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Abstract. The interlayer bond is one of the primary qualities assessed during an inspection of floor concrete
workmanship. The measure of this bond is the value of pull-off adhesion fb determined in practice by the pull-off
method. The drawback of this method is that the tested floor is damaged in each of the test points and then needs to
be repaired. This drawback can be overcome by developing a way which will make it possible to test floors in any
point without damaging them locally. In this paper it is proposed to evaluate the pull-off adhesion of the top layer
to the base layer in concrete floors by means of the radial basis function (RBF) artificial neural network using the
parameters evaluated by the non-destructive acoustic impulse response technique and the non-destructive optical
laser triangulation method. Presented RBF neural network model is useful tool in the non-destructive evaluation of
the pull-off adhesion of concrete floor layers without the need to damage the top layer fragment from the base.
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Introduction

One of the serious defects occurring in floors is the

lack of adhesion at the base layer/top layer interface

(Błaszczyński et al. 2006; Łowińska-Kluge, Błas-

zczyński 2012). Adhesion is the ability of different

materials to stick to each other. According to Courard

(2000), Fiebrich (1994), Sasse (2007), adhesion proper,

connected with chemical and physicochemical inter-

actions (hydrogen bonds an van der Waals bonds),

and mechanical adhesion, connected with the mechan-

ical anchoring of the material of one layer in the pores

and surface irregularities of another layer, are distin-

guished. According to Czarnecki and Chmielewska

(2005) and Łukowski (2005), the main factors deter-

mining the level of adhesion proper are: the compres-

sive strength of the base concrete and the latter’s

temperature and moisture content. Also, the physical

properties of the materials which are to be joined, such

as viscosity, wettability, bond shrinkage, thermal

expansion and elastic modulus are vital. However, it

is the development of the contacting surfaces, the

porosity of the substrate and the presence of micro-

cracks in the latter which have the greatest influence

on the level of mechanical adhesion. According to

Piotrowski (2009), mechanical adhesion has the deci-

sive influence on the quality of the bond between

concrete layers.

The interlayer bond is one of the primary

qualities assessed during an inspection of floor con-

crete workmanship. The measure of this bond is the

value of pull-off adhesion fb determined in practice by

the pull-off method. The method is both qualitative �
defects (e.g. no adhesion) at the interface between

the layers can be detected � and quantitative � the

value of pull-off adhesion fb can be determined.

According to this method, adhesion is measured by

measuring the ultimate load (pull-off force) using a

servomotor with a pressure gauge. For this purpose

cores 50 mm in diameter are drilled in the floor

top layer and pulled off (via steel discs stuck onto

them) from the surface of the base layer. A value of

top layer/base layer adhesion of no less than 0.5 MPa

determined in this way is an indicator of good

floor workmanship (Courard et al. 2011; Czarnecki,

Chmielewska 2011).

The effectiveness of the above semi-non-destruc-

tive method to a large extent depends on the number

of measuring points. According to standard EN

12504-3:2006, this number should be 1 measurement
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per 3 m2 of floor. This requirement is rather onerous in

the case of large-area floors, considering that the floor

is damaged in each of the measuring points, as shown

in Figure 1. Each such damage must be repaired after

the test. Consequently, in practice the number of

measuring points tends to be reduced. Therefore there

is a need for a more effective method devoid of the

above drawback, which will make it possible to test the

floor in any place without damaging the tested

surface.

The proper preparation of the base layer, which

can be described in terms of surface roughness, is a

major determinant of pull-off adhesion fb at the

interface between the concrete layers in a floor

(Kuzinovski et al. 2009; Mathia et al. 2011). It has

been demonstrated that there is a correlation between

roughness parameters and pull-off adhesion (Garbacz

et al. 2006; Naderi, Ghodousian 2012; Siewczyńska

2012). From the point of view of the non-destructive

assessment of the quality of the interlayer bond in

concrete floors, the surface roughness parameters

determined by the non-destructive optical laser trian-

gulation (scanning) method prior to base surface

concreting can be useful (Gonzalez-Jorge et al. 2012;

Grzelka et al. 2010; Reiner, Stankiewicz 2011). Lit-

erature reports indicate that 3D parameter values

determined by analysing the spatial image of the

tested concrete surface (Fig. 2) can be used in order

to non-destructively assess the interlayer bond in

concrete floors. Such parameters as: arithmetical

mean height of the surface Sa, root mean square

height of the surface Sq or surface bearing index Sbi

are increasingly often used in civil engineering to

describe concrete surface roughness (Grzelka et al.

2011; Ourahmoune et al. 2011; Sadowski 2012;

Werner et al. 2013).
Literature reports indicate that also acoustic

methods can be useful for assessing the pull-off

adhesion of the concrete layers in floors (Beutel

et al. 2008; Cerniglia et al. 2010; Gorzelańczyk 2012;

Goszczyńska et al. 2012; Hoła, Schabowicz 2010;

Matsuyama et al. 2010). As opposed to the semi-

non-destructive pull-off method, they supply informa-

tion about the tested element without disturbing its

structure. An example of their application can be

found in the paper (Hoła et al. 2011) dealing with the

assessment of the interlayer bond in concrete floors,

using the zero/one (no bond/bond) system, in order to

identify concrete floor areas in which delamination at

the top layer/base layer interface occurred.

From among non-destructive methods, the

acoustic impulse response technique is suitable for

the considered purpose. The test equipment used in

this method is shown in Figure 3. According to the

papers (Davis 2003; Hoła, Sadowski 2012; Ottosen

et al. 2004), the parameters most useful in this

technique are: average mobility Nav and stiffness Kd.

In Hoła and Sadowski (2012) an attempt was made to

determine reliable correlations between the individual

parameters recorded by the impulse response techni-

que and the pull-off adhesion determined by the pull-

off method. However, the attempt was unsuccessful

because of the low values of the coefficient of

determination.

Incision of 50 mm 
concrete fragment 

to be pulled off,
Top layer

Base layer

Sticking on  
50 mm metal disc

50 mm

Pulling off concrete 
by servomotor

Damage caused in 

each measuring point

Top layer after test

Bottom surface of 
top layer after pulling 

off from base

Top layer

Base layer

Top layer

Base layer

Top layer

Base layer

Fig. 1. Sequence showing how floor top concrete layer is

damaged by pulling off f 50 mm piece of it from base, using

semi-non-destructive method
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Considering the above, it seems reasonable to

search for a new method of identifying the pull-off

adhesion of the concrete layers in floors on the basis

of several parameters describing base layer roughness

and parameters determined on the surface of the floor

top layer by the impulse response technique. In order

to correlate a larger number of parameters it was

proposed to use artificial neural networks (ANNs)

(Kwaśnicka 2005). ANNs have been increasingly often

used in civil engineering (Altun et al. 2008; Bilgehan

et al. 2012; Gencel et al. 2011; Hasanzadehshooiili

et al. 2012; Hoła, Schabowicz 2005; Shaw et al. 2005;

Kaczmarczyk, Waszczyszyn 2007; Sadowski 2013;

Zapata et al. 2012). One of the most often used

ANNs are radial basis function (RBF) ANNs. The

advantages they offer are the much simplified selection

of the input layer structure and the much simpler and

shorter training process requiring less computing

power. RBF neural networks have already been

applied in civil engineering (Kaliszuk et al. 2001;

Kappatos, Dermatas 2007; Kim et al. 2006; Schabow-

icz 2003; Zhang et al. 2011). They were also used in

this research to non-destructively evaluate the pull-off

adhesion of the concrete layers in floors on the basis

of parameters assessed by non-destructive methods:

the optical laser triangulation method and the acous-

tic impulse response technique.

One can suppose that the parameters in the

particular test points on the top layer surface recorded

by non-destructive acoustic methods together with the

concrete base surface roughness parameters previously

non-destructively determined in the same test points,

compared with the values of pull-off adhesion fb of the

top layer to the base layer determined in the same test

points by the semi-nondestructive pull-off method,

can make up a database for the training and testing of

ANNs. Once an ANN is trained and tested it can be

used to generate pull-off adhesion values for any

tested area in a given floor on the basis of the

parameters recorded using the non-destructive

methods.

The aim of this paper is to demonstrate that pull-

off adhesion of the top layer to the base layer in any

point of a concrete floor can be identified by the RBF

neural network on the basis of the base layer surface

roughness parameters evaluated by the optical laser

triangulation method and the parameters evaluated

Fig. 2. Typical spatial image of scanned surface, and surface roughness parameters

Fig. 3. Test equipment used in non-destructive acoustic

impulse response technique
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on the floor surface by the acoustic impulse response

technique.

1. Methods used

In this section the methods used in this research, i.e.

the non-destructive impulse response technique, the

non-destructive optical technique and the semi-de-

structive pull-off method, are briefly described. Also

the ANN employed is described.

1.1. Non-destructive impulse response technique

The non-destructive impulse response technique con-
sists in generating an elastic wave in a tested element

by means of a rubber tipped calibrated hammer. The

frequency of the generated elastic wave is in a range of

1�800 Hz and the excitation extends to about 50 cm

around the measuring point. Hammer strikes are

executed in selected measuring points. The signal of

the elastic wave propagating in the tested element is

registered by a geophone and simultaneously ampli-
fied by an amplifier. The signals recorded during the

tests are subsequently processed using the dedicated

Impulse Response s’Mash software installed on a

laptop. The measuring set used in the impulse

response technique is shown in Figure 4.

The registered parameters are: average mobility

Nav, stiffness Kd, mobility slope Mp/N, average mobi-

lity times mobility slope Nav �Mp and voids index v.
Two of the above parameters, which are most often

used to locate floor areas lacking adhesion (Hoła,

Sadowski 2012), are used in this paper. According to

Hoła et al. (2011), Ottosen et al. (2004), they are: Nav �
the average mobility of vibrations N, defined as a ratio

of maximum velocity wmax to maximum elastic wave

Fmax generated by the hammer:

Nav ¼
wmax

Fmax

: (1)

Kd � the cotangent of mobility curve inclination angle

a in a frequency range of 0�80 Hz:

Kd ¼ ctga: (2)

1.2. Non-destructive optical technique

The set for surface roughness examinations by means

of the optical technique comprises: a laser distance

sensor mounted on a linear drive with a guide, a
controller incorporating an amplifier, and a laptop.

The IVC Studio 3.1 S.R.2 software installed on the

laptop was used in the optical investigations, carried

out (in previously determined measuring points) using

a 161�55�60 mm IVC-2D camera with a resolution of

1028�768 pixels, mounted on a guide (Fig. 5).

Scanning is effected by manually shifting the

head above the measuring area during which several
surface profiles, separated from one another by a

distance of 0.1 mm, are being recorded with a

resolution of 0.074 mm. As a result, a 3D image of

the concrete surface is obtained. The data from the

camera after prefiltration are sent to the laptop to be

archived. The dedicated software installed on the

laptop is used to process the data and to generate

the values of such surface roughness parameters as: Sa

� the average arithmetic deviation of the surface from

reference surface A, expressed by the equation:

Sa ¼
1

A

XN

j¼1

XM
i¼1

z ði; jÞ; (3)

Sq � the rms deviation of the surface from reference

surface A:

Sq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

A

XN

j¼1

XM
i¼1

z2ði; jÞ

vuut ; (4)

Sbi � a surface bearing index, which is a ratio of rms
surface roughness deviation Sq to h0.05, where h0.05 is

the level separating the peak surface roughness from

the core for a default value of 5%:

Sbi ¼
Sq

g0:05

: (5)

rubber tipped 
calibrated 
hammer

specialist 
Impulse Response’s

Mash software 
installed 

on a laptop

selected 
measuring 

points

geophone 

Fig. 4. Schematic of the non-destructive impulse response

technique

IVC-2D 
camera

 linear drive 

scanning area 
55×60 mm 

scanning direction

specialist 
IVC Studio 3.1 S.R.2 

software 
installed on a laptop

controller
with amplifier

Fig. 5. Schematic of the non-destructive optical technique
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The above three parameters determinable using

the non-destructive optical technique were used in this

research as the input parameters for training, testing

and verifying the ANN.
As part of this research an attempt was made to

non-destructively determine pull-off adhesion fb in any

measuring point, leaving the surface of the tested

concrete floor intact.

1.3. Semi-destructive pull-off method

The pull-off method, illustrated in Figure 6, is used to

determine the adhesion of concrete floor layers. The

method belongs to a group of semi-nondestructive

methods. In this method, the adhesion of the top layer

to the base layer is evaluated by measuring the pull-off

force with a servomotor equipped with a pressure

gauge. For this purpose cores 50 mm diameter are
drilled in the topping and pulled off from the base

layer.

The method is both qualitative, since it can

indicate a defect (e.g. lack of adhesion) at the interface

between the layers, and quantitative since using it one

can determine pull-off adhesion fb.

In this method, fb is calculated from the equation:

fb ¼
4 � Fb

p �D2
f

; (6)

where: Fb � failure load, N; Df � an average sample

diameter, m.

1.4. RBF neural network

The main purpose of RBF neural networks is to

approximate functions of several variables in order to

map a set of input variables into a set of output

variables (Moody, Darken 1989; Rafajłowicz, Sku-

balska-Rafajłowicz 2009; Xie et al. 2012; Yao et al.

2012). The approximation in this case is global since it

is simultaneously performed for many neurons. In

RBF neural networks a hidden neuron executes a
function radially changing around a selected centre,

assuming nonzero values only in the neighbourhood

of this centre, as shown in Figure 7.

The effectiveness of a neural network is usually
evaluated using such correlation error measures as:

� linear correlation coefficient R:

Ri ¼
 

P
PP
p¼1

d
p
i y

p
i�
PP
p¼1

d
p
i

PP
p¼1

y
p
i

!2

 
P
PP
p¼1

ðdp
i Þ

2 � ð
PP
p¼1

d
p
i Þ

2

!
�
 

P
PP
p¼1

ðyp
i Þ

2 � ð
PP
p¼1

y
p
i Þ

2

!
;

(7)

� relative error (RE):

RE ¼
y

p
i � y

p
i

���� ���
y

p
i

; (8)

where: P� the number of training patterns; M � the
number of inputs; d

p
i � the i-th expected value for

pattern p; y
p
i � the i-th value of the response from the

network to pattern p; y
p
i � the average value of the

network response to pattern p.

2. Experimental details

Two 2500�2500 mm model concrete floor specimens

consisting of a 25 mm thick top layer laid on a 125 mm

thick base were tested. The top layer was made of

grade C20/25 cement mortar. The base layer was made

of grade C30/37 concrete with a maximum aggregate

grading of 8 mm. Up to the time of the tests the
specimens had been stored in a laboratory at a

temperature of 2095 8C. The base layer was laid on

a 100 mm thick layer of sand. The specimens were

tested using the non-destructive impulse response

technique and the semi-destructive pull-off method

after the top layer had cured for 90 days.

Four ways of preparing the base layer surface,

denoted with Roman numerals I�IV (Fig. 8) were
proposed. The surface of the top layer of each model

specimen was marked, a 1500�1500 mm test area was

outlined on the surface and a grid of measuring points

servomotor 
equipped 

with a pressure 
gauge

core 50 mm diameter
drilled in the topping fa

ilu
re

 lo
ad

 (
F

b)

selected 
measuring 

points

Fig. 6. Schematic of the semi-destructive pull-off method

. 

. 

.

x1

x2

xn

. 

. 

.

f 1

f 2

f 3

f n

y

w0

w1

w3

w2

wn

Fig. 7. Schematic of RBF neural network
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spaced at every 100 mm was marked on it (keeping a

minimum distance of 500 mm from the edge). The

columns were denoted with letters from A to H and

the rows with numbers from 1 to 16. In total 128

measuring points were marked on each of the surfaces.

The non-destructive impulse response test con-

sisted in generating (with the calibrated hammer) an

elastic wave in each point of the measuring grid

marked on the floor’s surface (Fig. 9). As a result of

the test, the values of characteristic acoustic para-

meters Nav and Kd (their names are given in Fig. 5) in

each of the points were obtained.

The non-destructive optical tests consisted in

scanning the profiles of a 55�60 mm base layer from

a distance incrementally increasing by 0.1 mm (Fig. 10).

As a result, a 3D image of the concrete surface within

the scanned areawas obtained. The datawere processed

using the dedicated IVC Studio 3.1 S.R.2 software

installed on the laptop and the values of the concrete

surface roughness parameters were displayed.

The semi-non-destructive pull-off tests consisted

in determining the adhesion of the top layer to the

base layer by measuring the pull-off force by means of

a servomotor with a digital pressure gauge. For this

purpose f 50 mm cores were drilled in the top layer in

the same points in which previously the optical tests

and the impulse response tests had been carried out

and the cores were pulled off from the surface of the

base layer (Fig. 11).

WAY OF PREPARING 
BASE LAYER 

SURFACE

NONDESTRUCTIVE AND 
SEMIDESTRUCTIVE 

METHODS 
USED AND PARAMETERS 

EVALUATED

SURFACE I 
MECHANICAL 

GRIDING 
& SURFACE 
DEDUSTING

SURFACE II 
MECHANICAL

 GRIDING 
+ SURFACE 
DEDUSTING

 + BONDING LAYER 
APPLICATION

SURFACE III
NO SURFACE 

PREPARATION 
– SURFACE AS 
IMMEDIATELY 

AFTER CONCRETING

SURFACE IV 
NO SURFACE

 PREPARATION, 
BONDING LAYER 

APPLICATION

IMPULSE RESPONSE 
TECHNIQUE

PARAMETERS:
- Nav,

- Kd.

PULL-OFF METHOD

PARAMETER:
- fb.

OPTICAL TECHNIQUE

PARAMETERS:
- Sa, 
- Sp,

- Sbi.

Fig. 8. Combinations of ways of preparing base layer

surface and non-destructive and semi-destructive methods

with evaluated parameters

Fig. 9. Testing by means of non-destructive impulse re-

sponse technique

Fig. 10. Testing by means of non-destructive optical tech-

nique

Fig. 11. Testing by means of semi-nondestructive pull-off

method
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3. Database

The 472 test results were subjected to statistical

analysis, whereby the database was reduced to 460

results. The input variables obtained in this way were
randomly divided into training data, testing data and

verification data. From the 460 input variables, 322

results were selected for training, 69 for testing and 69

for verification. Orthogonal-least-square learning has

been used for this purpose. Exemplary test results,

determined by the non-destructive impulse response

technique, the non-destructive optical technique and

the semi-nondestructive pull-off method, used for the
training, testing and verification of the ANN are listed

in Table 1.

An RBF neural network model with one hidden

layer having architecture 5-30-1 was found to be

optimal for the non-destructive evaluation of pull-off

adhesion (Fig. 12).

4. Test results and their analysis

In section 4.1 the results of training and testing the

RBF neural network with 30 hidden layer neurons are

presented. In section 4.2, the experimental verification

of the RBF neural network is described.

4.1. Results of neural network training and testing

Figures 13 and 14 show the dependencies between

experimentally determined pull-off adhesion fb and

pull-off adhesion fc,b identified by the RBF neural

network with 30 hidden layer neurons during its

training and testing. Thirty hidden layer neurons
were selected because for this number RE for training

and testing was the lowest and linear correlation

coefficient R was the highest. Figures 15 and 16

show bar charts of RE for training and testing.

The dependence between experimentally deter-

mined pull-off adhesion fb and pull-off adhesion fc,b

identified by the neural network during its training is

shown in Figure 13. The dependence between experi-

mentally determined pull-off adhesion fb and pull-off

adhesion fc,b identified by the neural network during

its testing is shown in Figure 14.

The above results show that regardless of the

base layer preparation, the RBF neural network

correctly maps the training data and correctly identi-

fies the testing data, as evidenced by the location of

the points along the regression line corresponding to

the ideal mapping. Moreover, high linear correlation

coefficients R were obtained for both training and

testing: 0.8175 and 0.8225, respectively, indicating that

the fit has a high degree of precision.

Bar charts of RE for pull-off adhesion fb and fc,b

for training and testing are shown in respectively

Figures 15 and 16. The intervals of RE are marked on

the X-axis while the number of results (n) belonging to

Nav

Kd

Sa

Sq

Input layer 
Experimentally 

determined 
parameters 

Hidden layer

.

.

.

Output layer 
Identification parameter

fc,b

f1

Sbi

f2

f3

f4

f5

f6

f30

f0

w0

w1

w3

w2

w4

w6

w5

w30

fb

yi

x1

x2

x3

x4

x5

d1

Fig. 12. Schematic of structure of RBF neural network

employed for non-destructive evaluation of pull-off adhe-

sion

Table 1. Exemplary test results selected for training, testing and verification

Measuring techniques with obtained parameters

Non-destructive impulse

response technique Non-destructive optical method
Semi-destructive pull-off method

No. Nav [m/s �N] Kd [�] Sa [mm] Sq [mm] Sbi [�] fb [MPa]

1 83.574 0.018 0.427 0.577 0.002 0.890

2 106.340 0.008 0.045 0.225 0.002 0.760

3 109.968 0.032 0.052 0.472 0.001 0.740

4 108.833 0.034 0.480 0.438 0.003 0.820

5 72.270 0.036 0.307 0.403 0.003 0.940

6 63.949 0.036 0.317 0.424 0.003 0.990

7 49.703 0.068 0.077 0.241 0.004 1.070

8 51.294 0.069 0.057 0.223 0.003 1.020

9 43.399 0.039 0.359 0.478 0.002 1.070

10 70.227 0.069 0.442 0.582 0.002 1.100

460 61.741 0.048 0.592 0.793 0.002 0.920
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the particular intervals of RE is marked on the Y-axis.

According to the figures, most of the RE values are

below 0.15 for both training and testing.

Presented results reflect that the RBF neural

network output fit very well with the experimental

values and as well illustrates that this model possess

good interpolation ability.

4.2. Experimental verification of neural network

In this section, the experimental verification of the

neural network is described. Sixty nine test points

were randomly selected. The trained neural network

was fed the values of parameters Sa, Sq, Sbi, Nav and

Kd in each of the 69 measuring points. The trained

neural network generated the value of pull-off adhe-

sion fc,b in each of the 69 points. The generated values

were compared with the experimental values. Figure

17 shows the dependence between experimentally

determined pull-off adhesion fb and pull-off adhesion

fc,b identified by the neural network during its

verification. The results show that regardless of the

way of preparing the base layer, the neural network

correctly maps the randomly selected verification data,

as evidenced by the location of the points along the

regression line corresponding to the ideal mapping.

Linear correlation coefficient R for the experimental

Fig. 13. Dependence between experimentally determined

pull-off adhesion fb and pull-off adhesion fc,b identified by

neural network during its training

Fig. 14. Dependence between experimentally determined

pull-off adhesion fb and pull-off adhesion fc,b identified by

neural network during its testing

Fig. 15. Bar chart of relative error of pull-off adhesion fb

and fc,b for neural network training

Fig. 16. Bar chart of relative error of pull-off adhesion fb

and fc,b for neural network testing

Fig. 17. Dependence between experimentally determined

pull-off adhesion fb and pull-off adhesion fc,b identified by

neural network during its verification

Journal of Civil Engineering and Management, 2013, 19(4): 550�560 557



verification of the neural network was found to

amount to 0.8401.
Figure 18 shows a bar chart of RE of pull-off

adhesion fb and fc,b for the verification of neural

network. The intervals of RE are marked on the

X-axis while the numbers (n) of the results belonging

to the particular intervals of RE are marked on the

Y-axis. The figures show that most of the RE errors

for the verification process are below 0.14.

Conversely, in the RBF neural network verifica-

tion process, the predicted values of pull-off adhesion

fc,b plotted against the experimentally measured values

of pull-off adhesion fb indicate that the fit has a very

high degree of accuracy.

Conclusions

The experimental and numerical test results presented

in this paper show that the RBF neural network with a

properly matched structure and training algorithm is

suitable for the non-destructive identification of pull-

off adhesion fc,b of the top layer to the base layer in

concrete floors on the basis of parameters non-

destructively evaluated using the optical laser trian-

gulation method and the acoustic impulse response

technique.

The values of this adhesion can be reliably

identified by the RBF neural network on the basis

of the total of five parameters determined by the non-

destructive methods. The parameters are: arithmetical

mean height of the surface Sa, root mean square

height of the surface Sq or surface bearing index Sbi

determined on the base layer surface by the optical

laser triangulation method, and average mobility Nav

and stiffness Kd, determined on the top layer surface

by the acoustic impulse response method. The relia-

bility of the identification is indicated by the high

values of correlation coefficient R, amounting to

0.8175, 0.8225 and 0.8401 for respectively training,

testing and experimental verification, and by the very

low values of RE, mostly below 0.15 for training and

testing and below 0.14 for verification.

The model based on RBF neural network is

useful tool in the non-destructive evaluation of the

pull-off adhesion of concrete floor layers without the

need to damage the top layer fragment 50 mm in

diameter from the base, which is the main drawback of

the pull-off method. However, it should be noted, that

the proposed method is not intended to completely

replace the semi-non-destructive pull-off method used

today to determine the pull-off adhesion of the

concrete layers in floors, but it represents a new

approach to the neural identification of the values of

this adhesion on the basis of five parameters: three

describing base layer surface roughness, evaluated by

the non-destructive optical laser triangulation meth-

od, and two evaluated on the surface of the floor top

layer surface by the non-destructive acoustic impulse

response technique.
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towe. Rozwój, perspektywy [Artificial intelligence and

expert systems. Development and prospects]. Wroclaw:

College of Management and Finances. 188 p.
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