

L, m B, m t1, m t2, m t, m n F, kg

1.50 0.75 0.0130 0.0110 0.0200 15 115.3

1.50 1.00 0.0132 0.0115 0.0220 21 201.9

1.50 1.25 0.0139 0.0125 0.0250 28 350.4

1.50 1.50 Not satisfied constrains

2.00 0.75 0.0136 0.0120 0.0250 14 120.5

2.00 1.00 0.0142 0.0127 0.0260 20 207.6

2.00 1.25 0.0146 0.0130 0.0300 27 353.8

2.00 1.50 Not satisfied constrains

2.50 0.75 0.0143 0.0128 0.0280 14 126.6

2.50 1.00 0.0148 0.0130 0.0300 20 215.0

2.50 1.25 0.0150 0.0130 0.0300 26 361.6

2.50 1.50 Not satisfied constrains

3.00 0.75 0.0150 0.0130 0.0300 14 133.1

3.00 1.00 0.0150 0.0130 0.0300 20 223.2

3.00 1.25 0.0150 0.0130 0.0300 30 401.0

3.00 1.50 Not satisfied constrains

Fig. 10. Feed-Forward ANN with one hidden layer and one output layer that was trained
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(Finnish Forest Industries Federation 2002). As we

can see in Table 1, there are some cases when the

constrains are not satisfied. For example, in the case

when L�1.5 and B�1.5 m, the constraint of stress in

compressed flange is not satisfied, therefore, the

feasible solution was not achieved. Because of these

cases, there arise problems in ANN training process.

The ANN should calculate optimal parameters and

also warn about the cases when it is not possible to

satisfy the constrains. We solved this problem by

modifying training data by changing all the compo-

nents of design vector to zero in case if constrains are

not satisfied. The user of ANN could identify those

cases when neural network gives values of optimal

parameters very close to zero.

4.3. Artificial Neural Network

The data that were obtained in the optimization is

used to train the ANN (totally 256 cases). The input

vector consists of four parameters p�{Q, L1, L2, t}.

Output vector consists of four parameters y�{t1, t2,

t3, n}. The numerical experiments show that the

minimal size of ANN is 20 neurons. It is necessary

for accurate simulation of this size of data. The

architecture of ANN that was used in the analysis is

shown in Figure 10. The transfer function in the

hidden layer is tansig function (Fig. 4), but in the

output layer, it is purelin function (Fig. 5).

Fig. 11. Validation plot, mean square error, depending on

training epoch

Fig. 12. The regression plots of output of ANN and target results
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The ANN was trained by using Levenberg�
Marquardt Algorithm that is based on Eqn. (14).

This is the most appropriate algorithm for Feed-

Forward Artificial Neural Network for many practical
cases (Hagan et al. 1996).

Validation and testing of ANN were simulta-

neously done during the training process (in each

training epoch). The validation shows that the optimal

number of training epoch is 7 (see Fig. 11, green

curve). The mean square error at the epoch number 7

is nonsignificant (see Fig. 11, red curve). If the ANN

is trained more than 7 epoch, then it is overtrained
and mean square error increase (see Fig. 11, green

curve).

Regression analysis of the ANN was done to

obtain accuracy of results. The regression plot of

optimized parameter n (number of plywood ribs) is

shown in Figure 12. Very similar plots are obtained for

other output parameters. The analysis of the correla-

tion coefficient R shows that it is very close to 1
(R �0.98). It means that there is strong correlation

between ANN output and the target results. There are

problems with the cases when constrains are not

satisfied and components of ANN output vector

should be very close to zero. Figure 12 shows that

sometimes ANN could not identify correctly the cases

when constrains are not satisfied.

Neural Network and Genetic Algorithm Toolbox
of Matlab 7.6.0 software were used in the optimization

and training of ANN. Special procedures that were

necessary in analysis are written in Matlab 7.6.0

programming environment.

Conclusions

A rational (with decreased weight, moisture-caused

shape instability, and heat conductivity) macrostruc-

ture of plywood composite and its optimization
methodology are proposed.

Rational geometrical properties of the proposed

structure are obtained. Rational thickness of the top

flange, bottom flange and ribs are 14, 13, and 30 mm,

respectively, and total number of ribs is 27 in case if

length of the plate is 2 m, width 1.25 m, thickness

4 cm, and load 2500 kg.

The obtained results are used to train Feed-
Forward ANN consisting of 20 neurons in hidden and

output layer and four input and output parameters.

The validation test shows that the ANN could

calculate rational parameters with good accuracy.

The architecture of ANN should be optimized

for this kind of problems in the future.
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